References

  1. D. Beauquier & M. Nivat (1991): On translating one polyomino to tile the plane. Discrete Comput. Geom. 6(6), pp. 575–592, doi:10.1007/BF02574705.
  2. Peter Brass, William Moser & János Pach (2005): Research problems in discrete geometry. Springer, New York.
  3. S. Brlek, G. Labelle & A. Lacasse (2005): Algorithms for polyominoes based on the discrete Green theorem. Discrete Appl. Math. 147(2-3), pp. 187–205, doi:10.1016/j.dam.2004.09.011.
  4. S. Brlek, G. Labelle & A. Lacasse (2005): A note on a result of Daurat and Nivat. In: C. de Felice & A. Restivo: Proc. DLT 2005, 9-th Int. Conf. on Developments in Language Theory, Palermo, Italia, 4–8, LNCS 3572. Springer-Verlag, pp. 189–198.
  5. S. Brlek, G. Labelle & A. Lacasse (2006): Properties of the contour path of discrete sets. Internat. J. Found. Comput. Sci. 17(3), pp. 543–556, doi:10.1142/S012905410600398X.
  6. S. Brlek, G. Labelle & A. Lacasse (2006): Shuffle operations on lattice paths. In: M.Rigo: Proc. CANT2006, Int. School and Conf. on Combinatorics, Automata and Number theory, Liège, Belgium, 8–19. University of Liège.
  7. S. Brlek, J.-O. Lachaud, X. Provençal & C. Reutenauer (2009): Lyndon + Christoffel = digitally convex. Pattern Recognition 42(10), pp. 2239 – 2246, doi:10.1016/j.patcog.2008.11.010.
  8. S. Brlek, X. Provençal & Jean-Marc Fédou (2009): On the tiling by translation problem. Discrete Appl. Math. 157(3), pp. 464–475, doi:10.1016/j.dam.2008.05.026.
  9. Srecko Brlek, Michel Koskas & Xavier Provençal (2009): A Linear Time and Space Algorithm for Detecting Path Intersection. In: Srečko Brlek, Christophe Reutenauer & Xavier Provençal: Proc. DGCI 2009, 15th IAPR Int. Conf. on Discrete Geometry for Computer Imagery, Montréal, Canada, LNCS 5810. Springer, pp. 397–408.
  10. Srecko Brlek, Michel Koskas & Xavier Provençal (2011): A linear time and space algorithm for detecting path intersection in Z^d. Theoretical Computer Science 412(36), pp. 4841 – 4850, doi:10.1016/j.tcs.2011.04.019.
  11. Srečko Brlek & Xavier Provençal (2006): On the problem of deciding if a polyomino tiles the plane by translation. In: Jan Holub & Jan Żdárek: Proceedings of the Prague Stringology Conference '06, ISBN80-01-03533-6. Czech Technical University in Prague, Prague, Czech Republic, pp. 65–76.
  12. Srečko Brlek, Jacques-Olivier Lachaud & Xavier Provençal (2008): Combinatorial view of digital convexity. In: David Coeurjolly, Isabelle Sivignon, Laure Tougne & Florent Dupont: Proc. DGCI 2008, 14th IAPR Int. Conf. on Discrete Geometry for Computer Imagery, Lyon, France, LNCS 4992. Springer, pp. 57–68.
  13. Srečko Brlek & Xavier Provençal (2006): An Optimal Algorithm for Detecting Pseudo-squares.. In: Attila Kuba, László G. Nyúl & Kálmán Palágyi: Proc. DGCI 2006, 13th IAPR Int. Conf. on Discrete Geometry for Computer Imagery, Szeged, Hungary, October 25-27, 2006, Proceedings, LNCS 4245. Springer, pp. 403–412.
  14. Maxime Crochemore, Christophe Hancart & Thierry Lecroq (2007): Algorithms on strings. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511546853.
  15. A. Daurat & M. Nivat (2003): Salient and Reentrant Points of Discrete Sets. In: A. del Lungo, V. di Gesu & A. Kuba: Proc. IWCIA'03, Int. Workshop on Combinatorial Image Analysis, Electronic Notes in Discrete Mathematics 12. Elsevier Science, Palermo, Italia, pp. 208–219.
  16. Jean-Pierre Duval (1983): Factorizing words over an ordered alphabet. J. Algorithms 4(4), pp. 363–381.
  17. Branko Grünbaum & G. C. Shephard (1987): Tilings and patterns. W. H. Freeman and Company, New York.
  18. Reinhard Klette & Azriel Rosenfeld (2004): Digital straightness—a review. Discrete Appl. Math. 139(1-3), pp. 197–230, doi:10.1016/j.dam.2002.12.001.
  19. Donald E. Knuth (1973): The art of computer programming. Volume 3. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont..
  20. M. Lothaire (1997): Combinatorics on words. Cambridge Mathematical Library. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511566097.
  21. M. Lothaire (2002): Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications 90. Cambridge University Press, Cambridge.
  22. M. Lothaire (2005): Applied combinatorics on words. Encyclopedia of Mathematics and its Applications 105. Cambridge University Press, Cambridge.
  23. Stanislaw Maloň & Herbert Freeman (1961): On the encoding of arbitrary geometric configurations. IRE Trans. EC-10, pp. 260–268.
  24. A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2009): Christoffel and Fibonacci Tiles. In: S. Brlek, X. Provençal & C. Reutenauer: Proc. DGCI 2009, 15th IAPR Int. Conf. on Discrete Geometry for Computer Imagery, LNCS 5810. Springer-Verlag, MontrÃ\IeC al, Canada, pp. 67–78.
  25. A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2009): Palindromes and local periodicity. In: Words 2009, 7th Int. Conf. on Words. Electronic proceedings.
  26. A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2011): Every polyomino yields at most two square tilings. In: Lattice Paths 2010, 7th Int. Conf. on Lattice paths combinatorics and applications, July 4–7, 2011, Siena, Italy, pp. 57–61.
  27. A. Blondin Massé, S. Brlek & S. Labbé: A square tile fills the plane by translation in at most two distinct ways. Submitted to Discrete Appl. Math..
  28. A. Blondin Massé, S. Brlek, S. Labbé & M. Mendès France: Fibonacci snowflakes. To appear in Annales des Sciences Mathématiques du Québec.
  29. A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2011): Equations on palindromes and circular words. Theoretical Computer Science 412(27), pp. 2922 – 2930, doi:10.1016/j.tcs.2010.07.005.
  30. Xavier Provençal (2011): Minimal non-convex words. Theoretical Computer Science 412(27), pp. 3002 – 3009, doi:10.1016/j.tcs.2010.06.025.
  31. Christophe Reutenauer (1993): Free Lie algebras. London Mathematical Society Monographs. New Series 7. The Clarendon Press Oxford University Press, New York.
  32. Doris Schattschneider (1980): Will it tile? Try the Conway criterion!. Math. Mag. 53(4), pp. 224–233, doi:10.2307/2689617.
  33. H. A. G. Wijshoff & J. van Leeuwen (1984): Arbitrary versus periodic storage schemes and tessellations of the plane using one type of polyomino. Inform. and Control 62(1), pp. 1–25, doi:10.1016/S0019-9958(84)80007-8.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org