D. Beauquier & M. Nivat (1991):
On translating one polyomino to tile the plane.
Discrete Comput. Geom. 6(6),
pp. 575–592,
doi:10.1007/BF02574705.
Peter Brass, William Moser & János Pach (2005):
Research problems in discrete geometry.
Springer,
New York.
S. Brlek, G. Labelle & A. Lacasse (2005):
Algorithms for polyominoes based on the discrete Green theorem.
Discrete Appl. Math. 147(2-3),
pp. 187–205,
doi:10.1016/j.dam.2004.09.011.
S. Brlek, G. Labelle & A. Lacasse (2005):
A note on a result of Daurat and Nivat.
In: C. de Felice & A. Restivo: Proc. DLT 2005, 9-th Int. Conf. on Developments in Language Theory, Palermo, Italia, 4–8,
LNCS 3572.
Springer-Verlag,
pp. 189–198.
S. Brlek, G. Labelle & A. Lacasse (2006):
Properties of the contour path of discrete sets.
Internat. J. Found. Comput. Sci. 17(3),
pp. 543–556,
doi:10.1142/S012905410600398X.
S. Brlek, G. Labelle & A. Lacasse (2006):
Shuffle operations on lattice paths.
In: M.Rigo: Proc. CANT2006, Int. School and Conf. on Combinatorics, Automata and Number theory, Liège, Belgium, 8–19.
University of Liège.
S. Brlek, J.-O. Lachaud, X. Provençal & C. Reutenauer (2009):
Lyndon + Christoffel = digitally convex.
Pattern Recognition 42(10),
pp. 2239 – 2246,
doi:10.1016/j.patcog.2008.11.010.
S. Brlek, X. Provençal & Jean-Marc Fédou (2009):
On the tiling by translation problem.
Discrete Appl. Math. 157(3),
pp. 464–475,
doi:10.1016/j.dam.2008.05.026.
Srecko Brlek, Michel Koskas & Xavier Provençal (2009):
A Linear Time and Space Algorithm for Detecting Path Intersection.
In: Srečko Brlek, Christophe Reutenauer & Xavier Provençal: Proc. DGCI 2009, 15th IAPR Int. Conf. on Discrete Geometry for Computer Imagery, Montréal, Canada,
LNCS 5810.
Springer,
pp. 397–408.
Srecko Brlek, Michel Koskas & Xavier Provençal (2011):
A linear time and space algorithm for detecting path intersection in Z^d.
Theoretical Computer Science 412(36),
pp. 4841 – 4850,
doi:10.1016/j.tcs.2011.04.019.
Srečko Brlek & Xavier Provençal (2006):
On the problem of deciding if a polyomino tiles the plane by translation.
In: Jan Holub & Jan Żdárek: Proceedings of the Prague Stringology Conference '06,
ISBN80-01-03533-6.
Czech Technical University in Prague,
Prague, Czech Republic,
pp. 65–76.
Srečko Brlek, Jacques-Olivier Lachaud & Xavier Provençal (2008):
Combinatorial view of digital convexity.
In: David Coeurjolly, Isabelle Sivignon, Laure Tougne & Florent Dupont: Proc. DGCI 2008, 14th IAPR Int. Conf. on Discrete Geometry for Computer Imagery, Lyon, France,
LNCS 4992.
Springer,
pp. 57–68.
Srečko Brlek & Xavier Provençal (2006):
An Optimal Algorithm for Detecting Pseudo-squares..
In: Attila Kuba, László G. Nyúl & Kálmán Palágyi: Proc. DGCI 2006, 13th IAPR Int. Conf. on Discrete Geometry for Computer Imagery, Szeged, Hungary, October 25-27, 2006, Proceedings,
LNCS 4245.
Springer,
pp. 403–412.
Maxime Crochemore, Christophe Hancart & Thierry Lecroq (2007):
Algorithms on strings.
Cambridge University Press,
Cambridge,
doi:10.1017/CBO9780511546853.
A. Daurat & M. Nivat (2003):
Salient and Reentrant Points of Discrete Sets.
In: A. del Lungo, V. di Gesu & A. Kuba: Proc. IWCIA'03, Int. Workshop on Combinatorial Image Analysis,
Electronic Notes in Discrete Mathematics 12.
Elsevier Science,
Palermo, Italia,
pp. 208–219.
Jean-Pierre Duval (1983):
Factorizing words over an ordered alphabet.
J. Algorithms 4(4),
pp. 363–381.
Branko Grünbaum & G. C. Shephard (1987):
Tilings and patterns.
W. H. Freeman and Company,
New York.
Reinhard Klette & Azriel Rosenfeld (2004):
Digital straightness—a review.
Discrete Appl. Math. 139(1-3),
pp. 197–230,
doi:10.1016/j.dam.2002.12.001.
Donald E. Knuth (1973):
The art of computer programming. Volume 3.
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont..
M. Lothaire (1997):
Combinatorics on words.
Cambridge Mathematical Library.
Cambridge University Press,
Cambridge,
doi:10.1017/CBO9780511566097.
M. Lothaire (2002):
Algebraic combinatorics on words.
Encyclopedia of Mathematics and its Applications 90.
Cambridge University Press,
Cambridge.
M. Lothaire (2005):
Applied combinatorics on words.
Encyclopedia of Mathematics and its Applications 105.
Cambridge University Press,
Cambridge.
Stanislaw Maloň & Herbert Freeman (1961):
On the encoding of arbitrary geometric configurations.
IRE Trans. EC-10,
pp. 260–268.
A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2009):
Christoffel and Fibonacci Tiles.
In: S. Brlek, X. Provençal & C. Reutenauer: Proc. DGCI 2009, 15th IAPR Int. Conf. on Discrete Geometry for Computer Imagery,
LNCS 5810.
Springer-Verlag,
MontrÃ\IeC al, Canada,
pp. 67–78.
A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2009):
Palindromes and local periodicity.
In: Words 2009, 7th Int. Conf. on Words.
Electronic proceedings.
A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2011):
Every polyomino yields at most two square tilings.
In: Lattice Paths 2010, 7th Int. Conf. on Lattice paths combinatorics and applications, July 4–7, 2011, Siena, Italy,
pp. 57–61.
A. Blondin Massé, S. Brlek & S. Labbé:
A square tile fills the plane by translation in at most two distinct ways.
Submitted to Discrete Appl. Math..
A. Blondin Massé, S. Brlek, S. Labbé & M. Mendès France:
Fibonacci snowflakes.
To appear in Annales des Sciences Mathématiques du Québec.
A. Blondin Massé, S. Brlek, A. Garon & S. Labbé (2011):
Equations on palindromes and circular words.
Theoretical Computer Science 412(27),
pp. 2922 – 2930,
doi:10.1016/j.tcs.2010.07.005.
Christophe Reutenauer (1993):
Free Lie algebras.
London Mathematical Society Monographs. New Series 7.
The Clarendon Press Oxford University Press,
New York.
Doris Schattschneider (1980):
Will it tile? Try the Conway criterion!.
Math. Mag. 53(4),
pp. 224–233,
doi:10.2307/2689617.
H. A. G. Wijshoff & J. van Leeuwen (1984):
Arbitrary versus periodic storage schemes and tessellations of the plane using one type of polyomino.
Inform. and Control 62(1),
pp. 1–25,
doi:10.1016/S0019-9958(84)80007-8.