J.-P. Allouche & M. Bousquet-Mélou (1994):
Facteurs des suites de Rudin-Shapiro généralisées.
Bull. Belg. Math. Soc. 1,
pp. 145–164.
J.-P. Allouche, N. Rampersad & J. Shallit (2009):
Periodicity, repetitions, and orbits of an automatic sequence.
Theoret. Comput. Sci. 410,
pp. 2795–2803,
doi:10.1016/j.tcs.2009.02.006.
J.-P. Allouche & J. Shallit (2003):
Automatic Sequences: Theory, Applications, Generalizations.
Cambridge University Press.
Y. Bugeaud, D. Krieger & J. Shallit (2011):
Morphic and automatic words: maximal blocks and Diophantine approximation.
Acta Arithmetica 149,
pp. 181–199,
doi:10.4064/aa149-2-7.
E. Charlier, N. Rampersad & J. Shallit:
Enumeration and decidable properties of automatic sequences.
Available at http://arxiv.org/abs/1102.3698.
Preprint. To appear, Proc. DLT 2011.
A. Cobham (1969):
On the base-dependence of sets of numbers recognizable by finite automata.
Math. Systems Theory 3,
pp. 186–192,
doi:10.1007/BF01746527.
A. Cobham (1972):
Uniform tag sequences.
Math. Systems Theory 6,
pp. 164–192,
doi:10.1007/BF01706087.
D. Krieger (2007):
On critical exponents in fixed points of non-erasing morphisms.
Theor. Comput. Sci. 376,
pp. 70–88,
doi:10.1016/j.tcs.2007.01.020.
D. Krieger (2008):
Critical exponents and stabilizers of infinite words.
University of Waterloo.
D. Krieger (2009):
On critical exponents in fixed points of k-uniform binary morphisms.
RAIRO Info. Theor. Appl. 43,
pp. 41–68,
doi:10.1051/ita:2007042.
D. Krieger & J. Shallit (2007):
Every real number greater than 1 is a critical exponent.
Theoret. Comput. Sci. 381,
pp. 177–182,
doi:10.1016/j.tcs.2007.04.037.
M. Kunze, H. J. Shyr & G. Thierrin (1981):
h-bounded and semidiscrete languages.
Info. Control 51,
pp. 147–187,
doi:10.1016/S0019-9958(81)90253-9.
F. Mignosi & G. Pirillo (1992):
Repetitions in the Fibonacci infinite word.
RAIRO Info. Theor. Appl. 26,
pp. 199–204.
G. Paun & A. Salomaa (1995):
Thin and slender languages.
Discrete Appl. Math. 61,
pp. 257–270,
doi:10.1016/0166-218X(94)00014-5.
J. Shallit (1994):
Numeration systems, linear recurrences, and regular sets.
Inform. Comput. 113,
pp. 331–347,
doi:10.1006/inco.1994.1076.