References

  1. J.-P. Allouche & M. Bousquet-Mélou (1994): Facteurs des suites de Rudin-Shapiro généralisées. Bull. Belg. Math. Soc. 1, pp. 145–164.
  2. J.-P. Allouche, N. Rampersad & J. Shallit (2009): Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410, pp. 2795–2803, doi:10.1016/j.tcs.2009.02.006.
  3. J.-P. Allouche & J. Shallit (2003): Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press.
  4. Y. Bugeaud, D. Krieger & J. Shallit (2011): Morphic and automatic words: maximal blocks and Diophantine approximation. Acta Arithmetica 149, pp. 181–199, doi:10.4064/aa149-2-7.
  5. E. Charlier, N. Rampersad & J. Shallit: Enumeration and decidable properties of automatic sequences. Available at http://arxiv.org/abs/1102.3698. Preprint. To appear, Proc. DLT 2011.
  6. A. Cobham (1969): On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3, pp. 186–192, doi:10.1007/BF01746527.
  7. A. Cobham (1972): Uniform tag sequences. Math. Systems Theory 6, pp. 164–192, doi:10.1007/BF01706087.
  8. J. D. Currie & N. Rampersad (2008): For each α> 2 there is an infinite binary word with critical exponent α. Elect. J. Combinatorics 15:\#N34. Available at http://www.combinatorics.org/Volume_15/Abstracts/v15i1n34.html.
  9. D. Krieger (2007): On critical exponents in fixed points of non-erasing morphisms. Theor. Comput. Sci. 376, pp. 70–88, doi:10.1016/j.tcs.2007.01.020.
  10. D. Krieger (2008): Critical exponents and stabilizers of infinite words. University of Waterloo.
  11. D. Krieger (2009): On critical exponents in fixed points of k-uniform binary morphisms. RAIRO Info. Theor. Appl. 43, pp. 41–68, doi:10.1051/ita:2007042.
  12. D. Krieger & J. Shallit (2007): Every real number greater than 1 is a critical exponent. Theoret. Comput. Sci. 381, pp. 177–182, doi:10.1016/j.tcs.2007.04.037.
  13. M. Kunze, H. J. Shyr & G. Thierrin (1981): h-bounded and semidiscrete languages. Info. Control 51, pp. 147–187, doi:10.1016/S0019-9958(81)90253-9.
  14. F. Mignosi & G. Pirillo (1992): Repetitions in the Fibonacci infinite word. RAIRO Info. Theor. Appl. 26, pp. 199–204.
  15. G. Paun & A. Salomaa (1995): Thin and slender languages. Discrete Appl. Math. 61, pp. 257–270, doi:10.1016/0166-218X(94)00014-5.
  16. J. Shallit (1994): Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113, pp. 331–347, doi:10.1006/inco.1994.1076.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org