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The(−β )-integers are natural generalisations of theβ -integers, and thus of the integers, for negative
real bases. They can be described by infinite words which are fixed points of anti-morphisms. We
show that they are not necessarily uniformly discrete and relatively dense in the real numbers.

1 Introduction

We study the set of(−β )-integersfor a real numberβ > 1. This set is defined by

Z−β =
⋃

n≥0

(−β )n T−n
−β (0) ,

whereT−β is the(−β )-transformation, defined by Ito and Sadahiro [5] as

T−β :
[ −β

β+1,
1

β+1

)

, x 7→ −βx−
⌊ β

β+1 −βx
⌋

.

Equivalently, a(−β )-integer is a real number of the form

n−1

∑
k=0

dk (−β )k , with
−β

β +1
≤

m−1

∑
k=0

dk (−β )k−m <
1

β +1
for all 1≤ m≤ n,

whered0,d1, . . . ,dk−1 are integers. Examples of(−β )-transformations are depicted in Figure 1.
Recall that the set ofβ -integersis defined by

Zβ = Z
+
β ∪ (−Z

+
β ) with Z

+
β =

⋃

n≥0

β n T−n
β (0) ,

whereTβ is theβ -transformation,

Tβ : [0,1)→ [0,1) , x 7→ βx−⌊βx⌋ .

These sets were introduced in the domain of quasicrystallography, see e.g. [2].
It is not difficult to see thatZ−β =Zwhenβ ∈Z, and thatZ−β = {0} whenβ < 1+

√
5

2 . Forβ ≥ 1+
√

5
2 ,

Ambrož et al. [1] showed thatZ−β can be described by the fixed point of an anti-morphism on a possibly
infinite alphabet. They also calculated explicitely the setof distances between consecutive(−β )-integers
when Tn

−β
( −β

β+1

)

≤ 0 andT2n−1
−β

( −β
β+1

)

≥ 1−⌊β⌋
β for all n ≥ 1. It seems to be difficult to extend their

methods to the general case. For the case whenβ is anYrrap number, i.e., when
{

Tn
−β

( −β
β+1

)

| n≥ 0
}

is
a finite set, a different approach can be found in [8]. The approach in Section 2 resembles that in [8], but
it is simpler and works for generalβ . In Section 3, we discuss the Delone property for setsZ−β .
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2 Fixed point of an anti-morphism

By Lemma 1, we can consider the set of(−β )-integers,β > 1, as a special instance of the preimage of
a point in

[ −β
β+1,

1
β+1

)

of the map

ιβ : R→
[ −β

β+1,
1

β+1

)

, x 7→ Tn
−β

(

(−β )−nx
)

, with n≥ 0 such that(−β )−nx∈
( −β

β+1,
1

β+1

)

.

SinceT−β
(

(−β )−1x
)

= x for all x∈
( −β

β+1,
1

β+1

)

, the mapιβ is well defined.

Lemma 1. For anyβ > 1, we have
Z−β = ι−1

β (0) .

Proof. If x∈ ι−1
β (0), thenTn

−β
(

(−β )−nx
)

= 0 for somen≥ 0, thusx∈ (−β )n T−n
−β (0), i.e.,x∈ Z−β . On

the other hand,x∈ Z−β implies thatx∈ (−β )n T−n
−β (0) for somen≥ 0. If x(−β )−n ∈

( −β
β+1,

1
β+1

)

, this

immediately implies thatιβ (x) = 0. If (−β )−nx= −β
β+1, then

Tn+2
−β

(

(−β )−(n+2)x
)

= Tn+2
−β

(−1/β
β+1

)

= Tn+1
−β

( −β
β+1

)

= Tn+1
−β

(

(−β )−nx
)

= T−β (0) = 0,

thusιβ (x) = 0 as well.

Note thatιβ (x) = x for all x∈
( −β

β+1,
1

β+1

)

. For otherx, we use the following relation.

Lemma 2. For anyβ > 1, x∈ R, we have

ιβ (−βx) = T−β
(

ιβ (x)
)

.

Proof. Let x∈ R with (−β )−nx∈
( −β

β+1,
1

β+1

)

, n≥ 0. Then we have

ιβ (−βx) = Tn+1
−β

(

(−β )−(n+1)(−βx)
)

= T−β Tn
−β

(

(−β )−nx
)

= T−β
(

ιβ (x)
)

.

An important role in the study of the(−β )-transformation is played by the orbit of the left end-
point −β

β+1. In the following, fixβ > 1, and let

tn = Tn
−β

( −β
β+1

)

(n≥ 0) , an = ⌊−t0−β tn−1⌋ (n≥ 1).

(As usual,⌊x⌋ denotes the largest integer≤ x, and⌈x⌉ denotes the smallest integer≥ x.) Thena1a2 · · · is
the(−β )-expansion of−β

β+1, i.e.,

tn =
∞

∑
k=1

an+k

(−β )k for all n≥ 0,

see [5]. Settingt−1 =
1

β+1, t∞ = 0,N∞ = {0,1,2, . . .}∪{∞}, we consider open intervals

J(i, j) = (t2i , t2 j−1) with i, j ∈ N∞ , 0≤ t2i < t2 j−1 or t2i < t2 j−1 ≤ 0

(where 2∞ = ∞ and∞−1= ∞). We also seta0 = a∞ = 0, and

A = {(i, j) | i, j ∈ N∞, 0≤ t2i < t2 j−1 or t2i < t2 j−1 ≤ 0} .
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(Here,(i, j) is a pair of elements inN∞, and not an open interval.) Let

Lβ
(

(i, j)
)

= t2 j−1− t2i
(

(i, j) ∈ A
)

be the length of the intervalJ(i, j), and set

Lβ (v1 · · ·vk) = Lβ (v1)+ · · ·+Lβ(vk) , |v1 · · ·vk|= k,

for any wordv1 · · ·vk ∈ A
∗, whereA

∗ denotes the free monoid overA .
Let ψβ : A

∗ → A
∗ be an anti-morphism, which is defined on(i, j) ∈ A by

ψβ
(

(i, j)
)

= ( j, i +1) if a2i+1 = a2 j , t2i+1t2 j ≥ 0,

and otherwise by

ψβ
(

(i, j)
)

=























































( j,∞)
(

(∞,0)(0,∞)
)a2i+1−a2 j (∞, i +1) if t2i+1 > 0, t2 j < 0,

( j,0)
(

(0,∞)(∞,0)
)a2i+1−a2 j−1

(0,∞)(∞, i +1) if t2i+1 > 0, t2 j ≥ 0,

( j,0)
(

(0,∞)(∞,0)
)a2i+1−a2 j−1

(0, i +1) if t0 < t2i+1 ≤ 0, t2 j ≥ 0,

( j,∞)(∞,0)
(

(0,∞)(∞,0)
)a2i+1−a2 j−1

(0, i +1) if t0 < t2i+1 ≤ 0, t2 j < 0,

( j,0)
(

(0,∞)(∞,0)
)a2i+1−a2 j−1

if t2i+1 = t0, t2 j ≥ 0,

( j,∞)(∞,0)
(

(0,∞)(∞,0)
)a2i+1−a2 j−1

if t2i+1 = t0, t2 j < 0.

Here, anti-morphism means thatψβ (vw) = ψβ (w)ψβ (v) for all v,w ∈ A
∗. The anti-morphismψβ is

naturally extended to infinite words overA . (Right infinite words are mapped to left infinite words and
vice versa.)

Lemma 3. Letβ > 1. For any u∈ A , we have

Lβ
(

ψβ (u)
)

= βLβ (u) .

Moreover, for any1≤ ℓ≤ |ψβ (u)|, 0< x< Lβ (vℓ), with ψβ (u) = v1 · · ·v|ψβ (u)|, we have

T−β
(

t2 j−1−β−1Lβ
(

v1 · · ·vℓ−1
)

−β−1x
)

= t2i′ +x, where u= (i, j), vℓ = (i′, j ′).

Proof. This follows from the definitions ofT−β andψβ .

Let · · ·u−1u0u1 · · · ∈A
Z be the fixed point ofψβ such thatu0 = (∞,0), u0u1 · · · is a fixed point ofψ2

β
and· · ·u−2u−1 = ψβ (u0u1 · · · ), in particularu−1 = (0,∞). Let

Yβ = {yk | k∈ Z} with yk =

{

Lβ (u0 · · ·uk−1) if k≥ 0,

−Lβ (uk · · ·u−1) if k< 0.

Proposition 1. Letβ > 1. On every interval(yk,yk+1), k∈ Z, the mapιβ is a translation, with

ιβ
(

(yk,yk+1)
)

= Juk .
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Proof. We haveιβ (x) = x on the intervals
(

y0,y1
)

=
(

t∞, t−1
)

=
(

0, 1
β+1

)

and
(

y−1,y0
)

=
(

t0, t∞
)

=
( −β

β+1,0
)

, thus the statement of the proposition holds for(yk,yk+1)⊂
( −β

β+1,
1

β+1

)

.

Assume that the statement holds fork∈ Z. By Lemma 3, we have(−β )
(

yk,yk+1
)

=
(

yk′ ,yk′+|ψβ (uk)|
)

andψβ (uk) = uk′ · · ·uk′+|ψβ (uk)|−1, with k′ = −|ψβ (u0 · · ·uk)| if k ≥ 0, k′ = |ψβ (uk+1 · · ·u−1)| if k < 0.

Then Lemma 2, the assumptionιβ
(

(yk,yk+1)
)

= Juk, and Lemma 3 yield that

ιβ
(

(yk′+ℓ,yk′+ℓ+1)
)

= T−β
(

ιβ
(

(−β )−1(yk′+ℓ,yk′+ℓ+1)
))

= T−β
(

ιβ
((

yk+1−β−1Lβ (uk′ · · ·uk′+ℓ), yk+1−β−1Lβ (uk′ · · ·uk′+ℓ−1)
)))

= T−β
((

t2 j−1−β−1Lβ (uk′ · · ·uk′+ℓ), t2 j−1−β−1Lβ (uk′ · · ·uk′+ℓ−1)
))

= Juk′+ℓ

for all 0≤ ℓ < |ψβ (uk)|, whereuk = (i, j).
By induction onn, we obtain for everyn≥ 0 that the statement of the proposition holds for allk∈ Z

with (yk,yk+1)⊂ (−β )n
( −β

β+1,
1

β+1

)

, thus it holds for allk∈ Z.

Now we describe the setYβ = {yk | k∈ Z}, which is left out by the intervals(yk,yk+1).

Lemma 4. For anyβ > 1, we have

Yβ = Z−β ∪
⋃

m,n≥0

(−β )m+nT−n
−β

( −β
β+1

)

.

Proof. First note that
⋃

m,n≥0

(−β )m+n T−n
−β

( −β
β+1

)

=
⋃

m≥0

(−β )mι−1
β

( −β
β+1

)

,

similarly to Lemma 1. Indeed,x∈ ι−1
β (t0) is equivalent to(−β )−nx∈ T−n

−β (t0)∩ (t0, t−1) for somen≥ 0.

In the remaining case(−β )−nx= t0 ∈ T−n
−β (t0), we havex∈ (−β ) ι−1

β (t0) sinceTn+1
−β

(

(−β )−(n+2)x
)

=

Tn
−β (t0) = t0. Note also that(−β )mι−1

β (t0)⊆ ι−1
β (tm).

Sincet0 6∈ Juk and 06∈ Juk for all k ∈ Z by the definition ofA , Proposition 1 implies thatι−1
β (0)∪

ι−1
β (t0)⊆Yβ , thusZ−β ⊆Yβ by Lemma 1. Since(−β )Yβ ⊆Yβ by Lemma 3, we obtain(−β )mι−1

β (t0)⊆
Yβ for everym≥ 0 as well.

Let nowx∈Yβ \{0}. Then there exists somem≥ 0 such that(−β )−mx∈Yβ and(−β )−m−1x 6∈Yβ ,
i.e., (−β )−m−1x ∈ (yk,yk+1) for somek ∈ Z. By Lemma 2 and the definition ofψβ , we obtain that
ιβ
(

(−β )−mx
)

∈ {t0,0}, i.e., x ∈ (−β )mι−1
β (t0) or x∈ (−β )m

Z−β ⊆ Z−β . Since 0∈ Z−β , this proves
the lemma.

Theorem 1. Letβ > 1, x∈R. Then x∈Z−β if and only if x= yk for some k∈Z with t2 j−1 = 0 or t2i = 0,
where uk−1 = (i′, j), uk = (i, j ′).

Proof. SinceZ−β ⊆Yβ by Lemma 4, it is sufficient to considerx= yk, k∈Z. As in the proof of Lemma 4,
let m≥ 0 be such that(−β )−mx∈Yβ and(−β )−m−1x 6∈Yβ . Then we haveιβ

(

(−β )−mx
)

∈ {t0,0}.
If ιβ

(

(−β )−mx
)

= 0, thenιβ (x) = Tm
−β (0) = 0. Moreover,ιβ is continuous at(−β )−mx in this case.

Together with the continuity ofTm
−β at 0, this implies thatιβ is continuous atx, i.e., uk−1 = (i′, j) with

t2 j−1 = 0 anduk = (i, j ′) with t2i = 0.
If ιβ

(

(−β )−mx
)

= t0, thenιβ is right continuous at(−β )−mx, and its limit from the left ist−1. We
obtain thatιβ (x) = tm, uk−1 = (i′,⌈m/2⌉) and uk = (⌊m/2⌋, j ′) for somei′, j ′ ∈ N∞. Let i = ⌊m/2⌋,
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j = ⌈m/2⌉. Since 2i = m if m is even and 2j − 1 = m if m is odd, x ∈ Z−β implies thatt2i = 0 or
t2 j−1 = 0. On the other hand,t2i = 0 or t2 j−1 = 0 yields thattm−1 = 0 or tm = 0. Sincetm−1 = 0 implies
tm = 0, we must havex∈ Z−β .

By Theorem 1, the study ofZ−β is reduced to the study of the fixed point ofψβ . Note that(i, j) and
(i′, j ′) can be identified whent2i = t2i′ andt2 j−1 = t2 j ′−1. After identification,A is finite if and only if
{tn | n≥ 0} is a finite set, i.e., ifβ is an Yrrap number.

With the help ofψβ , we can construct an anti-morphism describing the structure of Z−β (for β ≥
1+

√
5

2 ), similarly to [8]. First note thatβ ≥ 1+
√

5
2 implies a1 = 1, t1 ≥ 0, or a1 ≥ 2, thusψ2

β
(

(∞,0)
)

=

ψβ
(

(0,∞)
)

starts with(∞,0)(0,∞). Therefore,Lβ
(

(∞,0)(0,∞)
)

= t−1− t0 = 1 is the smallest positive
element ofZ−β . Using Theorem 1 and(−β )Z−β ⊆ Z−β , the wordψβ

(

(∞,0)(0,∞)
)

determines the set
Z−β ∩ [−β ,0]. Splitting upψβ

(

(∞,0)(0,∞)
)

according to Theorem 1 and applyingψβ on each of the
factors yields the setZ−β ∩ [0,β 2], etc. Consider all these factors, i.e., all wordsuk · · ·uk′−1 between
consecutive elementsyk,yk′ ∈ Z−β , as letters. Using the described strategy, we define an anti-morphism
ϕ−β on words consisting of these letters. Then the fixed point ofϕ−β codes the distances between the
elements ofZ−β , see the two simple examples below. For more complicated examples, we refer to [8].
By [1, 8], the alphabet is finite if and only ifβ is an Yrrap number.

0

0−1/β
−1/β

1/β 2

1/β 2

−1/β 3

t∞

t∞t0
t0 t−1

t−1

t1

t1

Figure 1: The(−β )-transformation forβ = 1+
√

5
2 (left) andβ = 3+

√
5

2 (right).

Example1. Let β = 3+
√

5
2 ≈ 2.618, i.e.,β 2 = 3β − 1. Then we havet1 = β2

β+1 − 2 = −1/β
β+1 and t2 =

1
β+1 −1= t0. Therefore, we can identify(0,∞) and(1,∞), and obtain

ψβ : (∞,0) 7→ (0,∞) ,

(0,∞) 7→ (∞,0)(0,∞)(∞,0)(0,1) ,

(0,1) 7→ (0,∞)(∞,0)(0,1) .

The two-sided fixed point· · ·u−2u−1˙u0u1 · · · of ψβ is equal to

· · · (0,∞)(∞,0)(0,1)(0,∞)(∞,0)(0,∞)(∞,0) (0,1) (0,∞)˙(∞,0)(0,∞)(∞,0)(0,1) · · · .
Applying ψβ to (∞,0)(0,∞) and to the factors described by Theorem 1 yields

(∞,0)(0,∞) 7→ (∞,0)(0,∞) (∞,0)(0,1)(0,∞) ,

(∞,0)(0,1)(0,∞) 7→ (∞,0)(0,∞) (∞,0)(0,1)(0,∞) (∞,0)(0,1)(0,∞) .
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Therefore, settingA= (∞,0)(0,∞) andB= (∞,0)(0,1)(0,∞), the fixed point

· · ·ABBABABBABBAḂABBABABBABBAB· · ·

of the anti-morphism
ϕ−β : A 7→ AB, B 7→ ABB,

describes the set of(−β )-integers, see Figure 2. The distances between consecutiveelements ofZ−β are
Lβ (A) = 1 andLβ (B) = β −1> 1.

−β 3

−β 3+1

−β 3+β 2−2β+1

−β 3+β 2−β

−β 3+β 2−β+1

−β 3+β 2

−β 3+β 2+1

−β 3+2β 2−2β+1

−β 3+2β 2−β
−β 3+2β 2−β+1

−2β+1

−β
−β+1 0 1 β 2−2β+1

β 2−β
β 2−β+1

β 2

A B B A B A B B A B B A B A B B A B

Figure 2: The setZ−β ∩ [−β 3,β 2], β = (3+
√

5)/2.

Example2. Let β = 1+
√

5
2 ≈ 1.618, i.e.,β 2 = β +1. Then we havet1 =

β2

β+1 −1= 0= t∞. Identifying
(0,∞) and(0,1), we obtain

ψβ : (∞,0) 7→ (0,∞) , (0,∞) 7→ (∞,0)(0,∞) .

The two-sided fixed point· · ·u−2u−1˙u0u1 · · · of ψβ is equal to

· · · (∞,0)(0,∞)(0,∞)˙(∞,0)(0,∞)(∞,0)(0,∞)(0,∞) · · · .

The wordsuk · · ·uk′−1 between consecutive elementsyk,yk′ ∈ Z−β areA= (∞,0)(0,∞) andB= (0,∞),
since

(∞,0)(0,∞) 7→ (∞,0)(0,∞) (0,∞) , (0,∞) 7→ (∞,0)(0,∞) .

Note thatB does not start with a letter(i, j) with t2i = 0, thusιβ is discontinuous at the corresponding
pointsyk ∈ Z−β . The fixed point

· · ·AABAABABAABAḂAABAABABAABAABABAABAB· · ·

of the anti-morphism
ϕ−β : A 7→ AB, B 7→ A,

describes the set of(−β )-integers, withLβ (A) = 1 andLβ (B) = β − 1 < 1, see Figure 3. Note that
(−β )n can also be represented as(−β )n+2+(−β )n+1.

−β 3 −β 3+β 2−β
−β 3+β 2−β+1

−β −β+1 0 1 β 2−β+1

β 2

β 4−β 3+β 2−β
β 4−β 3+β 2−β+1

β 4−β 3+β 2

β 4−β+1

β 4

A A B A B A A B A A B A B

Figure 3: The(−β )-integers in[−β 3,β 4], β = (1+
√

5)/2.
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3 Delone property

A set S⊂ R is calledDelone set(or Delaunay set) if it isuniformly discreteandrelatively dense; i.e.,
if there are numbersR> r > 0, such that each interval of lengthr contains at most one point ofS, and
every interval of lengthRcontains at least one point ofS.

If β is an Yrrap number, then the set of distances between consecutive (−β )-integers is finite by
[1, 8], thusZ−β is a Delone set. For generalβ , we show in this section thatZ−β need neither be
uniformly discrete nor relatively dense.

3.1 Uniform discreteness

Since every pointx∈Yβ is separated fromYβ \{x} by an interval aroundx, Yβ is discrete, and the same
holds forZ−β . It is well known thatZβ is uniformly discrete if and only if 0 is not an accumulation point
of {Tn

β (1) | n≥ 0} (whereTβ (1) = β −⌊β⌋). For(−β )-integers, the situation is more complicated.

Proposition 2. Let β > 1. If 0 is not an accumulation point of
{

T2n−1
−β

( −β
β+1

)

> 0 | n≥ 1
}

, then the set
Z−β is uniformly discrete.

Proof. When β is an Yrrap number, then{Lβ (uk) | k ∈ Z} is finite, thusZ−β is uniformly discrete.
Therefore, assume thatβ is not an Yrrap number, in particular thattn 6= 0 for all (finite) n≥ 0, with the
notation of Section 2. Thenιβ is continuous at every pointyk ∈ Z−β , k∈ Z, thusuk = (i, j) with t2i = 0.
SinceLβ (uk)≥ inf{t2n−1 > 0 | n≥ 0}, the setZ−β is uniformly discrete if inf{t2n−1 > 0 | n≥ 1}> 0.

In order to give examples ofβ whereZ−β is not uniformly discrete or not relatively dense, we

need to know which sequences are possible(−β )-expansions of−β
β+1. The corresponding problem forβ -

expansions was solved by Parry [7]. Góra [4, Theorem 25] gave an answer to a more general question, but
his theorem is incorrect, as noticed in [3]. However, Góra proved the following result, where≤alt denotes
the alternate order on words, i.e.,x1x2 · · · <alt y1y2 · · · if (−1)n(xn+1− yn+1) < 0, x1 · · ·xn = y1 · · ·yn for
somen≥ 0.

Lemma 5. Let a1a2 · · · be a sequence of non-negative integers satisfying an+1an+2 · · · ≤alt a1a2 · · · for
all n ≥ 1, with a1 ≥ 2. Then there exists a unique a1 ≤ β ≤ a1+1 such that

∞

∑
k=1

ak

(−β )k =
−β

β +1
, and

−β
β +1

≤
∞

∑
k=1

an+k

(−β )k ≤ 1
β +1

for all n ≥ 1.

Proof. As the generalisedβ -transformations in [4] withE = (1, . . . ,1) are intimately related to ourT−β
(see the introduction of [6]), the lemma follows from the proof of Theorem 25 in [4].

The flaw in [4, Theorem 25] is that∑∞
k=1

an+k

(−β)k =
1

β+1 cannot be excluded, which would be necessary

for a1a2 · · · to be the(−β )-expansion of −β
β+1. Indeed, the sequencea1a2 · · · = 2(10)ω satisfies the

conditions of Lemma 5 and yieldsβ = 2, but∑∞
k=1

ak+2
(−2)k =

1
3; the(−2)-expansion of−2

3 is 2ω . In order

to avoid this problem, we define a relation<′
alt by x1x2 · · · <′

alt y1y2 · · · if (−1)n(xn+1 − yn+1) < −1,
x1 · · ·xn = y1 · · ·yn for somen≥ 0.

Lemma 6. Let a1a2 · · · and β be as in Lemma 5. If an+1an+2 · · · <′
alt a1a2 · · · for all n ≥ 2 such that

an = 0, then a1a2 · · · is the(−β )-expansion of−β
β+1.
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Proof. We have to show that∑∞
k=1

an−1+k

(−β)k < 1
β+1 for all n≥ 2. If an > 0, then this inequality follows from

∑∞
k=1

an−1+k

(−β)k ≤ −1
β + 1

β+1 < 0. If an = 0, then we have somem≥ 0 such that(−1)m(an+m+1−am+1)≤−2,
an+1 · · ·an+m = a1 · · ·am. This implies that

∞

∑
k=1

an+k

(−β )k =
m

∑
k=1

ak

(−β )k +
1

(−β )m

∞

∑
k=1

an+m+k

(−β )k

≥
m

∑
k=1

ak

(−β )k +
am+1

(−β )m+1 +
2− β

β+1

β m+1 >
m+1

∑
k=1

ak

(−β )k +

β
β+1

β m+1 ≥
∞

∑
k=1

ak

(−β )k =
−β

β +1
,

thus∑∞
k=1

an−1+k

(−β)k = 1
−β ∑∞

k=1
an+k

(−β)k <
1

β+1.

Proposition 3. Let a1a2 · · ·= 301031051· · · . Then a1a2 · · · is the(−β )-expansion of−β
β+1 for someβ > 1,

andZ−β is not uniformly discrete.

Proof. By Lemmas 5 and 6, there exists aβ > 1 such thata1a2 · · · is the (−β )-expansion of −β
β+1.

Sincea2na2n+1 · · · starts with an odd number of zeros for alln ≥ 1, we havet2n−1 > 0 for all n ≥ 0.
Therefore, induction onn yields thatψ2n

β
(

(∞,0)
)

ends with(∞,n), andψ2n+1
β

(

(∞,0)
)

starts with(n,∞)

for all n ≥ 0. This implies thatψ2n+1
β

(

(∞,0)(0,∞)
)

contains the factor(∞,n)(n,∞) for all n≥ 0, and

Lβ
(

(∞,n)(n,∞)
)

= t2n−1− t2n is a distance between consecutive(−β )-integers. For anyk≥ 1, we have

ak(k−1)+2 · · ·ak(k+1)+1 = 02k−11, thus 0< tk(k−1)+1 < β−2k β2

β+1 and−β−2k β3

β+1 < tk(k−1)+2 < 0. Therefore,
the distance between consecutive elements ofZ−β can be arbitrarily small.

The following proposition shows that the converse of Proposition 2 is not true.

Proposition 4. Let a1a2 · · ·= 300320000300322000000003003200003003222· · · be a fixed point of
the morphism

σ1 : 3 7→ 30032, 2 7→ 2, 0 7→ 00.

Then a1a2 · · · is the(−β )-expansion of−β
β+1 for a β > 1, inf

{

T2n−1
−β

( −β
β+1

)

> 0 | n≥ 1
}

= 0 andZ−β is
uniformly discrete.

Proof. Whenan+1 = 3, n ≥ 1, thenan+1an+2 · · · starts withσ k
1(3)2 for somek ≥ 0. Since|σ k

1(3)| is
odd for all k ≥ 0, we haveσ k

1(3)2 <′
alt σ k

1(3)0, thusan+1an+2 · · · <′
alt a1a2 · · · . Sincean = 0 implies

an+1 ∈ {0,3}, the conditions of Lemmas 5 and 6 are satisfied, i.e., there exists aβ > 1 such thata1a2 · · ·
is the(−β )-expansion of−β

β+1.

Let nk = |σ k
1(300)|+ |σ k−1

1 (3)|+1, k≥ 1. Thenank+1 · · ·ank+2k = 02k−13, thus we havetnk > 0 and
limk→∞ tnk = 0. Sincenk is odd, this yields that inf{t2n−1 > 0 | n≥ 1}= 0.

Let n≥ 1 with t2n−1 > 0. Thena2na2n+1 · · · starts with an odd number of zeros, thusa1 · · ·a2n−1 ends
with σ k

1(3)02 j−1 for somek ≥ 0, 1≤ j ≤ 2k−1. Let 2m= |σ k
1(3)|+2 j −1. Recall that· · ·u−1u0u1 · · ·

is a fixed point ofψβ . Any letter uk = (i,n), i ∈ N∞, occurs only inψ2m
β

(

(i′,n−m)
)

, i′ ∈ N∞ with
t0 ≤ t2i′ < t2n−2m−1. Sincea1 · · ·a2m = a2n−2m · · ·a2n−1, we obtain thatt2m ≤ t2i < t2n−1. Moreover,
a2m+1a2m+2 · · · starts with 02

k−2 j+13, thust2m> 0. Now, the continuity ofιβ at every point inZ−β yields
thatyk 6∈ Z−β if uk = (i,n), n≥ 1. Therefore,yk ∈ Z−β implies thatuk = (∞,0), henceZ−β is uniformly
discrete.
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3.2 Relative denseness

Since the distance between consecutiveβ -integers is at most 1,Zβ is always relatively dense. We show
that this is not always true forZ−β .

Proposition 5. Let a1a2 · · ·= 31232123123221231232123123222· · · be a fixed point of the morphism

σ2 : 3 7→ 31232, 2 7→ 2, 1 7→ 1.

Then a1a2 · · · is the(−β )-expansion of−β
β+1 for a β > 1, andZ−β is not relatively dense.

Proof. Since|σ k
2(3)| is odd for allk≥ 0, we haveσ k

2(3)2<alt σ k
2(3)1, thusa1a2 · · · satisfies the condi-

tions of Lemma 5. Sincean > 0 for all n≥ 2, the condition of Lemma 6 holds trivially. Therefore, there
exists aβ > 1 such thata1a2 · · · is the(−β )-expansion of−β

β+1.

Next we show that, for anyk≥ 0, ψ |σk
2(3)|

β
(

(∞,0)
)

starts with

(⌊

|σ k
2(3)|/2

⌋

,
⌈

|σ k−1
2 (3)|/2

⌉)

· · ·
(⌊

|σ1
2(3)|/2

⌋

,
⌈

|σ0
2(3)|/2

⌉)(

0,∞
)

. (1)

We haveψβ
(

(∞,0)
)

= (0,∞) and

ψ4
β
(

(0,∞)
)

= · · ·ψ3
β
(

(0,1)
)

= ψ2
β
(

(1,∞)
)

· · ·= · · ·ψβ
(

(∞,0)(0,2)
)

= (2,1)(0,∞) · · · ,

where we have used thata1 > a2, a4 = a1, andan > 0 for all n≥ 1, which impliestn < 0 for all n≥ 1.

This yields the statement fork= 0 andk= 1. Supose thatψ |σk
2(3)|

β
(

(∞,0)
)

starts with (1) for somek≥ 1.
Then we have

ψ |σk+1
2 (3)|

β
(

(∞,0)
)

= ψ |σk
2(3)|+3

β
((⌊

|σ k
2(3)|/2

⌋

,
⌈

|σ k−1
2 (3)|/2

⌉))

· · ·

= · · ·ψ |σk
2(3)|+2

β
((

0,
⌈

|σ k
2(3)|/2

⌉))

= ψ |σk
2(3)|+1

β
((⌈

|σ k
2(3)|/2

⌉

,∞
))

· · ·

= · · ·ψ |σk
2(3)|

β
((

∞,0
)(

0,
⌈

|σ k
2(3)|/2

⌉

+1
))

=
(

2
⌈

|σ k
2(3)|/2

⌉

,
⌈

|σ k
2(3)|/2

⌉)

(⌊

|σ k
2(3)|/2

⌋

,
⌈

|σ k−1
2 (3)|/2

⌉)

· · ·
(⌊

|σ1
2(3)|/2

⌋

,
⌈

|σ0
2(3)|/2

⌉)(

0,∞
)

· · · ,

where we have used the relationsa|σk
2(3)| = 2 > 1 = a|σk−1

2 (3)|+1, a1 > a|σk
2(3)|+1, and a1 · · ·a|σk

2(3)| =

a|σk
2(3)|+3 · · ·a2|σk

2 (3)|+2. Since 2
⌈

|σ k
2(3)|/2

⌉

= |σ k
2(3)|+ 1 =

⌊

|σ k+1
2 (3)|/2

⌋

, we obtain inductively that

ψ |σk
2(3)|

β
(

(∞,0)
)

starts with (1) for allk≥ 0.
For anyk ≥ 0, we havea|σk

2(3)| ≥ 2, a|σk
2(3)|+1 = 1, a|σk

2(3)|+2 = 2, andtk < 0. For anyk ≥ 1, this
yields that

Lβ
((⌊

|σ k
2(3)|/2

⌋

,
⌈

|σ k−1
2 (3)|/2

⌉))

= t|σk−1
2 (3)|− t|σk

2(3)|−1 >− 1
β
+

2
β 2 +

t0
β 2 +

2
β
− 1

β 2 >
1
β
.

Let k′ = −
∣

∣ψ |σk
2(3)|

β

∣

∣. Then we haveuk′+ j =
(⌊

|σ k− j
2 (3)|/2

⌋

,
⌈

|σ k− j−1
2 (3)|/2

⌉)

for 0 ≤ j < k, thus
(yk′ ,yk′+k)∩Z−β = /0 andyk′+k− yk′ > k/β . Sincek ≥ 1 was chosen arbitrary, the distances between
consecutive(−β )-integers are unbounded.
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Many other examples of setsZ−β which are not relatively dense can be found by settinga1a2 · · · =
σ3 σ ∞

2 (3) with a morphismσ3 such thatσ3(2) = 2, σ3(1) = 1, andσ3(3) is a suitable word of odd length.
We conclude the paper by stating the following three open problems, for which partial solutions

are given in this section. Note that all the corresponding problems for positive bases have well-known,
simple solutions, as mentioned above.

1. Characterise the sequencesa1a2 · · · which are possible(−β )-expansions of−β
β+1.

2. Characterise the numbersβ > 1 such thatZ−β is uniformly discrete.

3. Characterise the numbersβ > 1 such thatZ−β is relatively dense.

References
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[3] D. Dombek, Z. Masáková & E. Pelantová:Number representation using generalized(−β )-transformation.
ArXiv:1102.3079v1 [cs.DM].
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