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The definition-construction process is central to mathematics. The aim of this paper 
is to propose a few Situations of Definition-Construction (called SDC) and to study 
them. Our main objectives are to describe the definition-construction process and to 
design SDC for classroom. A SDC on “discrete straight line” and its mathematical 
and didactical analysis (with students’ productions) will be presented too. 
INTRODUCTION
This paper would like to show that “definition” is not only a meta-mathematical term. 
Actually, mathematical definitions can be approached from two different standpoints. 
The first one consists in taking for granted that definition is not a problem and that 
the definitions provide mathematical concepts: “le premier piège est de croire facile à 
acquérir ce qui est simple à énoncer” (Kahane-1999-p12) [1]. When we are constructing 
a concept, a dialectical process involving both the construction of the definitions and 
the construction of the concept is at work: “A definitional procedure is a procedure of 
concept formation” (Lakatos-1961-p54). We shall start from those two points of view 
to introduce our research topic: definition-construction, in other words: what type of 
defining situations are designed and analysed in mathematics education research? 
Does the analysis of those situations give specific results concerning concept-
formation? Can they really help towards the assimilation of mathematical concepts? 
Which theoretical background can we use for the analysis of such situations?  
EXISTING RESEARCH ON DEFINING ACTIVITIES 
Some researchers in mathematics education stress the need for a learner to be an 
apprentice-mathematician. Freudenthal (1973), in particular, tackles the case of 
mathematical definitions, which don’t have to be considered as arbitrary rules by 
pupils. To illustrate his point of view, he gives the example of the classification of 
quadrilaterals in geometry, and thus underlines the nature of the exploration of 
several properties of different quadrilaterals; his theoretical approach rests on the Van 
Hiele levels. Freudenthal specifies two different types of defining activities: 
descriptive (a posteriori) defining and constructive (a priori) defining. There are a 
systematisation of existing knowledge and a production of new knowledge. This kind 
of defining activity is visited again by De Villiers (1998) who underlines that students 
are active learners in such situations. In this connection, Vinner emphasizes the 
importance of constructing definitions: “the ability to construct a formal definition is for 
us a possible indication of deep understanding” (Vinner-1991-p79). Within his 
theoretical framework, Vinner suggests to expose a flaw in the students’ concept
image of a mathematical concept, in order to induce students to enter into a process 
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of reconstruction of the concept definition. Can we imagine other kinds of situations 
involving definition-construction? This is precisely what Borasi proposes, insisting 
on mathematical inquiry, and more specifically on the role of mathematical 
definitions. She proposes three instructional heuristics for the design of defining 
activities: the in-depth analysis of a list of incorrect definitions of a given concept; 
the use of definitions in specific mathematical problems and proofs, the exploration 
of what happens when a familiar definition is interpreted in a different context 
(Borasi – 1992 – p155), and she underlines the difficulties in building defining 
activities in which unfamiliar concepts are at stake (she uses the notion of “à la 
Lakatos”). Duchet (1997) proposes such problem-situations, called research
situations, inspired by ongoing mathematical research, in which a definition-
construction process may appear: but Duchet’s analysis is not specifically turned to 
Situations of Definition Construction (called SDC).
Let us underline the major objectives of these previous authors (and others) in order 
to point out their common denominator i.e. the definition-construction. 

Type of situations (definition-
construction)

Mathematical concept Mathematic
al field 

Classification (starting from 
representations, examples and 

counterexamples) 

 Quadrilaterals 
(Freudenthal/De Villiers)
 Convexity (Fletcher)

Geometry 

Redefining
- starting from representations, 
ex/cex (familiar concept) 
- starting from a list of incorrect 
definitions (familiar concept) 
- redefining in a different context 

- extending definitions 

- Function / triangles 
(Vinner)

- Circle (Borasi)

- Taxicab metric (Borasi)
/Square on a sphere (Duchet)

- Exponentiation beyond the 
whole numbers 

Analysis
/Geometry 
Geometry  

Geometry 

Algebra

Problem-situation - Generator, minimality 
(Displacements on a regular 
grid map) (Duchet)

- Polygon (Borasi)

Geometry-
algebra

Geometry 

Table 1: summary of didactical problematics on definition-construction
From this table, different features appear: first, the nature of mathematical concept at 
stake in situations of definition-construction seems to be specific, because almost all 
of those concepts come from the geometry or combinatorial geometry. Second, the 
predominance of classification and redefining situations: it is perhaps directly link to 
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the real difficulty in designing a “problem-situation” whose resolution involves a 
definition-construction. Thirdly, there is no common theoretical background for the 
global analysis of SDC. In fact, the existing theoretical backgrounds used (concept 
image, concept definition -Vinner- & Theory of Didactical Situations-Brousseau) are 
useful because they help us to grasp some key elements for the design (TDS) and the 
analysis of students’ processes (concept image), so we have no choice but to model 
mathematical definition-construction process (present specifically in Lakatos’s 
work). Thus, the mathematical and didactical study of processes of definition-
construction both involves a description of these processes in mathematics and a 
typology of SDC including classification, redefining situations among others. Our 
challenge consists in building theoretical tools, efficient for the characterization and 
the analysis of processes of definition-construction, in modelling the dialectic 
between concept-formation, definition-construction and proof (cf. Lakatos). The 
didactical stakes lie in the fact that the SDC constitute a real challenge for concept 
construction, and for the evolution of students’ conceptions about definitions. 
THEORETICAL FRAMEWORK & AIMS 
We need to consider the concept of “definition” through its main features i.e. 
language (a definition is a specific discourse), axiomatic (a definition is inscribed in a 
mathematical theory) and heuristic (a definition-construction process, which is 
heuristic, leads to concept formation). The main references we chose for describing 
conceptions about “definition” are Aristotle (language), Popper (axiomatic) and 
Lakatos (heuristic). We chose the cK¢ model (Balacheff-2003) in order to describe 
these three conceptions of the notion of definition, because it allows a recognition of 
definition-construction process, and thus, it brings elements for analyzing 
mathematical concept formation. Balacheff presents a conception as an 
“instantiation” of a subject’s knowledge by a situation and stresses that conceptions 
and problems are dual identities. Starting from a psychological presentation of a 
concept (referent, signified and signifies – Vergnaud, 1991), the cK¢ model calls 
conception (C) a quadruplet (P, R, L, �) in which: 
- P is a set of problems: this is the sphere of practice of C; 
- R is a set of operators (to solve a problem ‘means’ to modify it with a sequence of 
operators);
- L is a representation system (it allows the explanation of the elements of P and R) 
- � is a control structure (in control structure, there are strategic knowledge and 
meta-knowledge specific to a given class of mathematical problems).  
We would like to underline that validation is a key aspect of conceptualisation 
(Vergnaud introduces the notion of theorem-in-action). That the reason why the cK¢ 
model proposes a control structure: a clear identification of a control structure and the 
related operators (indeed, a meta-level with respect to action) allows the 
conceptualisation process to occur through a complex interaction with action and 
representation. We will concentrate our attention in this paper on Lakatos’s 
conception. For the description of the others conceptions, see Ouvrier-Buffet (2003). 
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The Lakatosian conception (key elements) 
Starting from an “intriguing relation” discovered for some polyhedra [2], Lakatos’s 
dissertation (1961) tries to test it in different ways and hence, three main focuses of 
interest appear: definition-construction, concept-formation and proof. This work 
deals with three viewpoints relating to the mathematical concept of definition: the 
linguistic (it is specific to the Aristotelian conception), the axiomatic (gets rid of by 
Lakatos; this standpoint is described in the Popperian conception) and the heuristic. 
The latter is the particularity and thus the interest of the Lakatosian approach. Three 
notions are present in this heuristic approach of definitions: naive definition, zero-
definition, proof-generated definition. Each one has a specific role and a place in the 
concept-formation. A zero-definition is a tentative definition emerging at the 
beginning of the research process. It may evolve into a proof-generated definition or
just disappear. It is brought about by proof and stands out as the most important 
notion in Lakatos’s view: the product of proof-generated definition is directly linked 
to the type of SDC (i.e. problem-situation, according to Lakatos). Logically, the zero-
concepts may be naïve, but Lakatos concentrates his attention on the expansion of 
zero-concepts; according to him, this expansion is not possible from naïve concepts. 
Hence, we have “stages” in a definition process, but how can the evolution of the 
definition-construction incorporate them and describe the operators and controls 
between zero-definition and proof-generated definition for instance?
The operators in fact are specifically related to the proof and the heuristic perspective 
in which the definitional procedure is inscribed. The generation of examples and 
counter-examples, in a refutative view, is certainly the most important operator, 
adding to the functions ascribed to a definition. These functions implicate specific 
stages in the definitional process: for instance, the functions of communication and 
denomination generate zero-definitions, and the catalysis of the proof brings proof-
generated definitions. The main control structure refers to the proof i.e. the validity of 
the studied proof. The other is directly linked to the lack of counter-examples for 
refutation, but how can we stop the refutation-process? Lakatos informs us that we 
may stop the expansion of concepts, where it stops being a fertilizer to become a total 
weedkiller and underlines that a scientific research starts and ends with problems. 
Hence, this excerpt testifies to the implicit operators and controls existing in a 
definition-construction process. 
Typology of SDC 
Our theoretical work, by modelling conceptions of definition, brings a typology of 
SDC: we distinguish three types of SDC, called Classification,
Mathematisation/Modelling, Problem-situation. The first one includes Fletcher’s and 
Freudenthal’s proposals, with mathematical objects accessible by theirs 
representations. The characterisation of the second is initiated by its name; let us give 
an example of such a situation we have not given yet: “define a mathematical object, 
which can represent the set of plants” (i.e. the elements of the whole vegetable 
kingdom) [3]. The third one is called Problem-Situation with reference to Lakatos’s 



PME28 – 2004  3–477

situation; it includes research-situations (Duchet-1994&1997). According to Lakatos, 
starting from a vague idea of a mathematical concept (such as Euler’s formula) can 
be enough for marking the beginning of a definitional procedure (Lakatos-1961,p69). 
PRESENTATION OF A SDC – METHODOLOGY  
We have experimented a SDC (Classification) with the mathematical concept “tree” 
before. We have given an analysis of the students’ definition-construction processes 
by zero-definitions in Ouvrier-Buffet (2002). 
We choose here the mathematical object “discrete straight line”, for two main 
reasons. First, it is of the core of current problem in present mathematical research. 
This object is accessible by its representation, it is non-institutionalised, and thus 
allows a re-problematisation of the axiomatic problematics (it cannot be done with 
Euclidian geometry because the latter is too institutionalised). Second, it permits two 
types of SDC: the situation Classification starts from about ten representations of 
discrete lines (which are or resemble discrete straight lines). The text of the Problem-
situation is: “draw discrete triangles and explain your construction”. This is 
problematically close to Lakatos’s Problem-situation because it involves a search for 
objects, mathematically still unknown but being dependent on a referent (real straight 
line). Our objectives are to analyse students’ definition-construction process, to 
explore the influence of the possible explicit demand of definition on the latter and to 
determine the feasibility of different types of SDC with a common object.    
Hence the methodology we chose: three groups of three or two students (from the 
first university year, scientific section but not especially from the mathematical 
sections) have taken part in this experimentation (2 or 3 hours required). There were 
videotape recorded; an observer was present for recalling the instructions (if 
necessary). Two situations were conceived with two different starting points: the first 
one (groupA) did not include an explicit request of definition and referred to an 
axiomatic problematic; neither examples nor counter-examples of discrete straight 
lines were given to students. The second one (groupB) is a Classification-situation,
starting from examples and counter-examples of discrete straight lines non-identified 
as such, and it includes an explicit request of definition. We will use the description 
of the Lakatosian conception (via cK¢) in order to present the potentiality of the 
chosen mathematical object for SDC, on the one hand, and to analyse students’ 
definitional processes on the other. 
Presentation of the mathematical object “discrete straight line” 
This presentation will allow both a mathematical explanation of this concept and its 
potentialities from the point of view of definition-construction (we will present this 
aspect with the notion of zero-definitions and the possible evolution of them).  
To consider a discrete straight line (on a regular grid map, while colouring pixels) can 
generate a reference to real straight line and thus a use of properties of the last in 
order to define the same object in a discrete context. We call these problematics “real 
straight line”. If one draws a real straight line, and chooses some pixels crossed by it 
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for forming a discrete straight line, the criteria of choice are requested (see figure 1 
below). Thus, different zero-definitions are conceivable (the words in bold type mark 
the orientation of the evolution of the zero-definitions: see Zdef1,2,3). 
The second problematics is called “regularity”: it consists in researching a regularity 
in the sequence of stages of pixels (see figure 2 below: how to modify a sequence in 
order to obtain a better regularity?). This problematic brings us two potentially 
evolutionary zero-definitions: Zdef4,5. 
There is a third more complicated approach, called “axiomatic”. It consists in 
questioning the mathematical object “discrete straight line”, in connection with our 
knowledge of Euclidian geometry, and thus, for instance, studying the intersection of 
two discrete straight lines, the number of discrete straight lines by two given pixels 
etc. This approach is more difficult. 

Problematics Figures Zero-definitions
“Real

straight line” 
Function of 
def.: to build 

the object 

     …  or …     ? 
Figure 1 

Zdef1: set of the pixels crossed by a 
real line. 
Zdef2: set of the pixels “the nearest”
of a real line. 
Zdef3: set of the pixels “inside” a band

“Regularity”
Function of 

def.: to 
recognize, to 

build the 
object Figure 2 

Zdef4: sequence of stages of pixels 
with specific properties.
Zdef5: sequence of pixels’ stages with 
a uniform repartition, non-improved
from the regularity viewpoint.  

Table 2: two problematics and the zero-definitions of “discrete straight line” 
To characterize the pixels “the nearest” of a real line, searching a property relating to 
the sequence of stages (called chaincode string), leads to a theorem. This approach  to 
the discretization of a straight line by checking linearity conditions is directly related 
to number theoretical issues in the approximation of real numbers by rational 
numbers. These linearity conditions can be checked incrementally, leading to a 
decomposition of arbitrary strings into straight substrings (cf. Wu-1982). 
RESULTS
Two problematics were tackled by students: they bring several zero-definitions.

Group Zero-definitions produced  Operators, 
controls

Final Statement 

Group A 
(Problem-

- Zdef 1,2,3 (abandon 
because problem of the 

Perceptive
controls

Arithmetical rule
involving slope 
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situation) criteria of choice) 
- Zdef5 (search of regularity 
by modification of stages) 

Group B 
(Classific

ation)

- Zdef1 (abandon because of 
the non appropriate use of a 

ruler for a mathematical 
definition)

- Zdef4 

Counter-
examples,

linguistic and 
logical

operators;
Perceptive
controls

Repetition of a 
sequence, in the 
same direction. 
The difference 

between two stages 
does not exceed 1. 

Table 3: students’ statements and their evolution 
For these two groups, the first approach consists in using the “real straight line”, and 
thus, some aspects of the concept image of straight line appear among what follows: 
perceptive regularity, slope and infinity of the points. This concept image is here 
insufficient in view of the difficulty of the discrete straight line concept, but still 
present for students’ perceptive controls. The final statements produced by students 
are very close to actual mathematical definitions. It is noteworthy that these two 
groups abandon the “real straight line” approach (because of the problem of the 
choice criteria or the use of a ruler) for the benefit of the “regularity” approach. The 
students change their point of view relating to the mathematical object and thus 
abandon the external referent “real straight line”. In that way, they define really the 
“discrete straight line”, now fully considered as a mathematical concept.  
We can formulate a hypothesis about the influence of the explicit demand of 
definition on the process of definition-construction, in particular on the evolution of 
zero-definitions: groupB mobilizes more operators taking part in the definition-
process than groupA. In this case, the explicit request of definition seems to be 
profitable for the definition-construction process because it seems to favour a 
connection progress between different definitions and mobilizes specific operators 
(linguistic and logical) which contribute to the reflexivity on definition and questions 
about the presence of new counter-examples (refutation-process). The lack of any 
form of control concerning the function of definition is conspicuous. Clearly, there 
has been no simultaneous treatment of the two functions of definition (i.e. drawing a 
discrete straight line and recognizing it). 
CONCLUDING REMARKS 
Different markers attest a students’ process of definition-construction: the presence of 
zero-definition(s) underlines its beginning, and the mathematical treatment of these 
potential definitions consists in studying the lacks of these “working definitions”, 
analysing the different implications between them. All this process involves specific 
Lakatosian operators such as testing a definition with a research of refutation by a 
counter-example, but also Aristotelian operators, linguistically and logically 
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orientated, such as searching a minimal, non-redundant definition (that implies a 
reflexivity on the definition as a statement but also as a characterisation of a concept). 
This points to great potentialities of SDC for revising students’ conceptions on the 
notion of “definition”, but also for the exploration and the understanding of 
mathematical concepts above all. To explore and capitalize on these potentialities 
implies the designing of a set of SDC, with different kinds of SDC, including 
Classification and Problem-situation. We have to analyse more precisely the 
Problem-situation phenomenon, as it is presented by Lakatos (in connection with 
proof): that is what the study of research-situations (Duchet) seems to be promising. 
NOTES 
1. We do not delude ourselves into thinking that what can be easily expounded can be easily 
assimilated. 

2. Euler’s formula: V-E+F=2, where V is the number of vertices, E the number of edges and 
F the number of faces. Notice that Euler had defined the concepts of vertex and edge. 

3. It can be the mathematical concept of “tree”.
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