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This paper builds upon discussions of the importance of semantic or intuitive 
work in proving by identifying three ways in which experienced mathematicians 
use example objects in constructing and evaluating proofs.  It observes that 
students often do not use objects in these ways, and discusses the pedagogical 
question of how we might teach students to be more effective in proving by 
designing instruction to focus their attention on relevant objects.  Data are 
drawn from interviews with five mathematicians experienced in teaching an 
introductory proofs course.

INTRODUCTION
It is well-recognized that students sometimes attempt to prove a general 
statement by empirical means, checking a number of examples to give evidence 
of its truth, rather searching for a deductive proof (e.g. Harel & Sowder, 1998).  
This is considered to be an inappropriate approach, and students are warned not 
to “prove by example”.  On the other hand, it is also noted that semantic or 
intuitive considerations can be very important in the work of successful 
mathematicians (e.g. Thurston, 1995).  This paper builds on these considerations 
by offering more precise characterizations of the ways in which successful 
mathematicians use example objects to aid in proof construction and evaluation.  
RESEARCH CONTEXT 
The characterizations to be given below are derived from analysis of interviews 
with mathematicians experienced in teaching a course called “Introduction to 
Mathematical Reasoning”, which is designed to provide students with a 
grounding in proving before they take courses in real analysis and abstract 
algebra.  This is taught at a large state university in the USA.  Classes typically 
have between 20 and 25 students, so that the professors are in relatively close 
contact with individuals and become familiar with their work during the 14-
week course.
Five participants were involved in this exploratory study, which set out to 
address a gap in mathematics education research on proof and proving by 
drawing on the experience held by mathematicians who teach such courses, and 
seeking to formalize this into knowledge that can be more readily discussed and 
applied.  Each participant was interviewed up to three times during a year.  The 
first interview asked the participant to describe their experience in teaching this 
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course, to give their views on important things that students should learn, and to 
describe common student mistakes and misunderstandings and their pedagogical 
strategies.
These interviews were transcribed and analyzed following Glaser (1992).  First, 
conceptual descriptions were added to the transcript, and summarized in memos.  
Concurrently, further memos were made about questions arising from this data, 
typically of a need for clarification, or of a possible theoretical link between 
comments.  At this stage the analysis rotated regularly from one participants’ 
interview to another, in order to facilitate synthesis of the ideas raised and to 
avoid becoming focused on the opinions of a single participant.  Next, the 
memos were sorted according to their main substantive and/or theoretical 
content, producing a system of categories.  Subsequent interviews asked more 
specific questions designed provide increasing saturation of the categories. 
One outcome of this analysis was the identification of three uses of example 
mathematical objects in the mathematicians’ reasoning, with a frequent lack of 
such use on the part of students.  These are: (1) understanding a statement, (2) 
generating an argument, and (3) checking an argument. They are described and 
illustrated below.
UNDERSTANDING A STATEMENT 
Our first point is that mathematicians view the instantiation of objects as 
important in reaching a meaningful understanding of a mathematical statement.  
In these excerpts, Professor 1 remarks upon this as a natural first step in 
understanding a definition. 

P1: …So one of the things, again, that’s second nature to me but it’s not to them [the 
students], is that if I see a definition, I immediately instantiate it.  You know, just try 
some examples of this definition, and try to fit it in. 

P1: …what happens is…that you describe a new definition, you say “let f be a function, 
let x be a real number, we say that…” and then “some relationship between f and x
holds if…blah, blah, blah.”  So then what they have to do, they have to realize that this 
definition only makes sense in the context of, I have to have a function in mind and I 
have to have a [number] in mind… 

He notes, however, that such instantiation in response to a definition is not 
typical behavior for students in his classes. 

P1:  And what they’ll do is typically if you have a sequence, you know, if I have a 
sequence definition to use in the rest of the problem, and they don’t understand the 
definition, they’ll just skip that sentence and go on.  I will – they will come in for help 
on a problem, and five or ten minutes into the discussion I’ll realize that, that they 
never bothered to process this particular definition.  They have no idea what this 
means. 
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In response to this phenomenon he has invented task sequences involving the 
construction of example objects that satisfy various combinations of properties 
associated with certain definitions.

P1: So, what I’ve been trying to do is to have these exercises where the whole purpose of 
the exercise is just for them to process a mathematical definition.  […]  I have one 
where I, where I just define what it means for a – well, what a partition of a set means.  
I define it formally, so it has these two conditions, a collection of subsets, such that the 
empty set is not one of the subsets, for every element of the underlying set there is a 
subset that contains it, for any two sets in the partition the intersection is empty […] 
And then I just ask okay, construct three examples of a partition on the set {1,2,3,4,5}.  
And then, okay, construct an example of a collection of sets on {1,2,3,4,5} which 
satisfies the first two properties but not the third.  The first and the third properties but 
not the second, the second and the third properties but not the first. 

This task sequence resembles those suggested by Watson and Mason (2002), 
who report that requests for examples satisfying various constraints can 
encourage students to extend their thinking beyond “typical” examples.   Such 
example generation is also recommended by Dahlberg and Housman (1997) on 
the strength of its effectiveness as a learning strategy when faced with a new 
definition.
GENERATING AN ARGUMENT 
In the second use of example objects the mathematician either builds objects or 
instantiates known ones with the goal of generating a proof.  The professors 
spoke of one way in which this might be achieved directly, and another less 
obvious heuristic that uses an informal version of the indirect argumentation 
used in proof by contradiction.  The direct use involves trying to show that a 
result is true in a specific case, in the hope that the same argument or 
manipulations will work in general.

P1: It’s just to get them…if they have to prove, “for all n, something”, when they come to 
the induction step, and the induction step is not completely trivial, so it actually 
involves…actually think about it and you have to come up with an idea.  And so, well 
how do you go about finding this idea?  And I, I try to convey to them, that the first 
thing you do, is that…suppose I’m trying to prove it for n equals 10, how can I use 
that it’s true for n equals 9?  So, do something very specific, do a concrete example 
and try to reason from that.   

P5: See if you can get from 2 to 3, if you can’t get from n to n plus 1. 

The second, indirect case reveals a less obvious way of thinking about proving 
universal statements.  In the excerpt below, Professor 1 talks about generating a 
proof for such a statement by searching for a reason why one could not find a 
counterexample to this statement. 

P1: …the way I often think about a proof is that, you know you imagine this as, try to beat 
this.  Meaning, try to find a counterexample. […]  If you think about, if you think 
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about the reason why you were failing to find a counterexample, okay, then, that 
sometimes gives you a clue, to why the thing is true.   

When the interviewer commented that it seemed non-obvious that one would try 
to prove a universal statement by thinking about why there could never be cases 
for which it did not hold, he remarked that in fact he considered this a natural 
approach, and gave the following explanation. 

P1: The natural…the sort of natural thing that our brains can do, is sort of build examples 
and check them.  Okay, and…all you, you know if one thinks of universal statements 
as saying that it’s really a statement of impossibility, it’s the negation, right?  It’s a 
statement that you can’t…do something. […] And the way you understand that you 
can’t do it is by thinking about doing it. 

Professor 2 describes this indirect strategy very concisely, and in doing so 
highlights its relationship to a straightforward way of proving an existential 
statement.

P2: …if it’s an existential statement I look to see whether I can produce an example.  And 
if it’s a universal statement I probably try to show that I can’t find a counterexample. 

Professor 1’s comments resemble the ideas of “mental models” theories in 
which human beings generate and evaluate deductions by instantiating a model 
of the situation under consideration, evaluating a statement relative to that 
model, then varying the model in a search for counterexamples (Johnson-Laird 
& Byrne, 1991).  The difference here is that one is not looking for a 
counterexample, but for a reason why one cannot build one, which will then 
form the basis for an argument. 
CHECKING AN ARGUMENT 
The third way in which professors routinely use objects in proving is in 
checking the correctness of individual deductions.  Professor 1 describes this 
process in the abstract as follows 

P1: …there is a locality principle about proofs, about every proof, and that is that we 
somehow recognize that even though you’re proving some very specific thing, that 
there are portions in the argument.  Each portion in the argument is actually doing 
something more general. […]  And therefore I can do a local check on this part of the 
argument by thinking about that more general situation and doing, examples within 
that more general situation […] so that’s one thing that, you know, is just completely 
second nature to me and to most mathematicians, is that you’re constantly doing those 
kinds of checks.

A good illustration of this process is provided by Professor 3 in the following 
comments on a student proof attempt.   

P3: For instance, problem: “express the number 30 as the difference of two squares.  Or 
show that it cannot be done”.  Answer: “It cannot be done because 30 is divisible by 6 
and a number that is divisible by 6 cannot be written as the difference of two squares.”
Well, 12 is 16 minus 4.  Ah…take any number that’s a difference of two squares, 
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multiply it by 36, you’ll get a number that’s the difference of two squares and is 
divisible by 6...

In this case, although the proof is about the number 30, a general claim is made 
about numbers that are divisible by 6, and it is this claim that is shown to be 
incorrect by considering examples in the “general situation” of numbers that are 
divisible by 6.  Once again, the study indicated that students appear not to 
engage in this process to a degree that their professors would like.  In this 
excerpt, professor 3 expresses frustration at the fact that students regularly write 
statements that are “obviously wrong”, in the sense that they could readily be 
refuted using such checks. 

P3: …I don’t have a clue as to…what gets them…to, to say things like that.  In other 
words I would say, things that are obviously false.  To a normal person with a little bit 
of mathematical education it would seem obvious that you could never say such a 
thing because it’s so obvious that it’s false.  Take any example that you want, you see 
clearly that it’s false.

DISCUSSION 
Summary
This paper contributes to our understanding of the semantic aspects of proving 
by identifying three specific ways in which thinking about example objects can 
assist in this process: 
1. Instantiating examples in order to understand a statement or definition. 
2. Generating an argument for a universal statement, by (directly) arguing about 

or manipulating a specific example and translating this to a general case or 
(indirectly) trying to construct a counterexample and attending to why this is 
impossible. 

3. Considering possible counterexamples to general claims in a proof. 
Each of these involves the consideration of example objects in a crucial way, as 
opposed to algebraic manipulations or deductions based only on the form of a 
statement.  Each is also considered natural and even “second nature” by the 
mathematicians who took part in this study; they regularly commented upon 
their surprise when students made errors that could have been avoided by their 
use.
There are at least two possible reasons why students may not use example 
objects effectively in the construction and evaluation of proofs.  One is that a 
key difference between novice mathematics students and their teachers is simply 
that the teachers have access to a great deal more experience with examples 
(Moore, 1994).  A second is that students may not be accustomed to thinking in 
about the objects to which statements apply, instead thinking of mathematics 
(including proof) as a procedural enterprise in which algebraic statements are 
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laid out and manipulated according to certain rules or a standard format (Hoyles, 
1997).
In either case, it seems that it would be helpful for students to improve their 
knowledge of example objects.  However, experience in itself may be 
insufficient to support successful proof attempts; we do not wish students to 
offer examples in place of deductive proof.  I suggest that the specific uses of 
example objects outlined above can help us to think about teaching students to 
use such objects more effectively. 
Pedagogy: understanding a statement 
Dahlberg and Housman (1997), Mason and Watson (2002) and Professor 1 all 
suggest setting tasks that require students to generate examples with given 
combinations of properties. Another possible design involves providing both 
objects and properties and asking students to decide which properties apply to 
which objects.  I have used such a task in an introductory real analysis class.  
Students were presented with this list of subsets of the reals, and definitions of 
the given topological properties: 

� , N, Q, R, 0,1� �, 0,1� �, 0,1� �, 0,1� �, 0,�� �, {1/n|n�N}, the Cantor set 

Open, limit point, isolated point, closed, bounded, compact 
They were asked to work in pairs and decide (without proof) which sets (or 
which points) satisfied which properties. Such a task design does not ask for 
example construction, but may be useful in cases where the objects to be 
considered are unfamiliar or where one wishes students to engage with non-
standard examples.  Certainly it goes beyond the typical lecture or book 
presentation of one or two “standard” examples for each definition, thus 
arguably encouraging the idea that we can ask about the applicability of 
properties more widely, and discouraging reliance on “prototypical” concept 
images (Vinner, 1991).
Pegagogy: generating an argument 
In this study, the professors’ descriptions of the indirect heuristic seem 
particularly interesting, since mathematicians generally find it difficult to 
describe the origin of the “key ideas” (in the sense of Raman, 2003) that lead to 
a proof.  This heuristic is one way of systematically seeking such ideas, and 
could be articulated as part of a broad strategy for proving universal statements 
in which one first tries to prove the statement directly, and, if this fails, tries 
instead to construct counterexamples to the statement, articulating what prevents 
this from being accomplished. 
Of course, it is often not easy to clearly articulate a mathematical claim.  
However, the heuristic seems no less teachable than that of trying particular 
examples in the hope of finding a generalizable argument.  Its initial 
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introduction may be facilitated by experience with certain tasks – Antonini 
suggests that questions of the form “Given A, what can you deduce?” are likely 
to lead to indirect arguments (Antonini, 2003).  Once in place its regular use by 
a professor may help students to overcome the feeling that they do not know 
how to proceed when faced with a statement that seems “obviously true” or 
otherwise difficult to prove. 
Pedagogy: checking an argument 
This study suggested that the idea of checking an argument by considering 
possible counterexamples is already part of the culture of the participants’ 
classrooms.  They informally model the process when explaining their own 
reasoning, and give tasks that ask students to identify false statements and give 
counterexamples.  Here I would like to suggest that the use of these strategies 
could be strengthened in two ways. 
First, by highlighting the fact that counterexample-production tasks have the 
same structure as that of making a “local check” of a deduction in a proof, but 
that this is often disguised by the fact that instead of one line saying “For all A, 
B” (or “If A then B”), we have two lines of the form: 
A.
Therefore/so/hence B. 
Although this seems a trivial distinction to a mathematician, it may not to a 
student who is struggling to coordinate their understanding of the form and 
content of an argument. 
Second, by giving specific consideration to how to decide which objects to 
check.  The subtleties involved in this process are highlighted by the following 
example of a student proof attempt given by professor 3.   

P3: …for example, I can show you a homework problem in which a student is trying to 
prove that the number 1007 is prime, and he said “well 7 is prime, and adding 1000 
doesn’t change anything”.  End of proof.

Faced with such a claim, the mathematician infers a general statement about 
adding primes to other numbers, and searches for a counterexample to this.  
However, in this case there are at least three possible general statements, and the 
central claim is not couched in language that makes its logical structure clear.  
Indeed, more acceptable mathematical writing also contains such “suppressed 
quantifiers” (Selden & Selden, 1995).  Thus, being able to re-frame a statement 
in more appropriate language is closely connected with deciding which objects 
to check.  Emphasizing this when teaching appropriate “mathematical language” 
may help to explain the need for clarity as well as facilitating checking. 
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Further research 
Having identified these uses of example objects as an important feature of 
mathematicians’ thinking, and as one that is often lacking in students, two 
questions arise: (1) Does this lack account for the failure of students in 
introductory proof courses?  (2) If so, can teaching that focuses more on the 
underlying mathematical objects help students to be more successful?  The first 
of these questions is being investigated now in a study comparing explanations 
of proof attempts by students in the Introduction to Mathematical Reasoning 
course.
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