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Human nature had traditionally been the realm of novelists, philosophers, and 
theologicians, but has recently been studied by cognitive science, neuroscience, 
research on babies and on animals, anthropology, and evolutionary psychology. In 
this paper I will show—by surveying relevant research and by analyzing some 
mathematical “case studies”—how different parts of mathematical thinking can be 
either enabled or hindered by aspects of human nature. This  novel theoretical 
framework can add an evolutionary and ecological level of interpretation to 
empirical findings of math education research, as well as illuminate some 
fundamental classroom issues.

A. INTRODUCTION 
This paper deals with the relationship between mathematical thinking and human 
nature. I take from the young discipline of Evolutionary Psychology (EP) the 
scientific view of human nature as a collection of universal, reliably-developing, 
cognitive and behavioral abilities—such as walking on two feet, face recognition or 
the use of language—that are spontaneously acquired and effortlessly used by all 
people under normal development (Cosmides & Tooby 1992, 1997, 2000; Pinker 
1999, 2002, Ridley, 2003). I also take from EP the evolutionary origins of human 
nature, hence the frequent mismatch between the ancient ecology to which it is 
adapted and the demands of modern civilization. To the extent that we do manage to 
learn many modern skills (such as writing or driving, or some math), this is because 
of our mind’s ability to “co-opt” ancient cognitive mechanisms for new purposes 
(Bjorklund & Pellegrini, 2002; Geary, 2002). But this is easier for some skills than 
for others, and nowhere are these differences manifest more than in the learning of 
mathematics. The ease of learning in such cases is determined by the accessibility of 
the co-opted cognitive mechanisms. I emphasize that what is part of human nature 
need not be innate: we are not born walking or talking. What seems to be innate is the 
motivation and the ability to engage the species-typical physical and social 
environment in such a way that the required skill will develop (Geary, 2002). This is 
the ubiquitous mechanism that Ridley (2003) have called “Nature via Nurture”.  
These insights have tremendous implications for the theory and practice of 
Mathematics Education (ME), but to this date they have hardly been noticed by our 
community (but cf. Tall, 2001; Kaput & Shaffer, 2002). The goal of this paper is to 
launch an investigation (theoretical at this preliminary stage) of how the insights from 
EP may bear on the theory and practice of ME. Specifically, the goal is to investigate, 
in view of the above-mentioned mismatch, how different parts of mathematical 
thinking can be either enabled or hindered by specific aspects of human nature. 
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Consider, for example, the well-documented phenomenon that students tend to 
confuse between a theorem and its converse (e.g., Hazzan & Leron, 1996). As will be 
shown later, this phenomenon can now be understood as a clash between 
Mathematical Logic and the Logic of Social Exchange – a fundamental part of 
human nature.  
In the rest of this document, I will describe my synthesis of the existing research on 
how mathematical thinking is enabled (Section B) or constrained (Section C) by 
human nature.  

B. ORIGINS OF MATHEMATICAL THINKING1

In this section I consider the following (admittedly vague) question:  
Is mathematical thinking a natural extension of common sense, or is it an 
altogether different kind of thinking? 

The possible answers to this question are of great interest and importance for both 
theoretical and practical reasons. Theoretically, this is an important special case of 
the general question of how our mind works. In practice, the answers to this question 
clearly have important educational implications. I take common sense to mean 
roughly the same as the cognitive part of human nature – the collection of abilities 
people are spontaneously and naturally “good at” (Cosmides & Tooby, 2000).  
Recently, several books and research papers have appeared, which bear on this 
question, so that the possible answers, though still far from being conclusive, are less 
of a pure conjecture than they had previously been. The conclusions of the various 
researchers seem at first almost contradictory: Aspects of mathematical cognition are 
described as anything from being embodied to being based on general cognitive 
mechanisms to clashing head-on with what our mind has been “designed” to do by 
natural selection over millions of years.  
However, these seeming contradictions all but fade away once we realize that 
“mathematics” (and with it “mathematical cognition”) may mean different things to 
different people, sometimes even to the same person on different occasions. In fact, 
the main goal of this section is to show that all this multifaceted research by different 
people coming from different disciplines, may be neatly organized into a coherent 
scheme once we exercise a bit more care with our distinctions and terminology.  
To this end, I will distinguish three levels of mathematics, rudimentary arithmetic,
informal mathematics and formal mathematics, each with its own different cognitive 
mechanisms2. When interpreted within this framework, the research results show that 
while certain elements of mathematical thinking are innate and others are easily 

                                          
1 More details on the topics of this section can be found in Leron (2003a).
2 Strictly speaking, ‘formal’ and ‘informal’ ought to refer not to the mathematical subject matter 
itself but to its presentation, and may in fact describe two facets of the same piece of mathematics.
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learned, certain more advanced (and, significantly, historically recent) aspects of 
mathematics—formal language, de-contextualization, abstraction and proof—may be 
in direct conflict with aspects of human nature. 
Following is a brief survey of theses studies and the various suggested cognitive 
mechanism, organized according to my 3-level framework. 
Level 1: Rudimentary arithmetic 
Rudimentary arithmetic consists of the simple operations of subitizing, estimating, 
comparing, adding and subtracting, performed on very small collections of concrete 
objects. Research on infants and on animals, as well as brain research, indicates that 
some ability to do mathematics at this level is hard-wired in the brain and is 
processed by a ‘number sense’, just as colors are processed by a ‘color sense’. 
Comprehensive syntheses of this research are Dehaene (1997) and Butterworth 
(1999). The innate character of this ability is evidenced by its existence in infants, its 
localization in the brain and its vulnerability to specific brain injuries. The likelihood 
of its evolutionary origins comes from its complex design features, the survival 
advantage it have likely conferred on our hunter-gatherer ancestors (e.g., in keeping 
count of possessions, and in estimating amount of food and number of enemies), and 
its existence in our non-human relatives (such as chimpanzees, rats and pigeons). 
Level 2: Informal Mathematics 
This is the kind of mathematics, familiar to every experienced teacher of advanced 
mathematics, which is presented to students in situations when mathematics in its 
most formal and rigorous form would be inappropriate. It may include topics from all 
mathematical areas and all age levels, but will consist mainly of “thought 
experiments” (Lakatos, 1978; Tall, 2001; Reiner & Leron, 2001), carried out with the 
help of figures, diagrams, analogies from everyday life, generic examples, and 
students’ previous experience. 
Some recent research, as well as classroom experience, indicates that informal 
mathematics is an extension of common sense, and is in fact being processed by the 
same mechanisms that make up our everyday cognition, such as imagery, natural 
language, thought experiment, social cognition and metaphor. From an evolutionary 
perspective, it is only to be expected that mathematical thinking has “co-opted” older 
and more general cognitive mechanisms, taking into account that mathematics in its 
modern sense has been around for only about 25 centuries – a mere eye blink in 
evolutionary terms (Bjorklund & Pellegrini, 2002; Geary, 2002).  
Two recent books have presented elaborate theories to show how our ability to do 
mathematics is based on other (more basic and more ancient) mechanisms of human 
cognition. First, Lakoff & Núñez (2000) show (more convincingly in some places 
than in others) how mathematical cognition builds on the same mechanisms of our 
general linguistic and cognitive system; namely, they show how mathematical 
cognition is first rooted in our body via embodied metaphors, then extended to more 
abstract realms via “conceptual metaphors”, i.e., inference-preserving mappings 
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between a source domain and a target domain3. Secondly, Devlin (2000) gives a 
different account than Lakoff & Núñez, but again one showing how mathematical 
thinking has co-opted existing cognitive mechanisms. His claim is that the 
metaphorical “math gene”—our innate ability to learn and do mathematics—comes 
from the same source as our linguistic ability, namely our ability for “off-line 
thinking” (basically, performing thought experiments, whose outcome will often be 
valid in the external world). Devlin in addition gives a detailed evolutionary account 
of how all these abilities might have evolved. 
Significantly for the thesis presented here, both theories mainly seek to explain the 
thinking processes involved in Level 2 mathematics, so that their conclusions need 
not apply to Level 3 mathematical thinking4. In fact, as I explain in the next section, 
they generally don’t. Devlin’s account, in particular, fits well situations in which 
people do mathematics by constructing mental structures and then navigate within 
those structures5, but not situations where such structures are not available to the 
learner. For example, it is hard to imagine any “concrete” structure that will form an 
honest model of a uniformly continuous function or a compact topological space.  
Level 3: Formal Mathematics 
The term “formal mathematics” refers here not to the contents but to the form of 
advanced mathematical presentations in classroom lectures and in college-level 
textbooks, with their full apparatus of abstraction, formal language, de-
contextualization, rigor and deduction. The fact that understanding formal 
mathematics is hard for most students is well-known, but my question goes farther: is 
it an extension (no matter how elaborate) of common sense or an altogether different 
kind of thinking? Put differently, is it a “biologically secondary ability” (Geary, 
2002), or an altogether a new kind of thinking that ought perhaps to be termed 
“biologically tertiary ability”? This issue will be our focus in the next section. The 
mathematical case studies, as well as the persistent failure of many bright college 
students to master formal mathematics, suggest that the thinking involved in formal 
mathematics is not an extension of common sense; that it either can’t find suitable 
abilities to co-opt, or it can even clash head-on with what for all people “comes 
naturally”.

                                          
3 However, as Tall (2001) points out, we need also to take into account a process going in the 
reverse direction. Some of the results of the formal axiomatic theory (called “structure theorems”) 
may feed back to develop more refined intuitions, or embodiments, of the concepts involved.
4 The authors are not always explicit on the scope of mathematics they discuss, but see, e.g., “I am 
not talking about becoming a great mathematician or venturing into the heady heights of advanced 
mathematics. I am speaking solely about being able to cope with the mathematics found in most 
high school curricula.” (Devlin, 2000, p. 271); and “Our enterprise here is to study everyday 
mathematical understanding of this automatic unconscious sort.” (Lakoff & Núñez, 2000, p. 28).
5 See in this connection his “mathematical house” metaphor on p. 125.
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C. MATHEMATICAL THINKING VS. HUMAN NATURE:  
SOME MATHEMATICAL CASE STUDIES  
The theoretical framework outlined above will now be applied to a sample of three 
mathematical “case studies” which, except for that framework, would have largely 
remained an unexplained paradox. Each of the case studies deals with a well-defined 
mathematical topic or task, which on the one hand seems rather simple and 
elementary, but on the other hand has been shown to cause serious difficulty for 
many people (i.e. most people fail on it).
Memorizing the Tables 
Dehaene (1997) discusses the ample research evidence by psychologists, that many 
people find memorizing the multiplication table extremely hard: they take a long time 
to answer and they make many errors. There is also much evidence that all children 
demonstrate prodigious learning and memory capabilities in, say, learning the 
vocabulary and use of their mother tongue. How is it then that many have such 
difficulty remembering a few (less than 20 if you count carefully) multiplication 
facts? How can human memory, which in other contexts performs astonishing feats, 
fail on such a simple-looking task? 
This example demonstrates in a nutshell—and elementary setting—the typical 
paradox that is at the core of this paper: People fail this task not because of a 
weakness in their mental apparatus, but because of its strength! Trouble is, what may 
have been adaptive in the ancient ecology of our stone-age ancestors, and is still 
adaptive today under similar conditions, may often be maladaptive in modern 
contexts. Returning to the present example, the particular strength of our memory that 
gets in the way of memorizing the tables is its insuppressible associative character: 
The forms of the number facts cannot be separated out and remain hopelessly 
entangled with each other. To quote Dehaene (1997): “Arithmetic facts are not 
arbitrary and independent of each other. On the contrary, they are closely intertwined 
and teeming with false regularities, misleading rhymes and confusing puns.” 
Mathematical Logic vs. the Logic of Social Exchange
Cosmides and Tooby (1992, 1997) have used the Wason card selection task, which 
tests people’s understanding of “if P then Q” statements, to uncover what they refer 
to as people’s evolved reasoning algorithms. They presented their subjects with many 
versions of the task, all having the same logical form “if P then Q”, but varying 
widely in the contents of P and Q and in the background story. While the classical 
results of the Wason Task show that most people perform very poorly on it, 
Cosmides and Tooby demonstrated that their subjects performed relatively well on 
tasks involving conditions of social exchange. In social exchange situations, the 
individual receives some benefit and is expected to pay some cost. In the Wason 
experiment they are represented by statements of the form “if you get the benefit, 
then you pay the cost” (e.g., if you give me your watch, then I give you $20). A 
cheater is someone who takes the benefit but do not pay the cost. Cosmides and 
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Tooby explain that when the Wason task concerns social exchange, a correct answer 
amounts to detecting a cheater. Since subjects performed correctly and effortlessly in 
such situations, and since evolutionary theory clearly shows that cooperation cannot 
evolve if cheaters are not detected, Cosmides and Tooby have concluded that our 
mind contains evolved “cheater detection algorithms”.
Significantly for mathematics education, Cosmides and Tooby have also tested their 
subjects on the “switched social contract” (mathematically, the converse statement “if 
Q then P”), in which the correct answer by the logic of social exchange is different 
from that of mathematical logic (Cosmides and Tooby, 1992, pp. 187-193). As 
predicted, their subjects overwhelmingly chose the former over the latter. When 
conflict arises, the logic of social exchange overrides mathematical logic. This theory 
adds a new level of support, prediction and explanation to the many findings (e.g. 
Hazzan & Leron, 1996) that students are prone to confusing between mathematical 
propositions and their converse. Again, they fail not because of a human cognitive 
weakness, but because of its strength: the ability to negotiate social exchange and to 
detect cheaters. Unfortunately for mathematics education, this otherwise adaptive 
ability, clashes with the requirements of modern mathematical thinking.
Do functions make a difference? 
The phenomenon reported here came up in the context of research on learning 
computer science (specifically, functional programming), but has turned out to be 
really an observation on mathematical thinking. Interestingly, it is hard to see how 
this phenomenon could have been revealed through a purely mathematical task. The 
empirical research reported here is taken from Tamar Paz’s (2003) dissertation, 
carried out under the supervision of this author. I only have space here for a very 
brief outline of this study. Cf. Leron (2003b) for more details. 
In functional programming, functions are mainly viewed as a process, starting with 
an input value, performing some operations on it, and returning an output value. This 
image is nicely captured by the function machine metaphor. I have called this the 
algebraic image of functions, as opposed to the analytic image6. For example, the 
function Rest L takes a list L as input (for example, the value of L could be the 4-
element list [A B C D]) and returns the list without its first element (in this example, 
[B C D]). Paz (2003) has found that many of the students’ programming errors could 
be attributed to their assumption that the function actually changes the input variable 
(so that after the operation, L assumes the new value [B C D]). But in functional 
programming, as in its parent discipline mathematics, functions do not change their 
inputs, they merely map one value to another.
I propose to view this empirical finding as an example of the clash between the 
modern mathematical view of functions, and their origin in human nature. To do this, 
we need to look for the roots (mainly cognitive and developmental, but also 
                                          
6 We have two concept images of function, sharing one concept definition (Vinner & Tall, 1981).
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historical) of the function concept – a synthesis of Freudenthal’s (1983) “didactical 
phenomenology” and Geary’s (2002) “biologically primary abilities”: What in the 
child’s natural experience during development, may have given rise to the basic 
intuitions on which the function concept is built? (Fruedenthal, 1983; Kleiner, 1989; 
Lakoff & Núñez, 2000.) 
According to the algebraic image of functions, an operation is acting on an object.
The agent performing the operation takes an object and does something to it. For 
example, a child playing with a toy may move it, squeeze it, or color it. The object 
before the action is the input and the object after the action is the output. The 
operation is thus transforming the input into the output. The proposed origin of the 
algebraic image of functions is the child’s experience of acting on objects in the 
physical world. This is part of the basic mechanism by which the child comes to 
know the world around it, and is most likely part of what I have called universal 
human nature. Part of this mechanism is perceiving the world via objects, categories 
and operations on them, as described by Piaget, Rosch, and others. Inherent to this 
image is the experience that an operation changes its input – after all, that’s why we 
engage in it in the first place: you move something to change its place, squeeze it to 
change its shape, color it to change its look. 
But this is not what happens in modern mathematics or in functional programming. In 
the modern formalism of functions, nothing really changes! The function is a 
“mapping between two fixed sets” or even, in its most extreme form, a set of ordered 
pairs. As is the universal trend in modern mathematics, an algebraic formalism has 
been adopted that completely suppresses the images of process, time and change7.
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