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“Function”, as it is understood today, formulates one of the most important concepts 
of mathematics. Nevertheless, many students do not sufficiently understand the 
abstract but comprehensive meaning of function and problems concerning its 
didactical metaphor are often confronted. The present study examines the 
interpretation of the concept of function among second year students of the 
Department of Education, at the University of Cyprus, and outlines their 
misunderstandings and possible obstacles in fully grasping its meaning. Results have 
shown that students’ perception of function appears in isolated components of 
mathematical ideas associated with the concept of function.
INTRODUCTION
A historical perspective of the way the concept of “function” came to exist in 
contemporary mathematics would reveal centuries of discussions among 
mathematicians. On the other end, the didactical metaphor of this concept seems 
difficult, since it involves three different aspects: the epistemological dimension as 
expressed in the historical texts; the mathematics teachers’ views and beliefs about 
function; and the didactical dimension which concerns students’ knowledge and the 
restrictions implied by the educational system. On this basis, it seems natural for 
students of secondary education, in any country, to have difficulties in 
conceptualizing the notion of function. 
The present work examines the interpretation of the concept of function by second 
year students of the Department of Education, at the University of Cyprus. Since the 
participants come from different secondary school directions, the present 
investigation is likely to reveal various types of misunderstandings. Predominantly, 
these students are prospective primary school teachers, who will in a way transfer 
their mathematical thinking to their future students.  
EPISTEMOLOGICAL DIMENSION AND THE DIDACTICAL METAPHOR 
OF FUNCTION 
The concept of function is central in mathematics and its applications. It emerges 
from the general inclination of humans to connect two quantities, which is as ancient 
as Mathematics. Nevertheless, what directed to the idea of managing unique 
relations, which is accepted in the formal definition of function, was the need for 
calculations, within the framework of Analysis, especially during modernity. Based 
on the definitions of Euler, Bernoulli, and Cauchy, Dirichlet in 1837, concluded in 
the expression “Variable y is said to be a function of variable x defined in the 
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interval a<x<b, if to every value of variable x in this interval corresponds only one 
value of variable y, independently from the form of the correspondence”. In this 
definition the concept of variable includes a timeless intelligible election of value 
within the space of real numbers. The set-theoretic definition of Dedeking was the 
next stage (Davis J.P., & Hersh R., 1981). 
Consequently, to sum up, function, as a typical mathematical concept, is a mental 
construction that was integrated rather recently in mathematics. It is a matter of 
synopsis and congregation of different experiences and conceptual tools that 
mathematicians and scientists initially used to solve problems and assemble theories. 
Due to this historical concentration, the notion of function is so abstract that presents 
many difficulties in its didactical metaphor. Different epistemological approaches 
that led to the meaning of function through its long historical evolution are disrupting 
into the teaching guides and textbooks of mathematics in a confusing way. The 
complexity of this didactical metaphor has been a main concern of mathematics 
educators and an active question in the research of mathematics education (Dubinsky 
& Harel, 1992; Sierpinska, 1992; Gomez & Carulla, 2001; Hansson & Grevholm, 
2003). Moreover, the understanding of functions does not appear to be easy, because 
of the diversity of representations associated with this concept, and the difficulties 
presented in the processes of articulating the appropriate systems of representation 
involved in problem solving (Yamada, 2000). Therefore, a substantial number of 
research studies have examined the role of different representations on the 
understanding and interpretation of functions (Thomas, 2003; Zazkis, Liljedahl, & 
Gadowsky, 2003). 
Researchers usually investigate the epistemological obstacles, on the basis of the 
historical study of the concept of function, and propose teaching methods, which aim 
at overcoming these obstacles. In practice, different approaches that are applied in 
mathematics instruction concerning the concept of function result in exposing to the 
students the pieces of a puzzle consisting of a vague set of extracted information, that 
possibly merge at university level in mathematics. Sierpinska (1992) gives a viable 
example of such an approach supporting that formulae, graphs, diagrams, word 
descriptions of relationships and verbal expressions, compose an uncertain schema of 
thoughts.  
We believe that further research regarding the understanding and use of functions by 
university students is needed, so that their difficulties and misconceptions are 
identified. This could lead to planning and applying appropriate and efficient 
instruction at university level, for improving students’ comprehension about 
functions. The present study aims to provide answers to the following research 
questions: a) How do students conceive and use the concept of function? b) How do 
students recognize functions in multiple representations? It should be noted that the 
main concern of the present study is beyond the measurement of the success rate to 
the proposed tasks, and focuses on the connections of students’ conceptions about 
functions, as indicated by their responses to the tasks.
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METHOD
The sample of the study consisted of 164 students who attended the course 
“Contemporary Mathematics” during the first semester of the academic year 2003-
2004, at the University of Cyprus. The course is compulsory for the students of the 
education department, and can be elected by the students of mathematics department 
students. The questionnaire was completed by 154 second year students of the 
education department and 10 four year students of the department of mathematics. 
Students were asked to complete a written questionnaire that included tasks of 
recognition of functions among other forms, given in various types of representation 
(verbal expressions, graphs and mapping diagrams or algebraic expressions). A 
variety of functions were used: linear, quadratic, discontinuous, piecewise and 
constant functions. Furthermore, students were asked to provide a definition of what 
function is and two verbal examples of functions application in real life situations. 
Below we give a brief description of the questions: 
Question 1:  Recognition of functions between four given verbal expressions (Q1a, 

Q1b, Q1c, Q1d). 
Question 2:   Construction of the characteristic function of a set (Q2). 
Question 3:  Construction of the algebraic expression of a function given in verbal 

expression (Q3). 
Question 4:  Recognition of functions between six given graphs (Q4a, Q4b, Q4c, 

Q4d, Q4e, Q4d). 
Question 5:   Construction of a graph from an algebraic expression of one of the 

functions of the previous question (Q5). 
Question 6:  Recognition of functions between five given graphs (Q6a, Q6b, Q6c, 

Q6d, Q6e). 
Question 7:  Construction of a graph of a function with domain distinct points (Q7). 
Question 8:   Recognition of functions between four given diagram mappings (Q8a, 

Q8b, Q8c, Q8d). 
Question 9:  Definition of function (Q9). 
Question 10: Examples of functions from their application in real life situations 

(Q10).
Correct and wrong answers were accounted for all the questions. Answers to 
questions 9 and 10 were given additional codes as it is further described.  
The definitions given by the students were additionally coded as follows:
D1: An approximately correct definition. In this group the following type of answers 
were included: (i) accurate definition, (ii) correct reference to the relation between 
variables but without the definition of the domain and range, (iii) definition of a 
special kind of function (e.g. real function, function one-to-one or on to, continuous 
function).
D2: Reference to an ambiguous relation. Answers that made reference to a relation 
between variables or elements of sets, or a verbal or symbolic example were included 
in this group. 
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D3: Other answers. This type of answers made reference to sets but without relation, 
or reference to relation without sets or elements of sets. 
D4: No answer
As for the examples, they were coded as follows: 
X1a: Example of a function with the use of discrete elements of sets.
X1b: Example of a continuous function from physics 
X2: Example of a one-to-one function.
X3: Example presenting an ambiguous relation between elements of sets. 
X4: Example of an equation (verbal or symbolic). 
X5: Example presenting an uncertain transformation of the real world. 
X6: No example.
For the analysis and processing of the data, Gras’ s implicative statistical analysis 
was conducted by using the computer software CHIC (Bodin, Coutourier, & Gras, 
2000). A similarity diagram, which allows for the arrangement of tasks into groups 
according to their homogeneity, was produced. The notion of ‘supplementary 
variables’ was also employed in the particular analysis. Supplementary variables 
enable us to explain the reason for which particular groups of variables have been 
created and indicate which objects are “responsible” for their formation. In our study, 
secondary school direction and field of study (i.e. education or mathematics) were set 
as ‘supplementary variables’. Consequently, we were able to know which school 
direction or study field contributed the most to the formation of each group. 
RESULTS
The results are presented into three sections. In the first section we present some 
indicative answers given in the last two questions and in the second section we 
present the percentages of success. In the third section we present the results of the 
implicative analysis using software CHIC. 
(i) Some indicative answers
We restrict the qualitative analysis to the answers given in the last two questions, 
since they are of most interest. 
In the question requiring the definition of function the answers that gave an 
approximately correct definition were grouped together. “Function is a relation 
between two variables so that one value of x (or the independent variable) corresponds to 
one value of y (or the dependent variable)” were accounted in this group. Answers like 
“Function is an equation with two depended variables”, “Function is a relation in which an 
element x is linked with another element y” or even “Function is a mathematical relation 
connecting two quantities” were coded as D2. As D3 we have coded answers, which 
made reference to sets, but did not mention relation, or involved relation and not sets 
or elements of sets, that is answers like “Function is relation” or “Function is a 
mathematical concept that is influenced by two variables” or “Function is the identification 
of parts of a set”.
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The correct examples of a function were of two kinds (X1a and X1b). Examples of 
the first kind were “Each person corresponds to the size of his shoes”, “Each student 
corresponds to his/her mark at the test” made use of sets with discrete elements. The 
second type of examples presented a continuous function mainly from physics such 
as “The height of trees is a function of time”, “Atmospheric pressure is a function of 
altitude”. The examples presenting a function one-to-one were coded separately as 
X2. Such answers were “Every citizen has his own identity number”, “Every graduate has 
his own different degree”, “Every country corresponds to its own unique name”. As X3 we 
coded the examples presenting a relation between elements or variables but without 
clarification of the uniqueness in function.  Such answers were “There is a relation 
between students and their books”, “The prices of vegetables depends on the production”,
“We correspond the marks of girls in a classroom to those of boys”. Examples presenting 
an equation instead of a function were coded as X4. “There are 2x boys and 3y girls in a 
classroom and all the children are 60. If the boys are 15 we can calculate the number of 
girls”,  “Kostas has x number of toffees and John has double that number. How many toffees 
do the two friends have?”. The last category X5 included answers, which were 
ambiguous and in addition they did not define any variables or sets, and referred to 
general transformations of real world. Such answers were “Health depends on 
smoking”, “Success in a test depends on the hours of studying”, “In the relation of children 
and parents, the children are the depended variable and parents the independent variable”.

(ii) Percentages
For the purposes of the present study we will only refer to the results, which show the 
strongest trends among the students. Question 1, requiring the recognition of verbal 
examples of function, was answered successfully by around 50% of the students, and 
this percentage was almost uniform for all the four parts of the same question. On the 
contrary, in Question 4 concerning the recognition of function given in an algebraic 
expression, the percentages varied between the different parts of the same question. 
The linear function 2x+y=0 was recognised by 73% while 65% of the students 
answered that the equation of a circle x2+y2=25 presents a function. In Question 6, 
which concerned the recognition of a function when given in a Cartesian graph, the 
most difficult part was the line y=4/3 which was recognised as a function only by the 
27% of the students, since it was treated in identical way with the line x=-3/2. In the 
same question, the discontinuous linear function of Q6e was recognised only by 31% 
of the students. It can be asserted that the majority of students appear to identify the 
stereotypical forms familiar to them from high school as functions. 
(iii) Gras’ s Implicative Analysis 
From the similarity diagram shown in Figure 1, it ensues that there is a connection 
between four small groups Gr1, Gr2, Gr3, Gr4 that comprise the bigger cluster A. 
From these subgroups, the “strongest” is Gr2 formed around variables D1 and X2 
that present the premier similarity (0,99999). That means that students who give an 
approximately correct definition (D1) in Question 9, give an example of a function 
one-to-one (X2) in Question 10. Around this strong subgroup the answers to 
questions Q6d and Q6e are linked. These are the questions asking the recognition of 
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some non-conventional cases of functions presented graphs (Q6d was a graph not 
representing a function and Q6e presented the graph of a discontinuous linear 
function). Finally this subgroup is completed with the answers in Question 2 (Q2), 
which concerns the translation from a verbal representation of a piecewise function to 
the algebraic form 

       Cluster A         Supplementary groups 
Gr1 Gr2 Gr3 Gr4 Sup.1 Sup.2 Sup.3 

Figure 1: Similarity diagram of the observed variables 
Note: Similarities presented with bold lines are important at significant level 99%. 

Around the strong group (Gr2) three other subgroups are organised (Gr1, Gr3 and 
Gr4), which concern the answers to the four parts of Question 8 (Q8a, Q8b, Q8c, 
Q8d) that is the recognition of functions presented in the form of mapping diagrams. 
The high similarity of this group (0,997) indicates that mapping diagrams are 
confronted in the same isolated way. The two groups Gr2 and Gr3 compose a new 
strong subgroup with degree of similarity 0,899. The subgroup Gr4 is further 
connected with the strong connection of subgroups Gr2 and Gr3, which include the 
answers to the other parts of Question 6 (recognition of function given in algebraic 
form). Conclusively the connection of subgroups Gr2-Gr3-Gr4 creates a group of 
answers, which show a conceptual approach to function. In other words the behaviour 
of the students to the definition and to the provision of an example of function has a 
predictive character in terms of their behaviour to functions when they are 
represented as graphs and diagrams. 
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Group Gr2-Gr3-Gr4 connects with Gr1 that includes the answers to Question 1, that 
is the recognition of functions when they are presented in verbal form. Finally this 
whole group (Gr1-Gr2-Gr3-Gr4) connects with the most “extraordinary” examples of 
Question 4 (Q4e and Q4f) that refer to recognition of functions in algebraic form. 
These are connected with the group that gave a correct example with the use of 
discrete elements of sets. This is the first “supplement” of group A. 
The second supplement of strong connections is embodied by definition D2 and D3 
and examples X3 and X4 that illustrate a vagueness or limited idea of the definition 
and the examples of function. These variables connect with answers to questions Q4c 
and Q4d, which are treated in that way that shows the wrong belief that in an 
algebraic form of a function symbols x and y must always appear. The third 
supplement is the group with the most doubtful idea about the notion of function 
since it includes D4 and X6 (i.e. those students that did not attempt any definition or 
example of function). Furthermore, this group is justified from high school direction, 
i.e. the students who have followed direction of classical studies. The third 
supplement behaves as an autonomous subgroup and consists of the answers that 
show absence of definition or example with a group of different questions that all 
have directly or indirectly a linear-algebraic character (Q4a, Q4b, Q3a, Q5a, Q7a). 
Also variable X1b (examples of function with the use of discrete elements of sets) is 
also connected with this group. The students that give answers that belong to the last 
group appear to have the misconception that function is just a linear relation. 
Conclusively the strongest similarities in the diagram are (a) among responses 
providing correct definition and examples of functions and are mainly attributed to 
the students of mathematics department and (b) among responses giving no or very 
ambiguous answers and are attributed to the students of the education department, 
who come from the classical high school direction. 
CONCLUSIONS
The study has revealed three strong trends in the ideas of students for function. The 
first is the identification of “function” by a large percentage of students with the more 
specific concept of “function one-to-one”. The idea of uniqueness is particularly 
condensed and leads to identification of function as one-to-one function. Although 
this idea works for a wide range of situations and problems involving functions, it 
becomes a strong obstacle for the understanding of function as a wider concept. The 
second trend is the idea that “function” is an analytic relation between two variables 
(as it worked historically, initially with Bernoulli’s definition, and more clearly with 
Euler’s) and it is apparent in the way students define function and the examples they 
give. The third trend is that “function” is connected with a kind of diagram, either a 
Cartesian graph or a mapping diagram. On the contrary, when dealing with algebraic 
expressions the clear understanding of the definition of function is not essential; 
students respond to this latter form through certain stereotypical behaviours. 
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In respect with the two research questions, students’ ideas are organised around two 
poles. The first is that of the conceptual understanding of function, which strongly 
connects with representations in the form of mapping diagrams and Cartesian graphs, 
and therefore has a higher level of success when dealing with most of the 
representations of functions. The other is the one dealing with function as a 
completely ambiguous relation, which connects with stereotypic forms of function 
that can be easily identified. Further research is essential in order to examine whether 
the formation of the above two poles may be modified through appropriate 
instruction.
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