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This study investigated the fluency with which first-graders with strong, moderate, or 
weak mathematical abilities apply the decomposition-to-10 and tie strategy on 
almost-tie sums with bridge over 10. It also assessed children's memorized 
knowledge of additions up to 20. Children's strategies were analysed in terms of 
Lemaire and Siegler's model of strategic change, using the choice/no-choice method. 
Results showed that the children applied both the decomposition-to-10 and the tie 
strategy efficiently and adaptively. Furthermore, the first-graders had already 
memorized the correct answer to more than half of the tie sums. Finally, children 
with strong mathematical abilities applied the different strategies more efficiently but 
not more adaptively than their mathematically weaker peers. 
INTRODUCTION
During the last decade, the goals and content of elementary mathematics education 
have changed internationally (Kilpatrick, Swafford, & Findell, 2001; Verschaffel & 
De Corte, 1996). With respect to the goals of elementary mathematics education, the 
adherents of the reform movement argue that instruction should foster the 
development of children's "adaptive expertise", i.e. children's ability to solve 
mathematical problems flexibly and creatively by means of meaningfully acquired 
strategies (Baroody & Dowker, 2003). This change at the level of instructional goals 
is reflected in an increased emphasis on new arithmetic procedures and skills, 
including flexible use of a rich variety of mental calculation strategies. However, the 
adherents of the reform movement still acknowledge and even stress the importance 
of older, well-established aims and contents, such as the good mastery of number 
concepts and mathematical skills in the domain of adding and subtracting up to 20 in 
the early grades of elementary school (TAL-team, 2001). But these concepts and 
skills should be taught in a way that supports the development of children's adaptive--
instead of routine--expertise. This implies, for instance, that instruction in the domain 
of additions with bridge over 10 (like 8+9) should no longer focus on the perfect 
mastery of one calculation strategy, namely decomposition-to-10 ("8+9 = …; 10 = 
8+2; 9 = 2+7; so 8+9 = 8+2+7 = 10+7 = 17"). In contrast, instruction should allow 
and stimulate children to apply a diversity of counting, calculation, and retrieval 
strategies. As illustrated in detail in Van Eerde, Van den Bergh and Lit (1992), 
children can apply diverse counting strategies on additions with bridge over 10, like 
counting all or counting on from the larger addend. Examples of calculation strategies 
that can be used to solve such additions, are decomposition-to-10, the tie strategy 
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("8+9 = 8+8+1 = 16+1 = 17"), and the one-less-than-10 strategy ("8+9 = 8+10-1 = 
18-1 = 17"). Retrieval involves the (quasi-) automatic activation of the answer to the 
addition in long-term memory ("8+9 = (immediately) 17"). According to the 
adherents of the reform movement, instruction should further support children to 
gradually transform their informal counting strategies into more efficient calculation 
and retrieval strategies. Moreover, children should be stimulated to solve the 
additions efficiently, adaptively and mindfully on the basis of their individual 
strategy knowledge and skills. 
Despite the increasing international acceptance of these reform ideas, this change in 
instructional orientation towards more strategy flexibility raises many, thus far 
unanswered questions. One of these questions concerns its desirability and feasibility 
for children of the weakest mathematical ability level (see, a.o., Mercer & Miller, 
1992; Miller & Mercer, 1997). Research on the effectiveness of the new instructional 
approach for children of the weakest mathematical ability level did not yet result in a 
clear consensus (see, a.o., Woodward, Monroe, & Baxter, 2001). Therefore, we 
conducted a study to deepen our understanding of the fluency with which children of 
different mathematical ability level apply diverse school-taught strategies in the 
domain of simple arithmetic. We aimed to address two issues. First, we wanted to 
analyse the characteristics of the decomposition-to-10 and tie strategy on almost-tie 
sums with bridge over 10 for children who had received explicit instruction in both 
calculation strategies, in terms of Lemaire and Siegler's model of strategic change and 
with special attention for the strategy performances of mathematically weak children. 
We explicitly focused on almost-tie sums with bridge over 10, i.e. sums where the 
difference between the two addends equals only one unit (like 8+7), since (a) both the 
decomposition-to-10 and the tie strategy can be applied on this type of sums, which is 
not the case for other sums with bridge over 10, like 7+4, where the difference 
between the two addends is more than one unit, and the tie strategy is thus much 
harder to apply, and (b) the authors of textbooks in which multiple calculation 
strategies are taught (see below) generally assume the tie strategy to be a highly 
efficient strategy to solve almost-tie sums with bridge over 10. The second aim of the 
study was to examine children's memorized knowledge of additions up to 20, which 
is assumed to be enhanced by this type of instruction (Baroody, 1985). 
We used Lemaire and Siegler's model of strategic change (1995) to analyse children's 
strategies. This model distinguishes four parameters of strategy competence. The first 
parameter, strategy repertoire, refers to the types of strategies children apply to solve 
a series of additions. The second parameter, strategy distribution, involves the 
frequency with which each strategy is used. The accuracy and speed of strategy 
execution belong to the third parameter, strategy efficiency. The fourth parameter, 
strategy selection, refers to the adaptiveness of individual strategy choices, defined as 
the selection of the strategy that leads fastest to an accurate answer to the addition. 
We examined the efficiency and adaptiveness of strategy execution by means of the 
choice/no-choice method, which has so far been used rarely in previous studies in the 
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domain of simple arithmetic (Torbeyns, Verschaffel, & Ghesquière, 2002). The 
choice/no-choice method requires testing each subject under two types of conditions. 
In the choice condition, subjects can freely choose which strategy they use to solve 
each problem. In the no-choice condition(s), the researcher forces them 
experimentally to solve all problems with one particular strategy. As argued 
convincingly by Siegler and Lemaire (1997), the efficiency data gathered in the 
choice condition can be biased by selection effects. In contrast, the forced application 
of one particular strategy on all items in the no-choice condition(s), makes selective 
assignments of strategies impossible, and thus yields unbiased data about strategy 
efficiency. Moreover, comparison of the data about the efficiency of the different 
strategies in the no-choice conditions with the strategy choices made in the choice 
condition allows the experimenter to assess the adaptiveness of individual strategy 
choices accurately: Does the subject solve each item (in the choice condition) with 
the strategy that leads fastest to an accurate answer to this item, as evidenced by the 
data obtained in the no-choice conditions? 
METHOD
Participants
We selected 97 first-graders who had received instruction in both the decomposition-
to-10 and the tie strategy on almost-tie sums with bridge over 10. All children were 
administered a standardized achievement test (Rekenen Eind Eerste Leerjaar 
[Arithmetic End First Grade or AE1], Dudal, 2000) to assess their general 
mathematical abilities. Furthermore, they all solved a series of 10 additions with 
bridge over 10 in a choice condition. Only those children who were able to solve the 
additions in the latter condition beyond the level of counting were also tested in the 
three no-choice conditions, and thus included in our final analyses. Consequently, 14 
first-graders who still solved the majority of additions by counting were excluded 
from the sample.
The remaining 83 first-graders were divided in three groups on the basis of their 
general mathematical abilities: (a) children with strong mathematical abilities (n=31),
i.e. children with a score at or above Pc75 on the AE1; (b) children with moderate 
mathematical abilities (n=20), i.e. children with a score between Pc50 and Pc74 on 
the AE1; (c) children with weak mathematical abilities (n=32), i.e. children with a 
score below Pc50 on the AE1. In line with our criteria, we observed group 
differences in score on the AE1, F(2, 80) = 173.10, p < .0001. The strong first-
graders scored higher on the AE1 than the first-graders with moderate mathematical 
abilities, who received a higher score on the AE1 than the weak first-graders. 
All children were tested in the month of May 2003, i.e. nearly at the end of the first 
grade. At that moment, they all had been taught additions with bridge over 10 for five 
to seven weeks. All teachers used the same mathematical textbook to instruct this 
specific topic to the children. A careful textbook analysis and a structured interview 
with the teachers revealed that all children first had practiced the tie sums with bridge 
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over 10 with a view to memorize these answers. Afterwards, children had been taught 
how to solve additions with bridge over 10 with the decomposition-to-10 strategy. 
Finally, children had learned to answer almost-tie sums with bridge over 10 with the 
tie strategy. Special attention was paid to the relation between the different types of 
additions with bridge over 10, namely (a) tie sums, (b) almost-tie sums and (c) other 
additions, and the specific type of strategy that--according to the authors of the 
textbook--is most efficient to solve them, resp. (a) the retrieval, (b) the tie, and (c) the 
decomposition-to-10 strategy. But none of the teachers forced the children to 
effectively solve each addition with the strategy that was considered as most efficient 
on the addition. They rather allowed each child to solve each addition with his or her 
own preferential strategy. 
Materials
All children solved a series of five experimental items, i.e. five almost-tie sums with 
bridge over 10 (6+7, 7+6, 7+8, 8+7, 9+8), in four different conditions. To stimulate 
the children to choose effectively between the decomposition-to-10 and the tie 
strategy in the choice condition, these five experimental items were mixed with five 
buffer items, i.e. additions with bridge over 10 that can not be classified as almost-tie 
or tie sums. To examine children's memorized knowledge of the number 
combinations up to 20, we added a series of 15 extra retrieval items, i.e. three 
additional almost-tie sums with bridge over 10, four tie sums with bridge over 10, 
and eight additions up to 10 (three tie sums up to 10, five non-tie sums up to 10), to 
the series of five experimental items in the retrieval condition. 
Conditions
All children were tested individually in one choice and three no-choice conditions. In 
the choice condition, children were asked to solve the experimental items and the 
buffer items with either the tie or the decomposition-to-10 strategy. Children could 
choose between the two strategies by means of pictures, which contained a visual 
representation of the strategies (Figure 1). The identification of the strategies in the 
choice condition was based on the pictures filled in by the children. 

                

 7 + 8 = …      7 + 8 = …    

                

           . .      

Figure 1: Representation of the tie and decomposition-to-10 strategy 
In the decomposition-to-10 and tie condition, children were forced to solve the 
experimental items with resp. the decomposition-to-10 and the tie strategy by means 
of the pictures offered. In the retrieval condition, children were forced to retrieve the 
answer to the experimental items and the extra retrieval items by including a time 
limit of two seconds. On the first day, all children solved the items in the choice 

7 + 7 = … 
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condition. On the second day, items were offered in the decomposition-to-10 and tie 
condition. On the third day, all children answered items in the retrieval condition. 
The experimenter registered the answer and the reaction time per child and per 
problem in each condition. 
RESULTS
Characteristics of the Decomposition-to-10 and Tie Strategy
Strategy repertoire. The three groups of children applied the decomposition-to-10 
and tie strategy at least once to solve the five almost-tie sums in the choice condition. 
Moreover, the two types of strategies were used at least once on each almost-tie sum. 
We observed group differences in the repertoire of strategies used, �²(4) = 19.8082, p
= .0005. A larger number of strong and moderate first-graders than of weak first-
graders applied both the decomposition-to-10 and tie strategy, whereas the number of 
strong and moderate first-graders who exclusively relied on decomposition-to-10 was 
smaller than the number of weak ones. The number of children who solved all sums 
with the tie strategy did not differ between the three groups. 
Strategy distribution. The frequency with which the children applied the 
decomposition-to-10 and tie strategy on the almost-tie sums in the choice condition is 
presented in Table 1. As shown in Table 1, the children used the tie strategy as 
frequently as the decomposition-to-10 strategy in the choice condition, F(1, 80) = 
0.81, p = .3701. We observed group differences in the frequency of strategy use, F(2,
80) = 8.50, p = .0004. The weak first-graders applied decomposition-to-10 more 
frequently, and the tie strategy less frequently, than the moderate first-graders. 

 Decomposition-to-10 Tie 
 Frequency Accuracy Speed Frequency Accuracy Speed 
Strong 47.74 0.97 10.69 52.26 0.92 07.63 
Moderate 32.00 0.96 16.49 68.00 0.95 11.15 
Weak 61.88 0.95 16.28 36.88 0.85 13.42 
All 49.40 0.96 14.24 50.12 0.90 10.71 

Note. Frequency = frequency of strategy use in the choice condition, expressed in 
percentages. Accuracy = accuracy of strategy execution in the decomposition-to-10 and the 
tie condition, expressed in proportion correct. Speed = speed of strategy execution in the 
decomposition-to-10 and the tie condition, expressed in seconds. 

Table 1: Frequency, accuracy, and speed of the decomposition-to-10 and tie strategy 
Strategy accuracy. We observed no group differences in the accuracy with which the 
almost-tie sums were answered in the decomposition-to-10 and tie condition, F(2,
744) = 1.20, p = .3010. As can be derived from the data in Table 1, children did not 
perform equally well in the decomposition-to-10 and the tie condition, F(1, 744) = 
11.73, p = .0006. When they were forced to solve all sums with the tie strategy, more 
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errors were made than when they had to apply decomposition-to-10. Finally, the 
interaction between the variables group and condition was not statistically significant, 
F(2, 744) = 1.59, p = .2053. The weak first-graders solved the sums as accurately as 
the moderate and strong first-graders in both the decomposition-to-10 and the tie 
condition.
Strategy speed. The strong, moderate, and weak first-graders did not answer the 
almost-tie sums with the same speed in the decomposition-to-10 and tie condition, 
F(2, 664) = 8.90, p = .0002. Overall, the strong first-graders answered the almost-tie 
sums faster in these two no-choice conditions than the moderate and weak first-
graders (resp., M = 09.16s, M = 13.82s, and M =14.85s). The speed of responding 
also differed between the decomposition-to-10 and tie condition, F(1, 80) = 12.79, p
= .0006. As shown in Table 1, children solved the almost-tie sums faster in the tie 
than in the decomposition-to-10 condition. Finally, the above-mentioned group 
differences in speed of responding were observed in the decomposition-to-10 as well 
as in the tie condition, F(2, 664) = 0.49, p = .6101. The strong first-graders answered 
the almost-tie sums faster than the moderate and weak first-graders in both the 
decomposition-to-10 and the tie condition. 
Strategy selection. In line with Lemaire and Siegler's definition of an adaptive 
strategy choice as choosing the strategy that leads fastest to an accurate answer to the 
problem, we scored a strategy choice as adaptive if the child solved the almost-tie 
sum in the choice condition with the strategy that led fastest to an accurate answer to 
the same almost-tie sum in the decomposition-to-10 and tie condition. These analyses 
revealed that the strong as well as the moderate and weak first-graders took into 
account strategy efficiency characteristics while choosing a strategy: The proportion 
of adaptive strategy choices exceeded the chance level in the group of strong (M = 
0.58, p = .0472), moderate (M = 0.65, p = .0035), and weak first-graders (M = 0.66, p
= .0001). Furthermore, we observed no group differences in the adaptiveness of 
individual strategy choices in the choice condition, F(2, 330) = 1.14, p = .3201. 
Accuracy of Task Performance in the Retrieval Condition 
In the retrieval condition, we scored all additions that were answered inaccurately 
and/or not answered within the time limit of two seconds as incorrect. Subsequent 
analyses revealed group differences in the accuracy of task performance in the 
retrieval condition, F(2, 1549) = 7.66, p = .0005. The strong first-graders answered 
more additions accurately than their moderate and weak peers (resp., M = 0.41, M = 
0.24, and M = 0.23). Next, children did not answer the different types of additions 
with the same accuracy in the retrieval condition, F(3, 1549) = 141.36, p < .0001. 
Children answered the tie sums up to 10 most accurately (M = 0.78). They made less 
retrieval errors on tie sums with bridge over 10 (M = 0.48) than on almost-tie sums 
with bridge over 10 (M = 0.12) and non-tie sums up to 10 (M = 0.13). Finally, we 
observed group differences in the accuracy with which the different types of 
additions were answered, F(6, 1549) = 2.21, p = .0394. The strong children answered 
all types of additions more accurately than the moderate and weak first-graders. The 
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weak first-graders answered the tie sums with bridge over 10, the tie sums up to 10, 
and the non-tie sums up to 10 as accurately as the moderate first-graders, but were 
less accurate than the latter on retrieval of almost-tie sums with bridge over 10. 
DISCUSSION 
From a theoretical point of view, our study deepened our insight in children's 
calculation strategies on additions up to 20. More specifically, it improved our 
understanding of the quantitative and qualitative characteristics of the tie strategy, 
which were left largely unexplored in our--and others'--previous work (Torbeyns et 
al., 2001, 2002, in press). The focus on the strategy performances of children of 
different mathematical ability level further revealed clear differences in the 
calculation strategies and number fact knowledge of mathematically strong and 
mathematically weak children, favouring the former, which is in line with the results 
of earlier work on the strategy characteristics of mathematically weak children in the 
domain of simple arithmetic (for an overview of studies, see Geary & Hoard, 2003). 
From a methodological viewpoint, our study showed the usefulness of the choice/no-
choice method to examine young children's calculation strategies in the domain of 
simple addition. As documented above, the choice/no-choice method was applied 
successfully to study first-graders' use of the decomposition-to-10 and tie strategy on 
almost-tie sums with bridge over 10. It allowed us to gather unbiased data about each 
strategy's efficiency and proved necessary to unravel the level of adaptiveness of 
children's strategy choices in the choice condition. 
From an instructional point of view, our study indicates that children, even the 
mathematically weak ones, are able to apply multiple school-taught calculation 
strategies efficiently and adaptively on simple additions. However, it should be noted 
that these results can not be generalised to children of the weakest mathematical 
ability level, who were excluded from our sample on the basis of their immature 
strategy performances in the choice condition. Although our study provided new and 
important insights in the strategy characteristics of first-graders in the early stage of 
the formal mathematics curriculum, we think it is very important that future studies 
try to unravel the developmental changes that are important to become "adaptive 
experts" by longitudinally assessing children's strategies throughout the entire 
mathematics curriculum, providing building blocks to optimise our learning and 
teaching approaches in the mathematical domain. 
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