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Starting from a situated cognition perspective, this paper reports on the activity of 9th grade 
students who are interpreting the shape of a graph arising from the motion of a bouncing 
ball. In an unfamiliar context, informed by previous knowledge of similar experiments, the 
obstacle of understanding why the graph does not start from the origin is overcome through 
an interplay between different signs.   

THE IDEA OF A SITUATED COGNITION
“When we deliberately and effortfully think, presumably muscles come into play. 
Primary among these are the speech muscles; for thought, as John B. Watson claimed, is 
primarily incipient speech. Thinking aloud is just uninhibited thinking. Other muscles 
enter the thought process too, as Watson appreciated, notably in the case of the artist or 
acrobat who plans his moves with incipient rehearsals of muscular involvement, or the 
engineer, who simulates in his muscles the lay of the land or the distribution of stresses in 
what he means to build. The artist, engineer, and acrobat are poor at putting their 
thoughts into words, for they were thinking with nonverbal muscles” (Quine, p.88). 

The quotation above sheds light on the important role of body in the act of thinking; 
moreover, it stresses that this is not merely a matter of thought in itself. I argue that 
such a viewpoint holds just as for an initial phase of activation of thinking, as for the 
constitutive phase of its development; since this is true for all the human activities of 
thinking, it is significant for learning in particular. We have to bear in mind all the 
“ingredients” that constitute thought such as imagination, perception, motor-sensory 
receptivity, muscular activity, and brain information processing. Besides, thought is 
also matter of culture in a wide sense: learners’ expectations, motivations, tasks, 
goals, previous knowledge, etc. Although each of those aspects is quite meaningful in 
its own right, none of them in isolation can fully tell the story of a student 
conceptualisation. Therefore it is necessary to speak not simply of students’ 
cognition, but rather of what I call cognition in context or situated cognition (for a 
study within this perspective, see Watson, 1998). Since the reference discipline is 
Mathematics Education, situated mathematical cognition will be the general subject 
matter of my research.  

SHAPING A CONSISTENT THEORETICAL FRAMEWORK 
Recent developments and ongoing studies related to the psychology of mathematics 
highlighted biological and neurological constraints, cognitive mechanisms, and 
cultural roots affecting mathematical knowledge (see e.g. Butterworth, 1999; 
Dehaene, 1997; Houdé & Tzourio-Mazoyer, 2003; Lakoff & Nùñez, 2000). At 
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present these new trends are not to be ignored because they clarify the central issue of 
the primary sources of mathematical understanding. More and more attention is being 
drawn to the role of perceptuo-motor activity (i.e., bodily actions, gestures, 
manipulation of materials or artefacts, acts of drawing, and so forth) in the learning of 
mathematics:  

“While modulated by shifts of attention, awareness, and emotional states, understanding 
and thinking are perceptuo-motor activities; furthermore, these activities are bodily 
distributed across different areas of perception and motor action based in part, on how we 
have learned and used the subject itself. […] the understanding of a mathematical 
concept rather than having a definitional essence, spans diverse perceptuo-motor 
activities which become more or less significant depending on the circumstances” 
(Nemirovsky, 2003, p.108). 

This claim meets the idea of situated cognition. Furthermore, these perceptuo-motor 
activities are consonant with the semiotic “key elements in the organization of mental 
processes as they are used to reflect and objectify ideas in the course of the 
individuals’ activities” (Radford, 2003, p.125): words, gestures, artefacts, drawings, 
and so on. As far as my research is concerned, the analysis has been focused on 
students’ gesturing and linguistic productions, as observable constitutive components 
of the mental activity, by following the belief, to use famous words, that: “gestures, 
together with language, help constitute thought” (McNeill, 1992, p.245; emphasis in 
the original). My sense is that until recent years, gestures and language have often 
been taken into account in fragmented fashion, each in its own way, forgetting the 
richness of an interplay among them or between all the semiotic resources; but lately 
strong evidence has been published for their significance in constructing meanings in 
context, even in interaction with technology (see e.g. Alibali et al., 2000; Arzarello & 
Robutti, forthcoming; Nemirovsky et al., 1998).

A search for coherence: more signs 
Among the contemporary cognitive oriented approaches, the theory of embodied 
cognition (Lakoff & Nùñez, 2000) has been for me the most fascinating one in that it 
investigates where mathematical concepts come from and examines the ways in 
which the embodied mind brings mathematics into being. Early interests were on 
studying the role of conceptual metaphors (the “fundamental cognitive mechanisms 
which project the inferential structure of a source domain onto a target domain”; 
Nùñez, 2000, p.9; emphasis in the original) in relation to mathematics learning. Later, 
metaphors came to be seen as vehicles of knowledge from the perspective of a social 
construction of meanings (Ferrara, 2003). On the other hand, we have analysed the 
mediation-role of technology in activities in which 14 years old students were asked 
to interpret on a calculator some graphs obtained from physical motion experiments 
in front of a sensor (Ferrara & Robutti, 2002). But soon, the question of a relationship 
between metaphorical thinking and the use of technology arose. Gestures and 
perceptuo-motor activities cannot be forgot nor understood without the means and 
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tools that they put in motion. Many more signs need to be looked at to have a 
framework consistent with the idea of a situated cognition.
Signs and symbols are used in the literature sometimes with different meanings, and 
sometimes as synonymous. It is then important to make explicit how we use such 
terms in this study. With signs, I refer to what Radford (2002) calls “semiotic means 
of objectification – e.g. objects, artifacts, linguistic devices and signs that are 
intentionally used by individuals in social processes of meaning production in order 
to achieve a stable form of awareness, to make apparent their intentions and to carry 
out their actions” (p.15). Gestures will be part of signs, together with particular 
words, conceptual metaphors and blends, results of perceptuo-motor activities, keys 
on the technological artefacts, mathematical and general objects (like graphs, number 
tables, bouncing balls, etc.). Instead, with symbol I mean the final widest and highest 
stage in the life of a sign: that specific kind of sign embedding a conflation of the 
signified and the sign, in the present case a fusion (see Nemirovsky et al., 1998) of 
the physical phenomenon of motion and its mathematical graphical representation.
Within this perspective, I will discuss the mathematical cognition of some students 
(9th grade) while striving to make sense of a position-time graph resulting from a 
bouncing ball. Roughly speaking, the paper arises from an attempt of hearing the 
cognitive voice of signs (gestures, speech, artefacts, metaphors and so on) in such a 
situation, trying to survey their role and interplay in making something non-palpable 
and unperceivable for students at the beginning (the shape of the motion graph) 
palpable and perceivable at the end.

THE CONTEXT 
The experiment: methodology. The data comes from a long-term teaching 
experiment carried out a couple of years ago and part of a research project still in 
progress. The core activities involved grade 9 students in approaching the concept of 
function as model of a physical movement described through graphing (Ferrara & 
Robutti, 2002; Arzarello & Robutti, forthcoming). Two teachers, one of mathematics 
and one of physics, were active in the classroom and collaborated in designing the 
experiment sequence. In each activity the students worked in small groups (three to 
four people), then participated in a class discussion led by a researcher present in the 
classroom, and aimed at sharing and comparing the different solutions. We collected 
data for the analyses in the form of students’ written notes, worksheets completed by 
the groups of students, and transcriptions from video-recordings of both, group and 
class discussions.
The activity. The activity this paper reports on is the fourth of a series. Their focus 
was on the construction of a model starting from physical motion (a second phase 
was centred on the inverse passage: from models to motions). In previous sessions, 
the students were asked to move in front of a CBR (a motion detector) to perform 
different kinds of motion: uniform (back and forth), accelerated and periodic. A red 
line on the floor marked the point where they had to stop or change direction. The 
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last session differed from these in that the students used a toy object: a bouncing ball 
that groups dropped under the motion sensor. As the ball bounces, the students 
observed the position-time graph built in real time on the screen of a symbolic-
graphic calculator (TI-92 Plus) linked to the sonar. After gathering data (stored in 
calculator memory) we provided each group with a worksheet encompassing three 
steps: first, the students explained in natural language the motion of the ball and the 
graph (e.g. “Describe the kind of motion the ball made”, “Describe how space 
changes with respect to time (increases, decreases, etc.)”). Second, they were asked 
to interpret qualitatively the shape of the graph (e.g. “Analyse the graph. Is it like a 
straight line? Is it like a curve? Does the curve increase? Does the curve decrease?”). 
Finally, they had to interpret quantitatively the graph by calculating the slope of the 
curve at different points (e.g. “Consider the ratio m = (s2 - s1)/(t2 - t1) and use it to 
describe mathematically the graph of your motion”1).
At the time of the experiment, in the first months of the school year and of high 
school, the students had not developed formalised knowledge in terms of graphs or 
functions. From an instructional view, the activities were designed to let the students 
pass gradually from an intuitive stage, starting from verbalising the experiment 
through natural language, to a more conceptual one. Because of space constraints a 
brief excerpt from the activity of one small group of students will be considered. 
Despite the briefness, it is significant for the different signs coming into play; I will 
strive to hear and understand through the analysis what their voice is saying. 

DISCUSSION
The CBR was raised around 2 m from the ground and the ball was dropped under it. 
Only the first part of the graph (Figure 1) until 6 s, during which the bounces of the 
ball can easily be noted, is of interest; after 6 s the ball drifted away from the sensor 
range. The students are discussing the questions about the shape of the graph: Is it 
like a line? Is it like a curve? Does the curve increase? Does the curve decrease?”.  

Figure 1 
Soon a problem arises for Fabio and Giulia: the graph does not start from the origin. 
The schema (Radford, forthcoming) they have in mind differs from what the 
calculator screen shows. The previous artefact-mediated experiments, in particular 
the periodic motion (see the pronoun “we”, #127), condition the students’ 
expectations for the graph2. The schema needs to be re-thought of. But: how?

122. Giulia: Why doesn’t it start from the origin?

2 m
6 s
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123. Fabio: When it arrives to this point here [he is placing the cursor on an 
inferior extremity of the graph] it is when the ball…

124. Giulia: Why doesn’t it arrive on the horizontal axis?
125. Fabio: Here [he is again placing the cursor on an inferior extremity of the 

graph] it is as the ball, when it is near the CBR 
126. Filippo: Yeah
127. Giulia: Hum, because we…
128. Fabio: Here it is when it [the ball] is near the CBR
129. Giulia: No
130. Fabio: Instead here [he is moving the cursor on a superior extremity] it is 

when… 
131. Giulia: Here [she is pointing to one of the superior extremity] it is when it

[the ball] is on the ground
132. Fabio: Here, when it is on the ground, just this point [he is placing the cursor 

on the same superior extremity] 
133. Giulia: Yeah
134. Fabio: When it is on the ground [he is moving the cursor on the next inferior 

extremity]
135. Giulia: Whereas there, it is when it is near the CBR… 
136. Fabio: And when it is near, when it approaches the CBR, the maximum point 

in which it approaches the CBR is here [he is pointing to the inferior 
extremity of the graph where the cursor is located] 

Not only the graph does not start from the origin but, in addition, it does not arrive on 
the horizontal axis (the physical ground, the floor, does not correspond to the 
‘mathematical ground’!). This requires a reflection both on the spatial origin of 
motion and on the position of the sonar (raised vertically, with the ball falling along a 
vertical trajectory). The point of view needs to be shifted to accommodate the ball as 
subject of motion. The passage happens with the help of a specific sign: the Trace
key activated on the calculator displays a moving cursor on the graph, with the 
numerical coordinates corresponding to the point the cursor is at. Such a sign prompts 
a first exploration of the graph, rich of deictic and locative words (Radford, 
forthcoming): “here”, “there”, “this point”; “near the CBR”, “on the ground”. Usually 
these words are matched with physical body gestures; indeed, in the present case the 
cursor acquires the mediation function of an index, in place of usual deictic/indexical
gestures (#123, 125, 130, 132, 134). Technology is working with the students, not for
them: the instrument provides them with an inherent function (the tracing function) 
used through a physical tool (the cursor) to make accessible the motion experiment in 
the graph. The students already think of the graph in terms of motion (the pronoun 
“it” is used to speak of the curve ‘starting’, ‘arriving’, etc.); however, their 
interpretation remains at a local level, in terms of different spatial positions of the 
ball during its movement (this is an operational way to see the graph), as pointed out 
by the timed sentences (observe the pervasive presence of the temporal adverb 
“when”). The beginning of a more global conceptualisation of the graph is marked by 
their discovery that the maximum positions reached by the ball in motion correspond 
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to the inferior extremities on the graph. A step more is made in #136, where a gesture 
substitutes the cursor.

137. Giulia: Well, a curved line represents the graph…
138. Fabio: A curved line
139. Giulia: A curve that doesn’t start from the origin 
140. Fabio: Wait, say, let’s see, hum… 
141. Giulia: It is a curved line that has always the same… maximum point
142. Fabio: That… when… 
143. Giulia: …but that varies as minimum point 
144. Fabio: When the curve goes up, when it goes up [he is sketching a parabolic 

slope in the air with his right hand: his index finger, pointing to 
imaginary physical locations in front of his body, follows this going 
up trajectory, from the bottom-left to the top-right], it indicates that 
the ball goes down towards the ground [he is lowering his hand in a 
vertical direction, miming the ball motion while falling], [he fast 
raises his hand] when it [the curve] goes down [he is lowering his 
raised hand, reproducing with the index finger the previous slope but 
in the opposite versus], the ball [he is raising his hand again in a 
vertical direction, miming the ball motion while bouncing up]…

145. Giulia: It indicates that the ball goes up 
A second interpretation of the shape of the graph in terms of maximum and minimum 
points begins3. This is a natural resource for the students, so that they seem to have 
embodied the extreme spatial positions of the ball on the extremities of the graph 
(#141, 143). The students are now at a global level, in which the graph is considered 
in a structural way. Let us focus on the last two lines: Fabio shows of knowing and 
acting at once (#144): he knows the graph in terms of the motion of the ball, and he 
acts to reproduce both the shape of the curve and the motion itself. The schema has 
definitely been re-thought of: Fabio is able to enact the whole experiment and to 
recognize it in the graph, and Giulia shares this knowledge (#145). Graph and motion 
are not longer distinguished; in contrast they are fused together as marked by the use 
of verbs of motion, “to go up” and “to go down”, for talking about the graph (“the 
curve”, or “it” in the sentences) too. This process may be interpreted as the 
construction of a blended space (Lakoff & Nùñez, 2000), in which the features of the 
two domains of the Graph is a Moving Object metaphor (see Ferrara, 2003) are 
merged in a new unique sign: the motion-graph. On the other hand, this cognitive 
behaviour is also embedded in a convergence of Fabio’s iconic gestures (Mc Neill, 
1992), which are of two kinds. Informed by current trends in the study of gestures 
(see e.g. Alibali et al., 2000; Arzarello & Robutti, forthcoming; Edwards, 2003), I 
refer to them as follows: when Fabio’s hand traces the shape of a piece of the curve, 
the gesture is iconic-representational (Arzarello & Robutti, forthcoming), standing 
for the graphical representation; when its movement enacts the motion of the ball, it 
is iconic-physical (Edwards, 2003), since it represents the physical phenomenon. The 
graph becomes something to think with, the motion something to enact. But, there is 
more information here: the transition from the operational (local) to the structural 
(global) mode of thinking of the graph mirrors the occurrence of a process of 
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reification, which, through the birth of the Graph is a Moving Object metaphor, 
marks the beginning of the conceptualisation (for a study about the role of metaphors 
in constructing new concepts, see Sfard, 1994). As a consequence, rather than being 
simply the result of a conflation of the two existing domains of motion (the physical 
phenomenon) and graph (the abstract sign), the blend arising from the metaphor is 
what brings the abstract graph-sign into existence as a symbol. Similarly, the two 
Fabio’s gestures are so coordinated with speech and among them and iterated during 
the explanation that, recalling the distinction by Peirce (1955) between three different 
kinds of signs (index, icon and symbol), I think it is possible to speak of them as 
gestures with a symbolic characterisation. 

FINAL REMARKS 
The analysis reported in this paper points out the need of further investigations: 
reification, blends, metaphors, knowledge objectification, special kinds of gestures or 
actions seem to be due to a basic and inherent cognitive mechanism activated in 
constructing a meaning, in grasping a concept, in conceiving a sign as symbol. On the 
other hand, reasoning in abstract terms or on abstract entities (such as mathematical 
objects, e.g. a graph) is a complex activity that requires drawing attention to the deep 
network of interactions of the students with the environment they are acting upon. 
Although it is not yet clear the fundamental mechanism entering the scene (and this 
remains an open problem), support may come from our neuro-biological structure. 
Recent neuroscience studies, for example, shed light on the representational dynamic 
of the brain as non-symbolic but as a type of self-organisation, in which body action 
plays a crucial role (Gallese, 2003). Results of this kind are to be regarded with a 
special eye, because they may provide us with productive answers.
_____________________________  

1. t1 and t2 are two subsequent time data, s1 and s2 are the two corresponding position data. A table 
on the calculator provides the students with the numerical values. 

2. In previous motions, the graph starts from the origin: in fact, the student moving approximately 
begins his/her run at time t=0 where the CBR can gathers data (0.5 m). And at that time he/she 
has not yet covered any space.  

3. As a consequence of pixel definition of the screen, there is not a perfect match between the 
plane locations of the cursor on the inferior/superior extremities and the maximum/minimum 
points. But this is not a problem, because a qualitative interpretation is enough for the students.
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