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This paper explores one student’s attempt to apprehend an abstract mathematical 
structure (similar to Z99). We discuss Karmiloff-Smith’s theory of representational 
redescription as a model for the development of structural understanding and 
contrast this with existing process-object theories. We use two cycles in Molly’s 
movement from an action conception of the teacher-given aspects of the structure, 
inherent in the definition, to her conscious and expressible personal ownership of 
aspects of the structure, to explore how the model helps us account for structural 
understanding.
BACKGROUND
There is a well discussed difference between understanding, say, a vector as an action 
of moving from one location to another and a vector as an object. However, to 
understand a vector space is, we suggest, a quite different matter. In this paper, we 
use one girl’s work to illustrate the notion of apprehending structure: developing a 
conscious and expressible sense of the relationships within, and properties of, an 
abstract, defined mathematical structure. 
THEORETICAL FOUNDATIONS 
The idea that a learner’s conception of a piece of mathematics changes its meaning as 
the learner develops is hardly new. There is a wide range of literature which explores 
how actions metamorphose into objects for learners (Sfard, 1991; Dubinsky, 1991; 
Gray & Tall, 1994)  Implicit in much of this literature is the change of internal 
representation which takes place. In the case of APOS theory:

An action is any physical or mental transformation of objects to obtain other objects. It 
occurs as a reaction to stimuli that the individual perceives as external. … When the 
individual reflects on an action, he or she may begin to establish conscious control over 
it. We would then say that the action is interiorized, and it becomes a process.
A process is a transformation of an object (or objects) that has the important 
characteristic that the individual is in control of the transformation … As the individual 
reflects on the act of transforming processes, they begin to become objects.  
   (Cottrill et al., 1996, p 171) 

In Sfard’s theory: 
At the stage of interiorization a learner gets acquainted with the processes which will 
eventually give rise to a new concept. … The phase of condensation is a period of 
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‘squeezing’ lengthy sequences into more manageable units. … Only when a person 
becomes capable of conceiving the notion as a fully fledged object, we shall say that the 
concept has been reified. Reification, therefore, is defined as an ontological shift – a 
sudden ability to see something familiar in a totally new light   
  (Sfard, 1991, pp 18–19) 

However, in many areas of mathematics the learner’s appreciation of mathematics as 
consisting of particular objects does not do sufficient justice to the complexity of the 
situation. Seeing a vector as (say) both the action of moving and an object that can be 
added to (or even – in differing senses – multiplied with) other vectors is clearly one 
level of understanding. Apprehending the structure of a vector space is another. 
APOS theory acknowledges this difficulty by appending the notion of a schema to 
the original action-process-object theory: 

A schema is a coherent collection of actions, processes, objects, and other schemas that 
are linked in some way and brought to bear on a problem situation. As with processes, an 
individual can reflect on a schema and transform it. This can result in the schema 
becoming a new object.  (Cottrill et. al., 1996, p 172) 

While these theories implicitly acknowledge a structural aspect, they focus on the 
formation of individual objects. However, switching the figure and ground, to focus 
on the structure within which these objects lie, enables us to examine different 
aspects of the learner’s development, particularly in abstract, defined mathematics. 
The process-object duality tends to model better objects described rather than objects 
defined (Tall et. al., 2000). 
Karmiloff-Smith (1992) provides a theory which seems particularly suited to 
explaining the development of mathematical structure. Moreover, rather than seeing 
this as the development of an internal representation that matches a given 
mathematical structure, ‘representational redescription’ provides a way of explaining 
how mathematical structure can be the consequence of active mental construction (in 
the sense of Cobb, Yackel & Wood, 1992) and shows how learners in different 
phases of redescription can interact with their mathematical environment (and their 
teachers) differently. 
REPRESENTATIONAL REDESCRIPTION IN MATHEMATICS 
Representational redescription is a movement from the learner’s conception of a set 
of atomic behaviours which are externally stimulated, to apprehending structure in 
which the nature and properties of the structure and the relationships within it are 
consciously available for communication. It is a phase theory in which 

1. Initially information about the structure is encoded as separately stored 
procedures, with no intra- or inter-domain connections. At this phase, the 
learner might appear to have a set of actions on pre-existing objects (in the 
sense of Dubinsky, 1991). 

2. These actions become internally redescribed. This redescription is an act of 
abstraction which retains only some of the aspects of the full procedures (it is 
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an internal description of the procedure, no longer the procedure itself). At this 
phase, such a description is unconscious, but may manifest itself in the wise 
choice of objects in the structure with which to work. 

3. The learner is able to consciously access the redescription of the procedures, so 
that they have an appreciation of the relationships within the structure 
sufficient to guide them in solving structural problems. However, they may not 
be able to verbalise or symbolically express these relationships. Learners may, 
for example, note similarities or relationships between objects in the structure, 
but might not be able to articulate the nature of the similarity or relationship. 

4. The final phase is the ability to communicate directly about the relationships 
and properties of the structure. 

This movement is accompanied by different ways in which the learner can engage 
with the material and the teacher. At the earliest phases, the focus can only be on 
whether a procedure is being followed correctly while the later phases enable the 
learner to talk about the structure in it’s entirety. A beautiful illustration of such 
structural development and the nature of the communication about the structure can 
be seen in Maher and Speiser’s (1997) discussion of a learner’s development of 
binomial (and multinomial) structures from its beginnings in investigating building 
towers from different coloured blocks.
At the earliest phases, there can be no notion of proof, except (perhaps at phases 2 or 
3) as generalized calculation. At the last phase, the learner has access to the 
properties of the apprehended structure, so arguing from those properties is possible. 
Thus, in terms of Harel and Sowder’s proof schemes, there is a movement from 
empirical to analytic schemes (Harel & Sowder, 1998). 
CONTEXT OF THE RESEARCH 
We introduced students to what we called a restricted arithmetic: a structure 
A2 = (A2,�,�) where A2 = {1,2,3,...,99} and the binary operators �, � are defined in 
terms of a reduction mapping r, r: N � N, r(n)= n – 99 · [n/99], (where [y] is the 
integer part of y). This reduction was introduced as an instruction, illustrated by 
several concrete examples:  

For a natural number n < 100, r(n) = n. If n � 100, we split n into pairs of digits starting 
from the units digit and add the pairs together. We repeat the procedure until we get an 
element of A2 . For example, r(682) = r(82 + 6) = 88, r(7 945) = r(45 + 79) = r(124) =  
= r(24 + 1) = 25. 

Binary operators addition � and multiplication � in A2 were defined and illustrated 
as follows:

� x, y � A2, x � y = r(x + y) and x � y = r(x · y).

For instance, 72 �  95 = r(167) = 68, 72 � 95 = r(6 840) = 9. 
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Many different problems can be solved in the A2 system, among them additive and 
multiplicative equations of the type a � x = b, c � x = d, where elements a, b, c, d are 
parameters and x is the unknown.
Molly, a 20-year-old student training to be a mathematics teacher, along with 11 
other students, was introduced to the A2 structure in the way given above. Unusually, 
Molly became sufficiently involved in trying to develop her own understanding of A2
that she quickly developed her own problems in the system and even got to the stage 
of writing her diploma thesis on the topic (Stehlíková, 2002). In this paper, we will 
examine two cycles in her attempts to apprehend the structure of A2. In the first – her 
work on additive equations – we see a rapid movement through the four phases, 
while in the second – multiplicative equations – we see the same movement slowed 
down as she encounters more difficulties and a more intricate structure to apprehend.  
Data were collected from numerous sources: transcripts of clinical interviews (in the 
sense of Ginsburg, 1981), Molly’s written work produced both for the interviews and 
independently, from field notes and from Molly’s development of a journal 
describing A2. These data were analysed using methods adapted from grounded 
theory (Glaser & Strauss, 1967) and, within the area of additive and multiplicative 
equations, four categories (seen later as phases of apprehending structure) emerged. 
MOLLY’S APPREHENDING OF EQUATIONS IN A2

Molly’s investigation of additive and multiplication equations was mainly triggered 
by two experimenter’s interventions: first, Molly was presented with a list of several 
additive and multiplicative equations which she could solve in any order and second, 
she was asked to classify these equations according to their solubility. As this 
classification is of a different character and difficulty for additive and multiplicative 
equations, we will examine them separately. 
The investigation of additive equations was apparently straightforward for Molly and 
the phases below followed on quickly from each another.  
1. An initial procedure. Molly’s first attempts involved treating the elements of A2 as 
if they were elements of N. This worked well for a small sub-class of problems, such 
as x � 6 = 92 (x = 92 – 6 = 86). However, when she noted this procedure failing, after 
a short pause, she came up with a strategy (which we call the strategy of inverse 
reduction or SIR) based on her procedural understanding of the reduction function:  
61 � x = 4 = r(202) = r(103), hence x = 42
2. Development of a procedure in A2. The SIR procedure enabled her to solve any 
additive equation, though she was able to move between the procedure adapted from 
N and using SIR fluently and appropriately. 
3. Properties of A2. It became clear, after a while, that (though she was unable to 
enunciate it) she was implicitly using the idea that each additive equation has just one 
root (in A2).
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4. Justifying and communicating structure. After some time, Molly was able to 
justify the unique root claim by referring to inverse reductions of b and their structure 
and much later when she had defined subtraction in A2, she was able to justify her 
result in these terms. 
These same four phases can be seen in more detail in Molly’s work on multiplicative 
equations, which was much more involved and which took more cognitive effort on 
her part.
1. An initial procedure. Again, Molly initially adapted a procedure from her previous 
experience by treating elements of A2 as if they were elements of N (or Q). As we 
can see in figure 1, she did this for almost all of the multiplicative equations which 
she was given, which resulted in some solutions which are incorrect in A2 (such as
x � 8 = 92, hence x =  23/2) and in incomplete solutions (such as 3 � x = 45, hence 
x = 15). However, when she considered the equation 2 � x = 99 she did not use this 
adapted strategy but rather used her knowledge of properties of 99 within the A2
structure (which she had discovered previously) and concluded that x = 99.  

M: So, the first task, so x is 15.
Obviously then 2 times x is 99, that will be that 
99, that is the case of the zero. 
Well, now x is 92 eights. It could be cancelled 
46 quarters… (pause)…it will go on, that is 23 
halfs.

Figure 1: Molly’s use of procedures from N
She later appeared to notice the discrepancy between equations which led to elements 
of A2 (or N) and those which led to fractions. She used trial-and-error methods, 
substituting numbers of varying size for x and exploring how this affected the size of 
numbers on the right hand side.  
In fig. 2, we can see that, after a prompt to consider how she had worked with 
additive equations, she used the SIR procedure for an equation which previously 
resulted in a fractional answer and succeeded in finding a root in A2. After this, she 
went back to her previous fractional solutions and re-solved the problems with a 
solution in A2. However, she always stopped after finding the first root, which 
suggests that her belief that these equations must have at most one root was strong. 
For instance, when solving the equation 33 � x = 66, she just gave the answer x = 2.
Again, it was only a prompt (“Is that all?”) which motivated Molly to try to use the 
SIR procedure to demonstrate the uniqueness of roots and which finally led to her 
discovery that there might be multiple roots. She re-examined the previous equations 
to see if she had found all the roots. 
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2. Development of a procedure in A2. At this phase, she was able to solve all the 
multiplicative equations she worked with and could apparently see that there were 
equations with zero, one or multiple roots. She made some observations such as 
multiple roots of an equation make an arithmetic sequence and number 3, 9 and 11 
“cause problems” (fig. 3) but at this phase she did not explain more than this. 

M: So 33 times 20, so 20 is the next root…(short pause) … now 14 
… (laughs) (pause) … 8 … (pause) … 5 … (pause) … so it will 
always differ by 3. 
It could be calculated using arithmetic sequence. 

Figure 3: Recognising properties of A2

3. Properties of A2. As she attempted to classify multiplicative equations, Molly 
solved many different equations which she posed for herself. While at the beginning 
she picked them apparently at random, later she decided to explore systematically the 
equation c � x = d for c up to 16. This led to an important discovery which became 
the basis of a new solving strategy: if � is a difference between roots and p is the 
number of roots, then � � p = 99. 
She noted that this also holds for equations with one root (then � = 99, p = 1). She 
also made some observations such as “We cannot divide the terms of the equations 
by multiples of 3, 9, 11, 33… by multiples of 3 and 11”. While at the beginning she 
substituted individual elements of A2 for c, later her investigations involved her 
implicitly working with sets of numbers at once. For example, without expressing it 
like this, she began to work with the number 3 as if it was the representative of all 
multiples of 3.  
4. Justifying and communicating structure. Eventually, Molly felt able to summarise 
all of her knowledge about multiplicative equations in a table (a part of which is 
reproduced in fig. 4) 

E: Consider the way you solved the equation 
61 � x = 4 last time. 

M: So 92 could be written as 290 … (short 
pause) … so 290 divided by 92, no 8 is … 
[used calculator] … the next one 389 … also 
no, 488, it should work, it is 61, which means 
that the x should be 61. 

Figure 2: Developing a different procedure for A2
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p conditions  example 

1 a � 3 � k � a � 11 � l,  where k, l � A2 8 � x = 9 

3 a = 3 � k � a � 9 � l � a � 11 � m � b = 3 � n,  where k, l, m, n � A2 3 � x = 9 

0 a = 3 � k � a � 9 � l � a � 11 � m � b � 3 � n,  where k, l, m, n � A2 3 � x = 5 

9 a = 9 � k � a � 11 � l � b = 9 � m,  where k, l, m � A2 18 � x = 9 

Figure 4: Molly’s knowledge of multiplicative equations in A2

She could now articulate the fact that the multiples of 3 and 11 represent, in fact, a set 
of zero divisors (even though she was not first able to give this set its name, later she 
called them divisors of 99). She could justify the non-existence of solution by 
reference to the digit sum (“if d is not divisible by 3 and 11, neither are its inverse 
reductions d + k99, k � N”) and the existence of multiple solutions by reference to 
divisibility tests she had developed for the A2 structure. 
DISCUSSION 
We can see broad similarities in Molly’s phases of development in working with 
additive and multiplicative equations. First she works with elements of A2 as if they 
were elements of N (using familiar number procedures). She is then able to use her 
understanding of a fundamental part of the A2 structure (inverse reduction – which 
was itself developing alongside the work discussed here) to solve equations which 
previously were beyond her. At this phase she begins to get a sense of the structure of 
these equations – the number and nature of the roots – which manifests itself in the 
choices she makes in developing problems to investigate. Finally she is able to 
articulate findings about the system and begin to justify them in terms of the 
properties of the structure. 
Both investigations are accompanied by a ‘U shape’ observable in her fluency in 
solving these equations. First she seems fluent as she adapts known procedures from 
N, then she realizes that these procedures do not work and becomes much slower as 
she has to develop the SIR procedure to the situation. As she does so, and as it gives 
her a sense of the structure of the equations and their roots, she again becomes fluent. 
However, as Karmiloff-Smith notes, the down-curve of the ‘U-shape’ “is 
deterioration at the behavioural level, not at the representational level” (Karmiloff-
Smith, 1992). Indeed, the loss of fluency seems to accompany her change in 
perception of the structure.
We do not see the development of her understanding of these aspects of A2 as a 
movement from a process to an object conception – rather, apparently familiar 
objects (numbers) have taken on new properties and relationships to form a new 
structure for her. Thus, we suggest that these two example investigations are small 
scale cycles in representational redescription as Molly moves to apprehending the A2
structure. She moves from working with procedures adapted from an old structure, to 
implicitly recognizing some aspects of the new structure, to having (but being unable 



4–240  PME28 – 2004

to articulate) a sense of how the equations work, to – finally – being able to express 
her findings and begin to justify them in terms of properties.  
While beyond the scope of this paper, Molly’s perseverance with A2 shows us the 
same process of apprehending structure writ large: with a change of perspective, her 
involvement with additive and multiplicative equations become steps to her 
apprehending A2 as a new and fascinating mathematical structure of her own. 
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