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Iterative Substructuring
Preconditioners for the Mortar
Finite Element Method

Catherine Lacour

1 The Mortar Element Method

The mortar element method, first introduced by C.Bernardi, Y.Maday and A.T.Patera
in [BMP90], has the advantage of allowing non-matching nonoverlapping grids at
the interfaces between subdomains. Therefore, the method permits implementation
of different approximations on each subdomain, which means that grids can be built
completely independently. It is designed to provide an efficient parallelizable evaluation
and solution framework. In our case, we use the finite element method for each
subdomain. In [RLJK96], we describe more fully the space of Lagrange multipliers
chosen.
Let us consider the model elliptic problem in : Find u in H}(Q) such that

Vv € H3(Q), / Vu.Vu dz + c/ wo dz = / fvdz (1.1)
Q Q Q

This formulation is very handy for introducing nonoverlapping domain decomposi-

tions. Indeed, assume that 2 is partitioned into nonoverlapping (Lipschitz) subdo-

mains @ =K, @", QnQf=0ifk+#¢

Problem (1.1) can be rewritten as follows: Find u € H}(Q) such that

K K K
Vv € Hy (9 d dz = d
v € Hy (), kz:;/m V(ujgr)V(vior) m-l-c;/s;k ujor v gr dT kz:;/nk fiarvigrdz

Instead of searching an element u defined globally over 2, it is more convenient,
especially when local discretizations are to be used, to search for a K-uple u* =
(u1,...,uk). The space V spanned by these restrictions

V={v*=(v1,...,vx), € H;(Q),Vk,1<k<K, v =vgr}
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can be conveniently rewritten as an aggregate of the local spaces
Xy, = {v, € HY(QF), v, =0 over 8QF N 9Q}
as follows
V* = {v* = (v1,...,0x) €EME Xy, VE, £, 1<k L<K, v, = over 9QF N 9Q*}.

This leads naturally to introduce the notation I';, , = ANk NANE. The constraint across
the interface I'y ; can be relaxed by inducing the definition of a Lagrange multiplier
in the Euler equation. The Lagrange multiplier belongs to a closed subspace M of
I <k<e<xH'/?(Tk ). The problem (1.1) is equivalent to the following one : Find
u* € V* such that

K K K
Yov* € V¥, Z/ Vuvakdm-l-cZ/ ukvkd.r:Z/ frurdz
p=17/9" =17 r=170"

(1.2)

Discretization

We discretize the problem by the Galerkin method. Let us consider a parameter h
standing for a discretization parameter. For any value of h, for any k, 1 < k < K, we
introduce a finite dimensional subspace X} of X N C° (ﬁk) For any k, 1 < k < K,
I'*3 1 < j < j(k) stand for the (eventually curved) segments which coincide with the
edges of Q*, (j(k) denote the number of edges of Qk) We then define the skeleton S
as the union of all edges of all subdomains: S = U Bl U] (k) 9 . Finally, we choose

a finite set M of pairs m = (k,j) such that the I'*J are dlS_]Olnt from each other.
We denote by v™, and we call mortars, these I'*:J. To describe the discrete space, we
begin by defining trace spaces.

e First, for any k, 1 < k < K and for any j, 1 < j < j(k), we set W,’f‘j
W kg — {’U‘ij,/U c Xh}

e Next, for any m* = (k,j) not in M, we choose a space Wh of discrete

functlons on the non-mortar sides. The product of all these spaces provides

a global discretization W}, of the functions on the skeleton S by W), =
m¢MW

For any m € M, we denote by W™ the space Wk(m)’] (M) The mortar space is

defined by Wy, = {’;’|,m» € W*,m € M}. The dlscrete space Xp, is the space of
functions vy on € such that:

e Forany k, 1 <k < K, vpk, = vpjor € X,’j.
e there exists a function > € W}, such that:
If I'*J is a mortar, Vp |k =
If % is not a mortar

V?/) € W’l:’j,/rk _(Uh,k\rk»i - ,)d)d’r = 0
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The discretized variational formulation is: Find up, € X} such that

K

K K
A4 X . d dxr = d
vp € Xn, Z/Qk Vup,k.Vopi dz +02/m Uh,kVh,k AT Z - fonr dz
k=1 k=1 k=1 (1.3)

The problem can be reformulated into a saddle point problem.
Let ap be the symmetric bilinear form on X; x Xp:

K K
ah(uh,vh) = E / Vuh,k.Vvh,k dz +c E / Up, kVh,k dzx ,
Qk Qk
k=1 k=1
and by, the bilinear form on X} x W B

br(vh, pn) = Z /1“ (Vh,k — Une) o
ke

1<k<(<K

We can associate to ap the linear operator Ay and to b, the linear operator By, such
that ap(up,vn) = (Apun,vr) and by (vp, un) = (Bhon,pr)- Therefore, the problem
(1.3) admits a following saddle-point formulation: Find the pair (up, Az) in X x Wp
such that Apup +Bz)\h - £

Buup, = 0 . (1.4)

2 Extension of the Dual Schur Method Preconditioner

Conforming Case

Let us consider a subdomain €2;. We number its degrees of freedom beginning by those
lying inside ; and finishing by those lying on the interfaces between 2; and the others
subdomains. With this numbering, the stiffness matrix of Q; has the following block
representation:

A A
Az‘ — 4 if ) 25
( Agi Agg 25)

The restriction of the matrix B on interface is the matrix which makes the
correspondence between the degrees of freedom on interface and the degrees of freedom
of the Lagrange multipliers.
The dual operator on each subdomain is given by DY) = B;A; ' B!

The interpretation of the preconditioner is to find a matrix M which is a good
approximation of D~ so as to apply the conjugate gradient method on a well

conditioned problem. The preconditioner chosen in [Rou89] is M= > BiA;Bt.

Nonconforming Case

The interface matrix is given by the bilinear form associated to the trace operator
seen in (1.4).



ITERATIVE SUBSTRUCTURING PRECONDITIONERS FOR THE MORTAR METHOD409

The interface matrix is written as B; = P;R; where P; is a projection matrix and R;
is the restriction matrix on the interface.
Therefore, the dual operator matrix D is given by

D=> BiAfBl =) PRAtR!P].
i i

The preconditioner chosen for the nonconforming case is

M2 = (P,P})~(P;R;A;RLP))(P,P}) ™"

i

where (P;P!)~! are matrix terms.

3 Hierarchical Basis of the Lagrange Multipliers Space

Our motivation comes from the work of H. Yserentant, [Yse86]. In his paper, the
condition number of the stiffness matrices arising in the discretization of selfadjoint and
positive definite elliptic problems by finite element methods when using hierarchical
basis of the finite element spaces instead of the usual nodal bases is analysed. It is
showed in [BDY88] that the condition number of such a stiffness matrix behaves like
0((log K)?) where K is the condition number of the stiffness matrix with respect to a
nodal basis. In case of a triangulation with uniform mesh size h this means that the
stiffness matrix with respect to a hierarchical basis has a condition number behaving
like 0((log #)?) instead of 0((3)?) for a nodal basis.

Therefore, in the same idea, we consider the dual operator matrix with respect to a
hierarchical basis not of the finite element space but of the Lagrange multipliers space.

We begin in this section by stating the basic methodology for the building of a
hierarchical basis. We start with a coarse initial mesh 7;. Beginning with this mesh,
we construct a nested family {75} of meshes. In this section, 7541 is obtained from
T by subdividing any elements of the mesh 7.

The space V() is approached by the succession of the finite element spaces
corresponding {V,(€2)}. V441 is obtained from V,, by adding the basis functions <I>j+1
on the nodes introduced at this level of refinement and by not changing all the old basis
functions. Obviously we have V1 () C V2(Q) C ... C Vo(Q) C Vay1 () C ... C V(Q)
We have the relation Vo1 = V, @ vy where v,41 is the subspace of V43
consisting of all finite element functions vanishing in the nodes of 7y, of level [ with
1 <1 < k. Therefore, that means the hierarchical basis of V411 is the direct sum of
the hierarchical basis of V,, and the nodal basis of vq41.

The next figure shows how we choose the Lagrange multipliers space.

4 A Block Diagonal Preconditioner

We remind that finally we arrive to an algebraic saddle point problem:

(5 9)(5)=(%) 4o
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Figure 1 The Lagrange multiplier space
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where A is a block diagonal matrix and B is the interface matrix, the jump operator.

The system is equivalent to
u\_(Ff
A(A)_<O> (4.7)

Let B be a symmetric and positive definite matrix of the same size as A.

Suppose that eigenvalues of the spectral problem Az = vBzx belong to the union of
the segments [dy;da] U [d3;ds] where di < do < 0 < d3 < d4. Then it is possible to
implement the generalized Lanczos method of minimal iterations to solve the saddle
point problem Az = y.

In [Kuz95], to give the motivation of their choice for the preconditioner B, the
eigenvalue problem is considered:

(g%t)(Q;):”(éBAngt)(z) (4.8)

Obviously this problem can have only three nontrivial solutions {%5, 1; 1+2‘/§}.
A preconditioner B is taken with R, ~ A and Ry ~ BA~!Bt:

B= ( f ng ) (4.9)

Our idea is to test

R,=A and Ry'=M =) (P,P})~"(P,R;A:R\P})(PP})™"

5 Numerical Results

The Schur dual interface matrix D = Efil B; A B! corresponds to the discretization
of a compact operator. Because of this compactness, the eigenvalues of D accumulate
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towards 0 when h goes to 0, and the high end of the spectrum is less populated
than the lower end. The spectral distribution of the interface problem has important
consequences on the convergence rate of the conjugate gradient algorithm. During the
first iterations, the conjugate gradient captures the eigenvalues corresponding to the
low modes of the structure. Since D has only a few relatively high eigenvalues that
correspond to the low physical modes of the structure, the CG algorithm applied to the
solution of the dual problem gives quickly a good approximation of the displacement.

Figure 2 Spectral density with and without preconditioner, 2 x 2, ¢ =1,
hi'=hy' =24,h3' = hy' =32
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Figure 2 shows that the first preconditioner reduces the condition number of
the cluster of small eigenvalues of the dual interface problem, and therefore,
favors a superconvergence behavior of the CG algorithm. Figure 3 highlights the
superconvergence effect.

Figure 3 Residual with hierarchical/nodal mortar space, 2 x 2,
c=Lhi'=hy' =h;' =h;' =33
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Figure 3 shows a comparison between the residual for the CG with and without
preconditioner for the dual matrix written in its nodal and hierarchical basis. We have a
very good convergence for the hierarchical matrix with the hierarchical preconditioner.

Figure 4 shows that the convergence is better with the preconditioner R;l =M2=
S(PiPH)T (PR A R P (PP~
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Figure 4 Residual with Ry = M; = BA~!B? and
Ry' = My =Y (P,P)) Y (P;R:;AiRIP})(P,P}) ™', 2x 2, c=1,
hi'=h;' =16,h;' = hy' =24
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