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Abstract. After a brief historical review on minimal surfaces in Euclidean spaces
E? and in Heisenberg spaces Hs, R3(—3), the Beltrami formula and parallel surfaces
are investigated in these Heisenberg spaces respectively.
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1. Minimal surface in E3?

The generalization from the straight lines, as 1-dimensional objects, being the lines of shortest
length in the Euclidean plane E?, to 2-dimensional objects, i.e. surfaces, in the 3-dimensional
Euclidean space E2, yields the notion of the so-called “minimal” surfaces. More precisely, a
surface M in E? is called minimal when locally each point on the surface has a neighborhood
which is the surface of least area with respect to its boundary [12], i.e. when M satisfies
the problem of J. A. F. Plateau [25]. The study of the minimal graphs as surfaces in E?
was historically one of the first applications of the variational problem for double integrals
[25]. As a result, J. L. Lagrange in 1760 obtained the following non-linear elliptic partial
differential equation: A surface as graph of a function z = f(z,y) is minimal if and only if

faalL+ ()] = 2fayfafy + Fin(L + (£)] = 0,
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J. B. Meusnier in 1775 showed that the condition of minimality of a surface in E? is equivalent
with the vanishing of its mean curvature function, H = 0.

Examples. The first non-trivial examples of minimal surfaces in E?, — i.e. non-planar
minimal surfaces — were found by L. Euler in 1744, considering the class of surfaces of
revolution. As a result, he found that the only (non-trivial) minimal surfaces of revolution
are the catenoids. Euler called the catenoid as alysseid. Around 1775 Meusnier found a
second class of non-trivial minimal surfaces, namely the helicoids, and E. Catalan in 1842
proved that the helicoids are the only non-trivial minimal ruled surfaces. H. F. Scherk in
1835 found other examples, the so-called minimal translation surfaces of Scherk, as graph of
functions z(z,y) = g(x) + h(y) with separated variables.

2. Minimal surfaces in Hj

In non-Euclidean spaces, in particular in Heisenberg spaces the problem of minimal surfaces
was recently studied in [2], [3], [10], [27], [15], for surfaces of revolution with constant mean
curvature or Gaussian curvature are studied by R. Caddeo, P. Piu and A. Ratto [7], [8] and
P. Tomter [24].
First I would like to mention different metrics that will be used in this paper. We shall

denote R?® endowed with the following metrics:

1. dsi =dz® + dy® + (dz + %dz — £dy)?,

2. ds? = dx? + dy? + (dz + zdy)?,

3. ds3 = 1(dz® + dy?) + (dz — ydz)?
by Hj, R*(—2), and R3(—3), respectively. On the 3-dimensional Riemannian manifold Hj is
called the Heisenberg 3-space. We can define the Lie group structure on R* by a multiplication
law as follows: _ _

(#.5,2) % (@,9,2) = (2 + 2,5+ y,2+ 2+ 5 = ).

Then the metric ds? is left invariant metric on Hs. We can take the following left invariant
orthonormal frame:

"Tor 2 827 P oy 2 02 0z
This orthonormal frame satisfies
[615 62] = €3, [615 63] = 05 [625 63] = 0

The sectional curvatures are given by:

-3 1 1
T’ K(€1,€3) = Z’ K(€2,€3) = Z

The identity component Iy(Hs, ds?) of the isometry group is given by the following ([2], [14],

[11]):

K(ela 62) -

z cosf —sinf 0 T a
y | — [sind cosfd 0 y |+ b ], (2.1)
z A B 1 z c
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where 6, a,b, and ¢ are real numbers and
1, . 1 .
A= §(asm0 —bcosh), B= i(acosﬁ + bsin6).
The identity component Iy(Hs,ds?) of the isometry group contains the rotations (6,0, 0, 0)
of R® around the z-axis and the left translations (0,a,b,c). The Lie group Iy(Hs, ds?) is the

semi-direct product of SO(2) and Hs, SO(2)aHs. In [14], the authors define an imbedding
of Hj into the real general linear group GL(3;R); i : H3 — GL(3;R);

i(z,y,2) =

o O =
o = R

t
vl
1

where t is defined by t(z,y,2) = z + %xy. With respect to this imbedding, the left invariant
metric ds? is expressed as dz? + dy? + (dz — %xdy)Q. It easy to see that 7 is an injective Lie
group homomorphism. Hence the Heisenberg group Hj is identified with the following closed
Lie subgroup N of GL(3;R) via i:

1 = ¢
N = 01 y z,y,t € R
0 0 1

The Lie algebra n is naturally identified with the tangent space of N at e = (0, 0,0);

T.N = z,y,u € R

o O O

r Uu
0 y
0 0

The exponential mapping exp : T./N — N is given explicitly

0 v w 1 u w+suw
exp|0 O v ] ={01 v
0 0 O 00 1

In particular the exponential mapping is a diffeomorphism onto N. See also [11]. The left
invariant orthonormal frame ey, e5, e corresponds to the basis A;, Ay, A3 of T, N given by

A1: 5A2: aA3:

o O O
S O =
o O O
o O O
o O O
O = O
o O O
o O O
S O

In 1991, Bekkar [2] found the equation of minimal surfaces as graphs of functions z = f(z,y):
T x
faall + (s = 501 = 2y = ) fo + ) + fulL + (fo+ ) = 0.

In 1992, M. Bekkar and T. Sari [3] classified the ruled surfaces in Hs.
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Theorem 2.1. The minimal ruled surfaces of Hs ruled by straight lines are (up to isometry
of Hs) parts of:

1. planes;

2. hyperbolic paraboloids z = % ;

3. helicoids;

4. surfaces defined by the equation:

z:%[x\/(1+x2)+log(m+ (1+x2)>} —%, A e R\ {0}

5. surfaces with parametrisation:

(@(t,9,0(t,9),2(4,9) = (¢4 5u(t) 5.0(0) - 5 )

where u and a are solutions of the system:
(1+u? + %)t — (1 + 2aa)ta = 0,
(1+u?+2)a— (1 + 24a)(ta — u) = 0.

Remark 2.2. [3] The parts of helicoids are ruled only by geodesic straight lines, but parts
of planes and parts of hyperbolic paraboloids are possibly ruled by straight line geodesics
and by straight lines which are not necessary geodesics.

Example 2.3. The surface as graph of the function

S [ s (s V)] -5

is a minimal surface in H3. This surface is ruled by straight lines L, spanned by the vectors
(0,1, —t) passing through the points

(t,O,% [a:\/(l + 22) + log (x + /(1 + xQ)ﬂ),

which are not geodesics.

Remark 2.4. [15, 13] Let G be a Lie group with left invariant metric and X,Y be two
vectors in the Lie algebra g of G such that |X| = |[Y] and X L Y. If the metric of G is
biinvariant then the mapping r : R — G defined by

r(u,v) = exp(uX) exp(vY)

is a flat minimal surface in G. If we choose G = E? and X = (1,0,0) and Y = (0,1, 0), then
this surface is the zy-plane in E*. If the metric of G is only left invariant the mapping r is
not necessarily immersion or harmonic map. In the case G = Hj, if we choose X = A; and
ea = Ay or eg = Ay and e; = Ay, then

ry(z,y) = exp(xA;) x exp(yAs),
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and
r_(z,y) = exp(zAs) x exp(y A1),

are (nonflat) minimal surfaces in Hs. The minimal surfaces ry are explicitly given by
ry(z,y) = +3zy and r_(z,y) = —izy. These surfaces r. and r_ may be considered as
x-analogues in Hj of zy-plane in F?.

Example 2.5. (Translation surfaces [15]) It is well-known that only the minimal translation
surfaces in E? are planes or Scherk’s minimal surfaces. In Hs, we can consider *-translation
minimal surfaces of nonparametric form:

T
r(z,y) = (z,0,u(x)) * (0,y,v(y)) = (2,9, u(z) + v(y) + -).

The minimal surface equation for the function f(z,y) = u(z) + v(y) + % is
Uz (1 + U;) — (ug + y)vy + vy {1 + (uz + 9)2} =0. (2.2)

We shall solve this differential equation under the assumption that either u or v is constant.
(1) v(y) =constant:

In this case (2.2) becomes u,, = 0. Hence we get

Y

z=7+a:c+b, a,beR (2.3)
(2) u(z) =constant:
In this case (2.2) becomes
L0y - 2y = (2.4)
a7 y dyy = 0. .

Solving this equation we get

z::g—y+c{y\/1+y2+log(y+\/1+y2)}+d, c,deR (2.5)

The minimal surfaces defined by (2.3) and (2.5) are rewritten in the following forms:

r(z,y) = (z,0,u(x)) * (0,y,0) = (0,4, 0) * (x,0,u(z)),u(r) = ax + b. (2.6)

r(z,y) = (2,0,0) x (0,y,v(y)) = (0,9, v(y)) * (z,0,0)v(y)

=c{ym+log(y+ \/W)}-l—d, ¢, d€eR

These formulae imply that the minimal surface (2.6) (resp.(2.7)) is a cylinder over a curve
in the xz- (resp. yz-) plane.

(2.7)
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Proposition 2.6. [15]

(1) Let r(x,y) be a cylinder over a curve (z,0,u(x)) in the xz-plane. Then r is minimal if
and only if

u(z) =ax+0b, a,beR

(2) Let r(z,y) be a cylinder over a curve (0,y,v(y)) in the yz-plane. Then r is minimal if

and only if
v(y)=C{y\/1+y2+log(y+\/1+y2)}+d, c,d€R

(3) Let (xz(u),y(u)) be a curve in the xy-plane, parameterized by the arclength u. Then the
cylinder over (xz(u),y(u)) is

r(u,v) = (z(u), y(u),v)-

Its first and second fundamental forms are
I=(14w(r,)?) duv’ + 2w(r,)dudv + dv®

IT = {F(u)y(u) — 2(u)ii(u) + w(ry) }du?® + dudv,

n = y(u)e; — z(u)es.

The mean curvature H of the cylinder is

Here k is the curvature of the curve (xz(u),y(u)).

One can easily check that the base curve of r is a line in the zy-plane. Hence r is a plane
parallel to the z-axis [20]. (More generally constant mean curvature cylinder is a circular
cylinder. Kokubu [17] obtained corresponding results for SL(2,R). Sanini characterised
these cylinders in terms of the harmonicity of their tangential Gauss maps. See Propsition 3
in [20].

Remark 2.7. [10] For a surface with parametrization r(u,v) = (z(u,v), y(u,v), 2(u,v)) is
minimal if and only if satisfy the equation

(TlG — 281F + tlE)523 + (’I"QG — 282F + t2E)531 + (7"3G — 283F + t3E)512 = 0,

where
012 = (p1Q2 - PQ(Z1), 023 = P2g3 — P3q2, 031 = D3q1 — P13,
ox ox 0%z 0%x 0%z
Xr, == — — s T, —= — — s T = 7,[1‘,‘ = a5 T = = S ;
Y Ou P T ov B> Tuu ou2=r""" o=t Y Quow !

for po, g2, 72, S9,t2 and ps, g3, r3, S3, t3, we change x by y and z respectively.
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Theorem 2.8. [10] Let S be a surface in Heisenberg space with paramerization r(u,v) =
(x(u,v),y(u,v), z(u,v)) such that

z(u,v) = agu? + Biv? + 2\ uv,
y(u,v) = agu?® + Bov? + 2\ouv,
2(u,v) = azu? + B3v? + 2\3uv.

If S satisfies (612)% + (023)? + (031)? > 0 and one of the following conditions:
a) (012)(023)(051) =0,

b) two colons of the determinant 6 = det(a, 3, \) are proportional, where
o, Bi, M €ER, of = (a1, oz, a3), Bt = (81, betay, betas), A= (A1, Az, Az).
Then the surface S is reqular and minimal.

3. Minimal surfaces in R*(—3)

We consider R® with coordinates (z,y, z) and its usual contact form n = 3(dz — ydz), the
metric ds3, the tensor field ¢ and the caracteristic vector field £ given by

0 1
p=1-1 0
0 y

0
5—2&.

o OO

R3,ds3, n, € is a Sasakian manifold. The vector field e; = 23%, ey = 2(% + y%) and & = 2%
is an orthonormal basis called ¢-basis. The sectional curvature of any plane section spanned
by a vector X and pX is equal -3, for this reason the Sasakian space R?, ds3,7,¢ is called
Sasakian space form denoted by R*(—3) see [4]). G. Zafindratafa in 1997 obtained other
examples of Sasakian space form R?(—3) as following:

The graphs of the functions z = azy + P(z) + Q(y), where P, Q € R[X], are minimal if and
only if

1. z=ax +b,

2. z=2ay+ay+b,

3. z= %xy—l—ax—i—by—i—c,

4. z=gay+ iz’ — Sy’ +ear+ay+b, a,beRe==l,

5. z=LteYol6alpy 4 g2 —qy® +h, e=+1,beRac [-1 1]

4. Beltrami formula in R3(—32)

Let M be a surface of a Euclidean space E?, with x as its position vector field in E*. Then
the relation between the Laplacian of z and the mean curvature vector field is given by the
following Bertrami formula:

Nz = —Qﬁ

where A is the Laplacian of the surface and H is the mean curvature vector field of M.
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A Beltrami formula in R*(=2) is given by the following:
Al‘ = —(2H + Hgg + Ng)Eg — (Hgg + NQ)EQ - (H§1 + Nl)El,

where F), Ey, F3 are adapted frame and Fij are coefficients of E; with respect to the orthonor-
mal basis e; of R¥(2).

N, = —Ff’C — F23F33, Ny = —FQP’C’ + Ff‘F:,f‘,
N3 = —}g(Es,x) — F{C + F§ %,
C =F}g(Ey, ) + Fjg(Ea,x) — 23(5 + (F?)? + (F3)?,
& = (FYF) + FPF)a' — (FIFy + FYFy)a? + (=F F§ + F{Fy)a®,
§o = (F3F3 + FSF})at — (Fy Fy + F3Fy)a® + (—Fy F§ + F3Fy)a®
&= 2F32F§’)x1 — 2F31F3f‘)x2.

An application of the Bertrami formula

The minimal surfaces as graphs of functions z = f(z,y) in R*(32) are not always harmonic:
Az # 0.

Remark 4.1. J. Inoguchi et al. [15] and G. Zafindratafa [27] studied harmonic maps in N3
and vector valued harmonic functions on R*(—3). A vector valued harmonic function on
M into R3(—3) is a smooth map ¢ from M to R®(—3) such that Ay = 0. Here A is the
Laplacian of M. A harmonic map ¢ from M into R*(—3) is a smooth map whose tension
field vanishes. For the definition of tension field, see [15].

Definition 4.2. A submanifold M of a Riemannian manifold N is called parallel when
(Vxh)(Y,Z) = 0 where h is the second fundamental form and

(Vxh)(Y, Z) = (Vxh)(Y, Z) = h(VxY, Z) = h(Y, Vx Z)

where V, V, VL are the connection of van der Waerden-Bortolotti, the Levi- Civita connection
of M, the normal connection of M in N respectively.

In 1948 V. F. Kagan [16] investigated the parallel surfaces in Euclidean space E*. U. Simon
and A. Weinstein [21] generalized Kagan’s work to hypersurfaces in E" in 1969. J. Vilms
[26] studied parallel general submanifolds in Euclidean spaces in 1972. D. Ferus [9] and
W. Striibing [22] after showing that the parallel submanifolds of Euclidean space R™ are
related to their extrinsic symmetry, classified them. E. Backes and H. Reckziegel [1] and
M. Takeushi [23] investigated parallel submanifolds in spaces of constant curvature. G. Pitis
[19] studied parallel submanifolds in the Sasakian space form of dimension 2n + 1, n > 2.
D. E. Blair and C. Baikoussis [5, 6] studied C-parallel submanifolds, i.e., submanifolds such
that (VA || €) in Sasakian space forms. We refer the reader to U. Lumiste’s paper [18]. We
classify parallel surfaces in the Heisenberg 3-space Hs. Before that we recall some definitions
and properties of surfaces in Heisenberg space Hj.
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Theorem 4.3. [16] A surface of the Euclidean space E? is parallel if and only if it is (a part
of) a plane R?, a sphere S? or a round cylinder S* x R'.

Theorem 4.4. [20] The Heisenberg group Hj does not admit totally umbilical surfaces, in
particularly totally geodesic ones.

Our main theorem is the following:

Theorem 4.5. The only parallel surfaces in the Heisenberg group Hs are the vertical planes
(planes parallel to the z-axis of revolution of Hs). (See Proposition 2.6.)
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