Part I. Riemannian Geometry

Alekseevsky D.V., Marchiafava S., Pontecorvo M.:
Some geometric aspects of compatible complex structures on a quaternion K\"ahler manifold ............... 1

Balashchenko V.V.:
Naturally reductive almost product manifolds ..................................................................................... 13

Barrera--Yanez E.:
The Moduli space $\Cal M(M)$ of certain non-orientable manifolds of even dimension ...................... 23

Baum H.:
Twistor spinors on Lorentzian manifolds, CR-geometry and Fefferman spaces .................................... 29

Chouikha A.R.:
On the properties of certain metrics with constant scalar curvature ...................................................... 39

Deshmukh S.:
Curvature bounds for the spectrum of a compact Einstein-like manifold .............................................. 47

Dotti I.G., Druetta M.J.:
Osserman-$P$ spaces of Iwasawa type ... 61

Gilkey P.B.:
Riemannian manifolds whose skew-symmetric curvature operator has constant eigenvalues II ............. 73

Loubeau E.:
Pluriharmonic morphisms between complex manifolds ........................................................................ 89

Oproiu V., Papaghiuc N.:
Locally symmetric space structures on the tangent bundle ................................................................... 99

Rodionov E.D., Slavskii V.V:
Curvatures estimations of left invariant Riemannian metrics on three dimensional Lie groups ............... 111

Saralegi-Aranguren M., Wolak R.A.:
Basic cohomology for Riemannian foliations ..................................................................................... 127

Semmelmann U.:
A short proof of eigenvalue estimates for the Dirac operator on Riemannian and Kahler manifolds ..... 137

Tanaka M.S.:
Geometry of compact symmetric spaces .......................................................................................... 141

Tsukada K.:
The moduli space of locally homogeneous spaces and locally homogeneous spaces
which are not locally isometric to globally homogeneous spaces ........................................................ 149

Part II. Geometry of Surfaces and Submanifolds

Akivis M.A., Goldberg V.V.:
The geometry of lightlike hypersurfaces on manifolds endowed with a conformal structure
of Lorentzian signature ..................................................................................................................... 161

Ferapontov E.V.:
Surfaces in projective differential geometry and integrable systems .................................................... 171

Gavrilchenko M.L., Kinzerska N.N.:
Infinitesimal geodesic deformations of the totally geodesic manifolds ................................................. 185

Hájková V.:
Deformations of hypersurfaces in ${\Bbb R}^4$ ............................................................................. 191

Igarashi M.:
Some Examples of the Hermite-Liouville Structure on the Classical Hopf Surface ............................. 195

Miyaoka R.:
A global correspondence between CMC-surfaces in $S^3$ and pairs
of non-conformal harmonic maps into $S^2$ ................................................................................... 203

Moriya K.:
On a variety of Weierstrass data for branched minimal surfaces in Euclidean space ........................... 207

Riives K.:
On the special class of curves on some four-dimensional semiparallel submanifolds ........................... 215

Part III. Jets and Weil Bundles

Doupovec M.:
On the symplectic structure of some natural bundles ......................................................................... 223

Kolář I.:
Bundle functors of the jet type ......................................................................................................... 231

Kureš M.:
Affinors and connections in higher order geometry ............................................................................ 239

Lubas K., Zajtz A.:
Estimates of the action order of some jet groups ............................................................................... 247

Munoz. J., Muriel F.J., Rodriguez J.:
The canonical isomorphism between the prolongation of the symbols
of a nonlinear Lie equation and its attached linear Lie equation .......................................................... 255

Munoz. J., Muriel F.J., Rodriguez J.:
The contact system on the spaces of $(m,\ell)$-velocities ................................................................. 263

Ortacgil E.:
On a diagram in the theory of connections ........................................................................................ 273

Panák M.:
Natural operators on the bundle of Cartan connections ..................................................................... 285

Tomáš J.:
Natural $T$-functions on the cotangent bundles of some Weil bundles .............................................. 293

Part IV. Further Geometric Structures

Arvanitoyeorgos A.:
The Duistermaat-Heckman integration formula on generalized flag manifolds ..................................... 303

Asada A.:
Clifford bundles over mapping spaces .............................................................................................. 309

Bureš J.:
The higher spin Dirac operators ....................................................................................................... 319

Cheptea D.:
Some remarks on Floer homology invariants .................................................................................... 335
.
Craioveanu M., Pop C., Puta M.:
Geometrical aspects in the dynamics of an automobil with two trailers ............................................... 347

Kalnitski V.S.:
Symmetry fields of geodesic vector field ........................................................................................... 355

Kolář M.:
On local convexifiability of type four domains in $\bold C^2$ ........................................................... 361

Lakomá L., Mikeš J., Mikušová L.:
The decomposition of tensor spaces ................................................................................................ 371

Miatello R.J., Rossetti J.P.:
Hantzsche-Wendt manifolds of dimension 7 ..................................................................................... 379

Multarzynski P.:
On some differential structures for function spaces ............................................................................ 391

Rukimbira P.:
Topology and characteristic closures of K-contact manifolds ............................................................ 399

Rybicki T.:
The flux homomorphism in the foliated case ...................................................................................... 413

Sabinin L.V.:
Methods of non-associative algebra in differential geometry .............................................................. 419

Sawon J.:
The Rozansky-Witten invariants of hyperkahler manifolds ................................................................. 429

Sbitneva L.V.:
Transsymmetric Spaces. New results ............................................................................................... 437

Part V. The Calculus of Variations

Abadoglu E.:
A remark on first nonlinear Spencer sequence .................................................................................. 443

Alonso R.J.:
Decomposition of higher order tangent fields and calculus of variations .............................................. 451

Castrillon-Lopez M.:
Gauge invariant variationally trivial $U(1)$-problems ........................................................................ 461

Francaviglia M., Palese M., Vitolo R.:
Superpotentials in variational sequences ........................................................................................... 469

Grigore D.R.:
Fock space methods and the Lagrangian formalism on finite jet bundle extensions ............................. 481

Kašparová J.:
A representation of the 1st-order variational sequence in field theory ................................................ 493

Klapka L.:
Local expressions for Poisson manifolds of geodesic arcs in Lagrangian mechanics ........................... 503

Krbek M., Musilová J.:
A note to the representation of the variational sequence in mechanics ................................................ 511

Krupka D.:
Variational sequences and variational bicomplex ............................................................................... 525

Krupková O.:
On the geometry of non-holonomic mechanical systems .................................................................... 533

Matsyuk R.Y.:
Hamilton-Ostrohradskyj approach to relativistic free spherical top dynamics ..................................... 547

Mráz M., Musilová J.:
Translationally invariant Lagrange structures ..................................................................................... 553

Sarlet W.:
Integrability aspects of the inverse problem of the calculus of variations ............................................. 563

Saunders D.J.:
The geometry of non-holonomic Lagrangian systems ........................................................................ 575

Part VI. Geometric Methods in Physics

Casati P.:
The bihamiltonian structure of the Drinfel'd-Sokolov hierarchies
related to the affine twisted Lie algebras ........................................................................................... 581

Gotay M.J.:
Nonexistence of finite-dimensional quantizations of a noncompact symplectic manifold ...................... 593

Hall G.S.:
Sectional curvature and Einstein's equations ..................................................................................... 597

Janyška J., Modugno M.:
On the graded Lie algebra of quantisable forms ................................................................................ 601

Lopez Almorox A., Tejero Prieto C.:
Geometric quantization of the Landau problem on hyperbolic Riemann surfaces ................................ 621

Piccione P.:
Causal trajectories between submanifolds in Lorentzian geometry ..................................................... 631

Puta M., Lazureanu C.:
Integration of the rigid body equations with quadratic controls .......................................................... 645

Vitolo R.:
Quantizing a rigid body ................................................................................................................... 653