Alekseevsky D.V., Marchiafava S., Pontecorvo M.:
Some geometric aspects of compatible complex structures on a quaternion
K\"ahler manifold ............... 1
Balashchenko V.V.:
Naturally reductive almost product manifolds .....................................................................................
13
Barrera--Yanez E.:
The Moduli space $\Cal M(M)$ of certain non-orientable manifolds of
even dimension ...................... 23
Baum H.:
Twistor spinors on Lorentzian manifolds, CR-geometry and Fefferman
spaces .................................... 29
Chouikha A.R.:
On the properties of certain metrics with constant scalar curvature
...................................................... 39
Deshmukh S.:
Curvature bounds for the spectrum of a compact Einstein-like manifold
.............................................. 47
Dotti I.G., Druetta M.J.:
Osserman-$P$ spaces of Iwasawa type ... 61
Gilkey P.B.:
Riemannian manifolds whose skew-symmetric curvature operator has constant
eigenvalues II ............. 73
Loubeau E.:
Pluriharmonic morphisms between complex manifolds ........................................................................
89
Oproiu V., Papaghiuc N.:
Locally symmetric space structures on the tangent bundle ...................................................................
99
Rodionov E.D., Slavskii V.V:
Curvatures estimations of left invariant Riemannian metrics on three
dimensional Lie groups ............... 111
Saralegi-Aranguren M., Wolak R.A.:
Basic cohomology for Riemannian foliations .....................................................................................
127
Semmelmann U.:
A short proof of eigenvalue estimates for the Dirac operator on Riemannian
and Kahler manifolds ..... 137
Tanaka M.S.:
Geometry of compact symmetric spaces ..........................................................................................
141
Tsukada K.:
The moduli space of locally homogeneous spaces and locally homogeneous
spaces
which are not locally isometric to globally homogeneous spaces ........................................................
149
Part II. Geometry of Surfaces and Submanifolds
Akivis M.A., Goldberg V.V.:
The geometry of lightlike hypersurfaces on manifolds endowed with a
conformal structure
of Lorentzian signature .....................................................................................................................
161
Ferapontov E.V.:
Surfaces in projective differential geometry and integrable systems
.................................................... 171
Gavrilchenko M.L., Kinzerska N.N.:
Infinitesimal geodesic deformations of the totally geodesic manifolds
................................................. 185
Hájková V.:
Deformations of hypersurfaces in ${\Bbb R}^4$ .............................................................................
191
Igarashi M.:
Some Examples of the Hermite-Liouville Structure on the Classical Hopf
Surface ............................. 195
Miyaoka R.:
A global correspondence between CMC-surfaces in $S^3$ and pairs
of non-conformal harmonic maps into $S^2$ ...................................................................................
203
Moriya K.:
On a variety of Weierstrass data for branched minimal surfaces in Euclidean
space ........................... 207
Riives K.:
On the special class of curves on some four-dimensional semiparallel
submanifolds ........................... 215
Part III. Jets and Weil Bundles
Doupovec M.:
On the symplectic structure of some natural bundles .........................................................................
223
Kolář I.:
Bundle functors of the jet type .........................................................................................................
231
Kureš M.:
Affinors and connections in higher order geometry ............................................................................
239
Lubas K., Zajtz A.:
Estimates of the action order of some jet groups ...............................................................................
247
Munoz. J., Muriel F.J., Rodriguez J.:
The canonical isomorphism between the prolongation of the symbols
of a nonlinear Lie equation and its attached linear Lie equation ..........................................................
255
Munoz. J., Muriel F.J., Rodriguez J.:
The contact system on the spaces of $(m,\ell)$-velocities .................................................................
263
Ortacgil E.:
On a diagram in the theory of connections ........................................................................................
273
Panák M.:
Natural operators on the bundle of Cartan connections .....................................................................
285
Tomáš J.:
Natural $T$-functions on the cotangent bundles of some Weil bundles
.............................................. 293
Part IV. Further Geometric Structures
Arvanitoyeorgos A.:
The Duistermaat-Heckman integration formula on generalized flag manifolds
..................................... 303
Asada A.:
Clifford bundles over mapping spaces ..............................................................................................
309
Bureš J.:
The higher spin Dirac operators .......................................................................................................
319
Cheptea D.:
Some remarks on Floer homology invariants ....................................................................................
335
.
Craioveanu M., Pop C., Puta M.:
Geometrical aspects in the dynamics of an automobil with two trailers
............................................... 347
Kalnitski V.S.:
Symmetry fields of geodesic vector field ...........................................................................................
355
Kolář M.:
On local convexifiability of type four domains in $\bold C^2$ ...........................................................
361
Lakomá L., Mikeš J., Mikušová L.:
The decomposition of tensor spaces ................................................................................................
371
Miatello R.J., Rossetti J.P.:
Hantzsche-Wendt manifolds of dimension 7 .....................................................................................
379
Multarzynski P.:
On some differential structures for function spaces ............................................................................
391
Rukimbira P.:
Topology and characteristic closures of K-contact manifolds ............................................................
399
Rybicki T.:
The flux homomorphism in the foliated case ......................................................................................
413
Sabinin L.V.:
Methods of non-associative algebra in differential geometry ..............................................................
419
Sawon J.:
The Rozansky-Witten invariants of hyperkahler manifolds .................................................................
429
Sbitneva L.V.:
Transsymmetric Spaces. New results ...............................................................................................
437
Part V. The Calculus of Variations
Abadoglu E.:
A remark on first nonlinear Spencer sequence ..................................................................................
443
Alonso R.J.:
Decomposition of higher order tangent fields and calculus of variations
.............................................. 451
Castrillon-Lopez M.:
Gauge invariant variationally trivial $U(1)$-problems ........................................................................
461
Francaviglia M., Palese M., Vitolo R.:
Superpotentials in variational sequences ...........................................................................................
469
Grigore D.R.:
Fock space methods and the Lagrangian formalism on finite jet bundle
extensions ............................. 481
Kašparová J.:
A representation of the 1st-order variational sequence in field theory
................................................ 493
Klapka L.:
Local expressions for Poisson manifolds of geodesic arcs in Lagrangian
mechanics ........................... 503
Krbek M., Musilová J.:
A note to the representation of the variational sequence in mechanics
................................................ 511
Krupka D.:
Variational sequences and variational bicomplex ...............................................................................
525
Krupková O.:
On the geometry of non-holonomic mechanical systems ....................................................................
533
Matsyuk R.Y.:
Hamilton-Ostrohradskyj approach to relativistic free spherical top
dynamics ..................................... 547
Mráz M., Musilová J.:
Translationally invariant Lagrange structures .....................................................................................
553
Sarlet W.:
Integrability aspects of the inverse problem of the calculus of variations
............................................. 563
Saunders D.J.:
The geometry of non-holonomic Lagrangian systems ........................................................................
575
Part VI. Geometric Methods in Physics
Casati P.:
The bihamiltonian structure of the Drinfel'd-Sokolov hierarchies
related to the affine twisted Lie algebras ...........................................................................................
581
Gotay M.J.:
Nonexistence of finite-dimensional quantizations of a noncompact symplectic
manifold ...................... 593
Hall G.S.:
Sectional curvature and Einstein's equations .....................................................................................
597
Janyška J., Modugno M.:
On the graded Lie algebra of quantisable forms ................................................................................
601
Lopez Almorox A., Tejero Prieto C.:
Geometric quantization of the Landau problem on hyperbolic Riemann
surfaces ................................ 621
Piccione P.:
Causal trajectories between submanifolds in Lorentzian geometry .....................................................
631
Puta M., Lazureanu C.:
Integration of the rigid body equations with quadratic controls ..........................................................
645
Vitolo R.:
Quantizing a rigid body ...................................................................................................................
653