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(1969), their minimum degree is exactly k. The existence of a vertex of small
degree can be particularly useful in induction proofs about k-connected graphs.
Halin’s theorem was the starting point for a series of more and more sophis-
ticated studies of minimal k-connected graphs; see the books of Bollobás and
Halin cited above, and in particular Mader’s survey.

Our first proof of Menger’s theorem is due to T.Böhme, F.Göring and
J.Harant (manuscript 1999); the second to J.S. Pym, A proof of Menger’s
theorem, Monatshefte Math. 73 (1969), 81–88; the third to T.Grünwald (later
Gallai), Ein neuer Beweis eines Mengerschen Satzes, J. London Math. Soc. 13
(1938), 188–192. The global version of Menger’s theorem (Theorem 3.3.5) was
first stated and proved by Whitney (1932).

Mader’s Theorem 3.4.1 is taken from W.Mader, Über die Maximalzahl
kreuzungsfreier H -Wege, Arch. Math. 31 (1978), 387–402. The theorem may
be viewed as a common generalization of Menger’s theorem and Tutte’s 1-
factor theorem (Exercise 19). Theorem 3.5.1 was proved independently by
Nash-Williams and by Tutte; both papers are contained in J. London Math.
Soc. 36 (1961). Theorem 3.5.4 is due to C.St.J.A.Nash-Williams, Decompo-
sitions of finite graphs into forests, J. London Math. Soc. 39 (1964), 12. Our
proofs follow an account by Mader (personal communication). Both results
can be elegantly expressed and proved in the setting of matroids; see § 18 in
B.Bollobás, Combinatorics, Cambridge University Press 1986.

In Chapter 8.1 we shall prove that, in order to force a topological Kr mi-

nor in a graph G, we do not need an average degree of G as high as h(r) = 2(
r
2)

(as used in our proof of Theorem 3.6.1): the average degree required can
be bounded above by a function quadratic in r (Theorem 8.1.1). The im-
provement of Theorem 3.6.2 mentioned in the text is due to B.Bollobás &
A.G.Thomason, Highly linked graphs, Combinatorica 16 (1996), 313–320.
N.Robertson & P.D. Seymour, Graph Minors XIII: The disjoint paths prob-
lem, J. Combin. Theory B 63 (1995), 65-110, showed that, for every fixed k,
there is an O(n3) algorithm that decides whether a given graph of order n is
k-linked. If k is taken as part of the input, the problem becomes NP-hard.

. . . whether distinct vertices
s1, . . . , sk and t1, . . . , tk in
a graph can be linked by
disjoint paths Pi = si . . . ti.
(This yields an O(nk+3) al-
gorithm to decide ‘k-linked’.)
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(ii) |e∗ ∩G| = |̊e∗ ∩ e̊| = |e∩G∗| = 1 for all e ∈ E;

In each of e and e∗, the
unique point of e̊∗ ∩ e̊
should be an inner point
of a straight line segment.(iii) v ∈ f∗(v) for all v ∈ V .

The existence of such bijections implies that both G and G∗ are con-
nected (exercise). Conversely, every connected plane multigraph G has
a plane dual G∗: if we pick from each face f of G a point v∗(f) as a
vertex for G∗, we can always link these vertices up by independent arcs
as required by condition (ii), and there is always a bijection V → F ∗

satisfying (iii) (exercise).
If G∗

1 and G∗
2 are two plane duals of G, then clearly G∗

1 � G∗
2; in fact,

one can show that the natural bijection v∗1(f) �→ v∗2(f) is a topological
isomorphism between G∗

1 and G∗
2. In this sense, we may speak of the

plane dual G∗ of G.
Finally, G is in turn a plane dual of G∗. Indeed, this is witnessed

by the inverse maps of the bijections from the definition of G∗: setting
v∗(f∗(v)) := v and f∗(v∗(f)) := f for f∗(v) ∈ F ∗ and v∗(f) ∈ V ∗, we
see that conditions (i) and (iii) for G∗ transform into (iii) and (i) for G,
while condition (ii) is symmetrical in G and G∗. Thus, the term ‘dual’
is also formally justified.

Plane duality is fascinating not least because it establishes a con-
nection between two natural but very different kinds of edge sets in a
multigraph, between cycles and cuts:

Proposition 4.6.1. For any connected plane multigraph G, an edge set
E ⊆ E(G) is the edge set of a cycle in G if and only if E∗ := { e∗ | e ∈ E }
is a minimal cut in G∗.

Proof . By conditions (i) and (ii) in the definition of G∗, two vertices
v∗(f1) and v∗(f2) of G∗ lie in the same component of G∗− E∗ if and
only if f1 and f2 lie in the same region of R

2
�

⋃
E: every v∗(f1)–v∗(f2)

path in G∗−E∗ is an arc between f1 and f2 in R
2
�

⋃
E, and conversely

every such arc P (with P ∩V (G) = ∅) defines a walk in G∗−E∗ between
v∗(f1) and v∗(f2).

Now if C ⊆ G is a cycle and E = E(C) then, by the Jordan curve
theorem and the above correspondence, G∗−E∗ has exactly two com-
ponents, so E∗ is a minimal cut in G∗.

Conversely, if E ⊆ E(G) is such that E∗ is a cut in G∗, then, by
Proposition 4.2.3 and the above correspondence, E contains the edges
of a cycle C ⊆ G. If E∗ is minimal as a cut, then E cannot contain any
further edges (by the implication shown before), so E = E(C). �

Proposition 4.6.1 suggests the following generalization of plane du-
ality to a notion of duality for abstract multigraphs. Let us call a multi-
graph G∗ an abstract dual of a multigraph G if E(G∗) = E(G) and the
minimal cuts in G∗ are precisely the edge sets of cycles in G. Note that
any abstract dual of a multigraph is connected.
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19. Prove the general Kuratowski theorem from its 3-connected case by
manipulating plane graphs, i.e. avoiding Lemma 4.4.5.

(This is not intended as an exercise in elementary topology; for the
topological parts of the proof, a rough sketch will do.)

20. A graph is called outerplanar if it has a drawing in which every vertex
lies on the boundary of the outer face. Show that a graph is outerplanar
if and only if it contains neither K4 nor K2,3 as a minor.

21. Let G = G1 ∪G2, where |G1 ∩G2| � 1. Show that C(G) has a simple
basis if both C(G1) and C(G2) have one.

22.+ Find a cycle space basis among the face boundaries of a 2-connected
plane graph.

23. Show that a 2-connected plane graph is bipartite if and only if every
face is bounded by an even cycle.

24.− Let G be a connected plane multigraph, and let G∗ be its plane dual.
Prove the following two statements for every edge e ∈ G:

(i) If e lies on the boundary of two distinct faces f1, f2 of G, then
e∗ = v∗(f1) v∗(f2).

(ii) If e lies on the boundary of exactly one face f of G, then e∗ is
a loop at v∗(f).

25.− What does the plane dual of a plane tree look like?

26.− Show that the plane dual of a plane multigraph is connected.

27.+ Show that a plane multigraph has a plane dual if and only if it is
connected.

28. Let G, G∗ be mutually dual plane multigraphs, and let e ∈ E(G). Prove
the following statements (with a suitable definition of G/e):

(i) If e is not a bridge, then G∗/e∗ is a plane dual of G− e.

(ii) If e is not a loop, then G∗ − e∗ is a plane dual of G/e.

29. Show that any two plane duals of a plane multigraph are combinatori-
ally isomorphic.

30. Let G, G∗ be mutually dual plane graphs. Prove the following state-
ments:

(i) If G is 2-connected, then G∗ is 2-connected.

(ii) If G is 3-connected, then G∗ is 3-connected.

(iii) If G is 4-connected, then G∗ need not be 4-connected.

31. Let G, G∗ be mutually dual plane graphs. Let B1, . . . , Bn be the blocks
of G. Show that B∗

1 , . . . , B∗
n are the blocks of G∗.

32. Show that if G∗ is an abstract dual of a multigraph G, then G is an connected multigraph
abstract dual of G∗.
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Indeed, while the first equality is immediate from the perfection of G−U ,
the second is easy: ‘�’ is obvious, while χ(G − U) < ω would imply
χ(G) � ω, so G would be perfect contrary to our assumption.

Let us apply (1) to a singleton U = {u } and consider an ω-colouring
of G−u. Let K be the vertex set of any Kω in G. Clearly,

if u /∈ K then K meets every colour class of G−u; (2)

if u ∈ K then K meets all but exactly one colour class of G−u. (3)

Let A0 = {u1, . . . , uα } be an independent set in G of size α.
Let A1, . . . , Aω be the colour classes of an ω-colouring of G − u1, let
Aω+1, . . . , A2ω be the colour classes of an ω-colouring of G − u2, and
so on; altogether, this gives us αω +1 independent sets A0, A1, . . . , Aαω

in G. For each i = 0, . . . , αω, there exists by (1) a Kω ⊆ G − Ai; we
denote its vertex set by Ki.

Note that if K is the vertex set of any Kω in G, then

K ∩Ai = ∅ for exactly one i ∈ { 0, . . . , αω + 1 }. (4) i ∈ { 0, . . . , αω }

Indeed, if K ∩A0 = ∅ then K ∩Ai �= ∅ for all i �= 0, by definition of Ai

and (2). Similarly if K ∩A0 �= ∅, then |K ∩A0| = 1, so K ∩Ai = ∅ for
exactly one i �= 0: apply (3) to the unique vertex u ∈ K ∩A0, and (2)
to all the other vertices u ∈ A0.

Let J be the real (αω + 1) × (αω + 1) matrix with zero entries in
the main diagonal and all other entries 1. Let A be the real (αω +1)×n
matrix whose rows are the incidence vectors of the subsets Ai ⊆ V : if
ai1, . . . , ain denote the entries of the ith row of A, then aij = 1 if vj ∈ Ai,
and aij = 0 otherwise. Similarly, let B denote the real n × (αω + 1)
matrix whose columns are the incidence vectors of the subsets Ki ⊆ V .
Now while |Ki∩Ai| = 0 for all i by the choice of Ki, we have Ki∩Aj �= ∅
and hence |Ki ∩Aj | = 1 whenever i �= j, by (4). Thus,

AB = J.

Since J is non-singular, this implies that A has rank αω +1. In particu-
lar, n � αω + 1, which contradicts (∗) for H := G. �

By definition, every induced subgraph of a perfect graph is again
perfect. The property of perfection can therefore be characterized by
forbidden induced subgraphs: there exists a set H of imperfect graphs
such that any graph is perfect if and only if it has no induced subgraph
isomorphic to an element of H. (For example, we may choose as H the
set of all imperfect graphs with vertices in N.)

Naturally, it would be desirable to keep H as small as possible. In
fact, one of the best known conjectures in graph theory says that H
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6.6 Tutte’s flow conjectures

How can we determine the flow number of a graph? Indeed, does every
(bridgeless) graph have a flow number, a k-flow for some k? Can flow
numbers, like chromatic numbers, become arbitrarily large? Can we
characterize the graphs admitting a k-flow, for given k?

Of these four questions, we shall answer the second and third in this
section: we prove that every bridgeless graph has a 6-flow. In particular,
a graph has a flow number if and only if it has no bridge. The ques-
tion asking for a characterization of the graphs with a k-flow remains
interesting for k = 3, 4, 5. Partial answers are suggested by the following
three conjectures of Tutte, who initiated algebraic flow theory.

The oldest and best known of the Tutte conjectures is his 5-flow
conjecture:

Five-Flow Conjecture. (Tutte 1954)
Every bridgeless multigraph has a 5-flow.

Which graphs have a 4-flow? By Proposition 6.4.4, the 4-edge-
connected graphs are among them. The Petersen graph (Fig. 6.6.1), on
the other hand, is an example of a bridgeless graph without a 4-flow:
since it is cubic but not 3-edge-colourable (Ex. 19, Ch. 5), it cannot have

In the 2nd edition, this
is no longer a formal
exercise.a 4-flow by Proposition 6.4.5 (ii).

Fig. 6.6.1. The Petersen graph

Tutte’s 4-flow conjecture states that the Petersen graph must be
present in every graph without a 4-flow:

Four-Flow Conjecture. (Tutte 1966)
Every bridgeless multigraph not containing the Petersen graph as a mi-
nor has a 4-flow.

By Proposition 1.7.2, we may replace the word ‘minor’ in the 4-flow
conjecture by ‘topological minor’.
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Thus in either case we have found an integer m � k/2 and a graph
G1 � G such that

|G1| � 4m (1)

and δ(G1) � 2m, so

ε(G1) � m � k/2 � 3 . (2)

As 2δ(G1) � 4m � |G1|, our graph G1 is already quite a good
candidate for the desired minor H of G. In order to jack up its value
of 2δ by another 1

6k (as required for H), we shall reapply the above
contraction process to G1, and a little more rigorously than before: step vigorously
by step, we shall contract edges as long as this results in a loss of no
more than 7

6m edges per vertex. In other words, we permit a loss of edges
slightly greater than maintaining ε � m seems to allow. (Recall that,
when we contracted G to G0, we put this threshold at ε(G) = k.) If this
second contraction process terminates with a non-empty graph H0, then
ε(H0) will be at least 7

6m, higher than for G1! The 1
6m thus gained will

Replace ε(H0) by δ(H0);
‘higher’ after replacing m
with k, not in absolute
terms.

suffice to give the graph H1, obtained from H0 just as G1 was obtained
from G0, the desired high minimum degree.

But how can we be sure that this second contraction process will
indeed end with a non-empty graph? Paradoxical though it may seem,
the reason is that even a permitted loss of up to 7

6m edges (and one
vertex) per contraction step cannot destroy the m |G1| or more edges
of G1 in the |G1| steps possible: the graphs with fewer than m vertices
towards the end of the process would simply be too small to be able to
shed their allowance of 7

6m edges—and, by (1), these small graphs would
account for about a quarter of the process!

Formally, we shall control the graphs H in the contraction process
not by specifying an upper bound on the number of edges to be discarded
at each step, but by fixing a lower bound for ‖H‖ in terms of |H|. This
bound grows linearly from a value of just above

(
m
2

)
for |H| = m to a

value of less than 4m2 for |H| = 4m. By (1) and (2), H = G1 will satisfy
this bound, but clearly it cannot be satisfied by any H with |H| = m;
so the contraction process must stop somewhere earlier with |H| > m.

To implement this approach, let

f(n) := 1
6m(n−m− 5)

and
H :=

{
H � G1 : ‖H‖ � m |H|+ f(|H|)−

(
m
2

)}
.

By (1),
f(|G1|) � f(4m) = 1

2m2 − 5
6m <

(
m
2

)
,

so G1 ∈ H by (2).
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�
∑

G∈G(n,p)
X(G)�a

P ({G }) ·X(G)

�
∑

G∈G(n,p)
X(G)�a

P ({G }) · a

= P [X � a ] · a .
�

Since our probability spaces are finite, the expectation can often
be computed by a simple application of double counting , a standard
combinatorial technique we met before in the proofs of Corollary 4.2.8
and Theorem 5.5.3. For example, if X is a random variable on G(n, p)
that counts the number of subgraphs of G in some fixed set H of graphs
on V , then E(X), by definition, counts the number of pairs (G, H) such
that H ⊆ G, each weighted with the probability of {G }. Algorithmically, H ∈ H and H ⊆ G
we compute E(X) by going through the graphs G ∈ G(n, p) in an ‘outer
loop’ and performing, for each G, an ‘inner loop’ that runs through the
graphs H ∈ H and counts ‘P ({G })’ whenever H ⊆ G. Alternatively,
we may count the same set of weighted pairs with H in the outer and
G in the inner loop: this amounts to adding up, over all H ⊆ H, the over all H ∈ H
probabilities P [H ⊆ G ].

To illustrate this once in detail, let us compute the expected number
of cycles of some given length k � 3 in a random graph G ∈ G(n, p). So
let X:G(n, p)→N be the random variable that assigns to every random
graph G its number of k-cycles, the number of subgraphs isomorphic
to Ck. Let us write

(n)k := n (n− 1)(n− 2) · · · (n− k + 1)

for the number of sequences of k distinct elements of a given n-set.

Lemma 11.1.5. The expected number of k-cycles in G ∈ G(n, p) is

E(X) =
(n)k

2k
pk.

Proof . For every k-cycle C with vertices in V = { 0, . . . , n − 1 }, the
vertex set of the graphs in G(n, p), let XC :G(n, p)→{ 0, 1 } denote the
indicator random variable of C:

XC : G �→
{ 1 if C ⊆ G;

0 otherwise.
Since XC takes only 1 as a positive value, its expectation E(XC) equals
the measure P [XC = 1 ] of the set of all graphs in G(n, p) that contain C.
But this is just the probability that C ⊆ G:

E(XC) = P [C ⊆ G ] = pk. (1)
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Theorem 12.5.2. (Graph Minor Theorem; Robertson & Seymour)
The finite graphs are well-quasi-ordered by the minor relation �.

So every HP is finite, i.e. every hereditary graph property can be
represented by finitely many forbidden minors:

Corollary 12.5.3. Every graph property that is closed under taking
minors can be expressed as Forb�(H) with finite H. �

As a special case of Corollary 12.5.3 we have, at least in principle,
a Kuratowski-type theorem for every surface:

Corollary 12.5.4. For every surface S there exists a finite set of graphs
H1, . . . , Hn such that Forb�(H1, . . . , Hn) contains precisely the graphs
not embeddable in S. delete ‘not’

The minimal set of forbidden minors has been determined explicitly
for only one surface other than the sphere: for the projective plane it
is known to consist of 35 forbidden minors. It is not difficult to show
that the number of forbidden minors grows rapidly with the genus of the
surface (Exercise 34).

The complete proof of the graph minor theorem would fill a book
or two. For all its complexity in detail, however, its basic idea is easy to
grasp. We have to show that every infinite sequence

G0, G1, G2, . . .

of finite graphs contains a good pair: two graphs Gi � Gj with i < j.
We may assume that G0 �� Gi for all i � 1, since G0 forms a good pair
with any graph Gi of which it is a minor. Thus all the graphs G1, G2, . . .
lie in Forb�(G0), and we may use the structure common to these graphs
in our search for a good pair.

We have already seen how this works when G0 is planar: then the
graphs in Forb�(G0) have bounded tree-width (Theorem 12.4.3) and are
therefore well-quasi-ordered by Theorem 12.3.7. In general, we need only
consider the cases of G0 = Kn: since G0 � Kn for n := |G0|, we may
assume that Kn �� Gi for all i � 1.

The proof now follows the same lines as above: again the graphs in
Forb�(Kn) can be characterized by their tree-decompositions, and again
their tree structure helps, as in Kruskal’s theorem, with the proof that
they are well-quasi-ordered. The parts in these tree-decompositions are
no longer restricted in terms of order now, but they are constrained in
more subtle structural terms. Roughly speaking, for every n there exists
a finite set S of closed surfaces such that every graph without a Kn minor
has a simplicial tree-decomposition into parts each ‘nearly’ embedding in
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The entries in this index are divided into two groups. Entries involving

Unfortunately, the entire
symbol index printed
in the second edition is
old. This page and the
next show the corrected
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only mathematical symbols (i.e. no letters except variables) are listed on
the first page, grouped loosely by logical function. The entry ‘[ ]’, for
example, refers to the definition of induced subgraphs H [U ] on page 4
as well as to the definition of face boundaries G [ f ] on page 72.

Entries involving fixed letters as constituent parts are listed on the
second page, in typographical groups ordered alphabetically by those
letters. Letters standing as variables are ignored in the ordering.

∅ 2
= 3
' 3
⊆ 3
6 253
4 17

+ 4, 20, 128
− 4, 70, 128
∈ 2
r 70
∪ 3
∩ 3
∗ 4

b c 1
d e 1
| | 2, 126
‖ ‖ 2, 153
[ ] 3, 72
[ ]k, [ ]<ω 1, 252

〈 , 〉 20
/ 16, 17, 25
C⊥, F⊥, . . . 21
0, 1, 2, . . . 1
(n)k, . . . 234
E(v), E′(w), . . . 2
E(X, Y ), E′(U, W ), . . . 2
(e, x, y), . . . 124
→
E,

→
F ,

→
C , . . . 124, 136, 138

←e,
←
E,

←
F , . . . 124

f(X, Y ), g(U, W ), . . . 124
G∗, F ∗, →e ∗, . . . 87, 136
G2, H3, . . . 218
G, X, G, . . . 4, 124, 263
(S, S), . . . 126
xy, x1 . . . xk, . . . 2, 7
xP, Px, xPy, xPyQz, . . . 7
P̊ , x̊Q, . . . 7, 68
xTy, . . . 13



312 Symbol Index

F2 20
N 1
Zn 1

CG 34
C(G) 21
C∗(G) 22
E(G) 20
G(n, p) 230
PH 243
Pi,j 238
V(G) 20

Ck 7
E(G) 2
E(X) 233
F (G) 70
Forb4(X ) 263
G(H1, H2) 198
Kn 3
Kn1,...,nr

15
Kr

s 15
L(G) 4
MX 16
N(v), N(U) 4, 5
N+(v) 108
P 231
P k 6
PG 118
R(H) 193
R(H1, H2) 193
R(k, c, r) 193
R(r) 191
Rs 161
Sn 69
TX 17
T r−1(n) 149
V (G) 2

ch(G) 105
ch′(G) 105

col(G) 98
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d(G) 5
d(v) 5
d+(v) 108
d(x, y) 8
d(X, Y ) 153
diam(G) 8
ex(n, H) 149
f∗(v) 87
g(G) 7
i 1
init(e) 25
log, ln 1
pw(G) 279
q(G) 34
rad(G) 9
tr−1(n) 149
ter(e) 25
tw(G) 257
ve, vxy, vU 16, 17
v∗(f) 87

∆(G) 5

α(G) 110
δ(G) 5
ε(G) 5
κ(G) 10
κG(H) 57
λ(G) 11
λG(H) 57
µ 242
π : S2 r { (0, 0, 1) }→R2 69
σk : Z→Zk 131
σ2 242
ϕ(G) 131
χ(G) 95
χ′(G) 96
χ′′(G) 119
ω(G) 110
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