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Abstract

In this technical report we present a rational reconstruction of the area method
(developed by Chou, Gao and Zhang) for automated theorem proving for Euclidean
geometry. Our rational reconstruction covers all relevant lemmas proved in full details
and also full details of required algebraic reasoning (missing from the papers introducint
the area method). We also present our implementation of this algorithm, made within
the program GCLC.

The area method main idea is to express the hypothesis of a theorem using a set
of constructive statements each of then introducing a new point, and to express the
conclusion by a polynomial in a some geometry quantities, without any relation to a
given system of coordinates. The proof is then developed by eliminating, in reverse order,
the point introduced before, using for that purpose a set of lemmas. After eliminating all
the introduced points the polynomial is just an equality between two rational expression
in independent variables. Hence if they are equal the statement is true, otherwise it is
false.

The proofs generated by the prover (developed as a part of GCLC) are generally short
and readable. The program can prove many non-trivial theorems in a very efficient way.

keywords: automated theorem proving, Euclidian geometry, coordinate-free meth-
ods, area method.
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Chapter 1

Introduction

In pursuing studies in the automation of proofs in geometry one can chose one of the
two major lines of research: synthetic proof style or algebraic proof style.

Algebraic proof style has its roots in the work of Descartes1 and in translation of ge-
ometry problems to algebraic problems. The automation of proofs along this line began
with the quantifier elimination method of Tarski (30s) and since then had many develop-
ments. The characteristic set method (Wu, 2000), the elimination method (Wang, 1995),
the Gröbner basis method (Kapur, 1986), and the Clifford algebra approach (Li, 2000)
are examples of practical provers based on the algebraic approach. All these methods
have in common the fact that the proofs do not reflect the constructive natures of the
problems, are unrelated to any traditional geometric methods, and the proofs have only
a yes/no conclusion.

Another approach to the automation of geometric proofs focus in synthetic proofs
with the attempt to automate the traditional proof methods. Most of these methods use
adding elements to the current geometric configuration so that a desired postulated will
apply. The challenge is to control the explosion of the search space, because of that they
use ad hoc heuristics to avoid unproductive constructions. Examples of these method in-
clude results of Gelertner (Gelernter, 1959), Nevis (Nevis, 1975), Elcock (Elcock, 1977),
Greeno et. al. (Greeno et al., 1979) and Coelho and Pereira (Coelho & Pereira, 1986).

In this technical report we focus on the area method, an efficient synthetic method
developed by Chou, Gao, and Zhang (Chou et al., 1993). This method is a base for
efficient provers capable of generating human readable proofs. We present a rational
reconstruction of the area method covering all relevant lemmas proved in full details and
also full details of required algebraic reasoning (missing from the papers introducing the
area method).

Our goal in developing a prover for this method was to extend the existing dynamic
geometry tools (e.g., GCLC and Eukleides) with a module that allows formal, deductive
reasoning about constructions made. For that, we need an efficient program capable of
producing proofs that are human-readable, short, and with a clear justification of each
proof step (e.g., lemma used, definition used etc.).

The theorem prover developed, the visualisation tools, and a database (for storing
and retrieving geometric constructions and their proofs) that we developed, provide a
complex framework for constructive geometry, given to all users an environment suitable
for the studying an teaching geometry.

1 Rene Descartes (1596-1650).
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Chapter 2

The Area Method

We will use capital letters to denote points in the plane. We denote AB the length of
the oriented segment from A to B. Thus AB � �BA.

We will denote ∆ABC the triangle formed by points A, B, and C. We denote by
SABC the signed area of the oriented triangle ∆ABC (Zhang et al., 1995).

Definition 1 Signed Area The signed area SABC of triangle ABC is the usual area
with a sign depending on the order of the vertices A, B, and C: if A � B � C rotates
counterclockwisely, SABC is positive, otherwise it is negative (Chou et al., 1996).

2.1 Basic Lemmas about Signed Areas and Ratio of Seg-

ments

The following properties of the signed area are used as basic lemmas (Chou et al., 1996).

For any points A, B, C, and D, we have:

Lemma 1 SABC � SCAB � SBCA � �SACB � �SBAC � �SCBA.

Lemma 2 SABC � 0 iff A, B, and C are collinear.

Definition 2 We use the notation AB ‖ PQ to denote the fact that A, B, P , and Q

satisfy one of the following conditions: (1) A � B or P � Q; (2) A, B, P , and Q are
on the same line; or (3) line AB and line PQ do not have a common point.

Lemma 3 PQ ‖ AB iff SPAB � SQAB, i.e., iff SPAQB � 0.

Demonstration

4



2.1. BASIC LEMMAS ABOUT SIGNED AREAS AND RATIO OF SEGMENTS 5
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P

Q

A
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P

Q

Proof of SPAB � SQAB � SPAQB � 0.

SPAQB � 0
def� SPAQ � SPQB � 0 � SPAQ � �SPQB � SPAQ � SQPB

p1q� SPAB �
SQAB

(1) SPAB � SQPB and SQAB � SPAQ.

q.e.d.

Definition 3 (Parallelogram) A parallelogram is a quadrilateral ABCD such that
AB ‖ CD, BC ‖ AD, and no three vertices are on the same line.

Definition 4 (Ratio of parallel lines) Let ABCD be a parallelogram and P , Q be
two points on CD. We define the ratio of two parallel line segments as follows (Chou et al., 1993):

PQ

AB
� PQ

DC

b

b

b

b

b

b

A

B

C

D
P

Q

Lemma 4 SABC � SABD � SADC � SDBC .
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b

b

b

b

A

B

C

D

a

b

c

d

SABC � SABD�SADC�SDBC � a� c � pa� bq�pc�dq�p�b�dq � a� c � a� c

Lemma 5 If points C and D are on line AB, A � B and P is any point not on line
AB (Figure 2.1) then:

SPCD

SPAB
� CD

AB
.

b b bb

b

A B CD

P

Figure 2.1: Areas, Ratios relationship

Demonstration
Given S the point in AB such that PS is perpendicular to AB (PS is the height of

both triangles) then, without considering the signs

SPCD � DC�PS
2

and SPAB � AB�PS
2

so

SPCD

SPAB
� DC � PS

2
� 2

AB � PS
� DC

AB
.

Now looking into the signs

SPCD�SPAB
� �CD

AB
.

given the fact the ∆PCD is clockwise, ∆PAB is anti-clockwise, and that CD and
AB are on opposite directions.

q.e.d.
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Definition 5 SABCD is defined as SABCD � SABC�SACD (Chou et al., 1996; Narboux, 2004).

More generally we can define the signed area of an oriented n-polygon A1A2 . . . An,pn ¥ 3q to be (Zhang et al., 1995)

SA1A2...An � ņ

i�3

SA1Ai�1Ai
.

by Lemmas 1 and 4, we have.

Lemma 6 SABCD � SABC � SACD � SABD � SBCD.

b

b

b

b

A

B

C

D

SABC

SACD

SABCD

b

b

b

b

A

B

C

D

SABD SBCD

SABCD

Lemma 7 SABCD � SBCDA � SCDAB � SDABC � �SADCB � �SDCBA � �SCBAD ��SBADC .

Given the fact that we are speaking about oriented areas, we have clock-wise, positive
sign, and anticlockwise, negative sign.

Lemma 8 (EL1) (The Co-side Theorem) Let M be the intersection of two non-parallel
lines AB and PQ and Q � M (Figure 2.2). Then:

PM

QM
� SPAB

SQAB
;

PM

PQ
� SPAB

SPAQB
;

QM

PQ
� SQAB

SPAQB
.

b b

b

b

b

A B

P

Q

M

b b

b

b

b

A B

P

Q

M

b b

b

b

b

A

B

P

Q

M b b

b

b

b

A B

P

Q

M

Figure 2.2: Co-side Theorem

Since PPAB and SQAB cannot both be zero, we always assume that the nonzero one
is the denominator. Also note that PQ � 0 since AB ∦ PQ.

Demonstration Figure 2.2 gives several possible cases (in ordered geometries); the
proof here presented, which is essential for unordered geometry, is valid for all cases
(Zhang et al., 1995). For the first formula, take a point R on AB such that AB � MR;

them we have SPMR

SPAB

L5� MR

AB
� 1 � SPMR � SPAB the some applies for the point Q,

SQMR � SQAB. So:
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b bb b

b

b

A BM R

P

Q

b b

b

b

M

R

P

Q

SPAB

SQAB
� SPMR

SQMR

Now by a direct application of lemma L5 making A � Q, B � D � M , and C � P

we have

SPMR

SQMR

� SRPM

SRQM

L5� PM

QM

in conclusion

SPAB

SQAB
� SPMR

SQMR
� PM

QM

The others formulas are a consequence of this first one.
q.e.d.

Lemma 9 Let R be a point on line PQ. Then for any two points A and B (Figure 2.3)
(Chou et al., 1996; Zhang et al., 1995):

SRAB � PR

PQ
SQAB � RQ

PQ
SPAB

b

b

b

b

b

P

Q
R

A

B

Figure 2.3:

Demonstration Let s � SABPQ, then SRAB � s� SARQ � SBPR (all anti-clockwise)

b

b

b

b

P

Q
R

A
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let PR

PQ
� λ, then we have

SARQ

SAPQ
� RQ

PQ
� PQ� PR

PQ
� p1� λq � SARQ � p1� λqSAPQ

and,

b

b

b

b

P

Q
R

B

SBPR

SBPQ
� PR

PQ
� λ � SBPR � λSBPQ

then

s� SARQ � SBPR �� s� p1� λqSAPQ � λSBPQ� s� p1� λqps� SPABq � λps � SQABq� s� s� λs� SPAB � λSPAB � λs� λSQAB� λSQAB � p1� λqSPAB

q.e.d.

For four collinear points P , Q, A, and B, such that A �� B, PQ

AB
, the ratio of the di-

rected segments, is an element inR, that satisfies the following lemmas (Chou et al., 1993;
Chou et al., 1996; Zhang et al., 1995).

Lemma 10 PQ

AB
� �QP

AB
� QP

BA
� �PQ

BA
.

Lemma 11 PQ

AB
� 0 iff P � Q.

Lemma 12 PQ

AB
� AB

PQ
� 1.

Lemma 13 AP

AB
� PB

AB
� 1.

Lemma 14 for each r P R there exists a unique point P which is collinear with A and

B and satisfies AP

AB
� r.

Let r � PQ

AB
. We sometimes also write PQ � rAB. A point P on line AB is

determined uniquely by AP

AB
or PB

AB
. We thus call

xP � AP

AB
, yP � PB

AB

the position ratio or position coordinates of the point P with respect to AB. It is clear
that xp � yp � 1.

In our machine proofs, auxiliary parallelograms are often added automatically and
the following two propositions are used frequently.



10 CISUC TR 2006/001

Lemma 15 Let ABCD be a parallelogram and P be any point (fig. 2.4). Then (Chou et al., 1993;
Zhang et al., 1995)

SABC � SPAB � SPCD and SPAB � SPDAC � SPDBCpZhang et al., 1995q.
SPAB � SPCD � SACD � SPDACpChou et al., 1993q.
b b

bb

b b

A B

CD

P S

bA

b B

b C

bD
b

P
b S

Figure 2.4:

Demonstration

Take a point S on BC such that PS is parallel to CD. By lemma 3 we have
AD ‖ BC � SABC � SDBC , PS ‖ CD � SPDC � SSDC � SPCD � �SDCS , and
PS ‖ AB � SPAB � SSAB, AD ‖ BS � SABS � SDBS � SPAB � SSAB � SABS �
SDBS � SPAB � SDBS . Therefore SPAB � SPDC � SDBS �SDCS . This prove the first
formula. The second formula is a consequence of the first one (Zhang et al., 1995).

q.e.d.

Lemma 16 Let ABCD be a parallelogram, P and Q be two points (Figure 2.5). Then
(Zhang et al., 1995)

SAPQ � SCPQ � SBPQ � SDPQ or SPAQB � SPDQC .

Notice that ∆APQ and ∆BPQ are clockwise, and ∆CPQ and ∆DPQ are anti-
clockwise.

Demonstration Let O be the intersection of AC and BD. Since O is the midpoint of
AC, by lemma 9, SAPQ�SCPQ � 2SOPQ. For the same reason, SBPQ�SDPQ � 2SOPQ.
We have proved the first formula, the second formula is just another form of the first
one.

q.e.d.

We use a simple example to illustrate how to use these propositions to prove theo-
rems.
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b

b

b

b

A

B

C

D

b

b Q

P
−SDPQ

−SCPQ

SBPQ

SAPQ

b

b

b

b

A

B

C

D

b

b Q

P
−SDPQ

−SCPQ

SBPQ

SAPQ

b

O

Figure 2.5:

Example 1 (Ceva’s Theorem) Let ∆ABC be a triangle and P be any point in the
plane. Let D � AP XCB, E � BP XAC, and F � CP XAB (Figure 2.6). Show that:

AF

FB
� BD

DC
� CE

EA
� 1

bC b B

Ab

P

b

D

b

E
b F

b

Figure 2.6:

Demonstration
Our aim is to eliminate the constructed points F , E, and D from the left hand side

of the conclusion. Using the co-side theorem three times, we can eliminate E, F , and
D:

AF

FB
� BD

DC
� CE

EA
� SAPC

SBCP
� SBPA

SCAP
� SCPB

SABP
� 1

q.e.d.

2.2 Basic Lemmas about Pythagoras Differences

Definition 6 (Pythagoras difference) For three points A, B, and C, the Pythagoras
difference PABC is defined to be:

PABC � AB
2 � CB

2 �AC
2
.
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bB b A

Cb

AB

CB
AC

Lemma 17 PAAB � 0.

Demonstration

PAAB � AA
2 �CA

2 �AC
2 � 0�AC

2 �AC
2 � 0

given the fact that CA
2 � CA � CA � �AC � p�ACq � AC

2
.

q.e.d.

Lemma 18 PABC � PCBA.

Demonstration

PABC � AB
2 � CB

2 �AC
2 � CB

2 �AB
2 � CA

2 � PCBA

q.e.d.

Lemma 19 PABA � 2AB
2
.

Demonstration

PABA � AB
2 �AB

2 �AA
2 � 2AB

2

q.e.d.

Lemma 20 If A, B, and C are collinear them, PABC � 2BA�BC.

Demonstration

PABC � AB
2 � CB

2 �AC
2� AB

2 �BC
2 � 2AB �BC � 2AB �BC �AC

2� pAB �BCq2 � 2AB � CB �AC
2� AC

2 �AC
2 � 2AB � CB (2.1)� �2AB �BC� 2BA�BC

In equation 2.1 we have AB � BC � AC given the fact that, by hypothesis, A, B,
and C are collinear.

q.e.d.
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Definition 7 For a quadrilateral ABCD, we have

PABCD � PABD � PCBD � AB
2 � CD

2 �BC
2 �DA

2
.

Lemma 21 We have PABCD � �PADCB � PBADC � �PBCDA � PCDAB � �PCBAD �
PDCBA � �PDABC .

Demonstration

PADCB � AD
2 �CB

2 �DC
2 �BA

2� �AB
2 � CD

2 �BC
2 �DA

2� �pPABCDq (2.2)

PBADC � BA
2 �DC

2 �AD
2 �CB

2� AB
2 � CD

2 �BC
2 �DA

2� PABCD (2.3)

PBCDA � BC
2 �DA

2 � CD
2 �AB

2� �AB
2 � CD

2 �BC
2 �DA

2� �pPABCDq (2.4)

PCDAB � CD
2 �AB

2 �DA
2 �BC

2� AB
2 � CD

2 �BC
2 �DA

2� PABCD (2.5)

PCBAD � CB
2 �AD

2 �BA
2 �DC

2� �AB
2 � CD

2 �BC
2 �DA

2� �pPABCDq (2.6)

PDCBA � DC
2 �BA

2 � CB
2 �AD

2� AB
2 � CD

2 �BC
2 �DA

2� PABCD (2.7)

PDABC � DA
2 �BC

2 �AB
2 � CD

2� �AB
2 � CD

2 �BC
2 �DA

2� �pPABCDq (2.8)

q.e.d.

Definition 8 For four points A, B, C, and D, the notation AB K CD implies that one
of the following conditions is true: A � B, or C � D, or the line AB is perpendicular
to line CD.

Lemma 22 (Pythagorean Theorem) AB K BC iff PABC � 0.

Demonstration
If A � B, we have A � B � C, D, then AB

2 � CB
2 � AC

2 � 0.

If C � D, we have A, B � C � D, then AB
2 � CB

2 �AB
2 � AC

2 � 0�AC
2 � 0.

If A � B and B � C then we have a right triangle;
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bb

b

AB

C

b

c

a

a2 + c2 = b2

e.g. AB
2 �BC

2 � CA
2
.

q.e.d.

Lemma 23 AB K CD iff PACD � PBCD or PACBD � 0 (figure 2.7).

b b

b

b

b

A B

C

D

P

Figure 2.7:

Demonstration
Let P be the intersection of lines AB and CD, then:

AD
2 � AP

2 � PD
2

AC
2 � AP

2 � PC
2

AD
2 � PD

2 � AC
2 � PC

2

BD
2 � BP

2 � PD
2

BC
2 � BP

2 � PC
2

BD
2 � PD

2 � BC
2 � PC

2

AD
2 �AC

2 � PD
2 � PC

2

BD
2 �BC

2 � PD
2 � PC

2

AD
2 �AC

2 � BD
2 �BC

2

AC
2 �AD

2 � BC
2 �BD

2

AC
2 �DC

2 �AD
2 � BC

2 �DC
2 �BD

2

PACD � PBCD
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q.e.d.

The above generalised Pythagorean proposition is one of the most useful tools in our
mechanical theorem proving method.

Lemma 24 Let D be the foot of the perpendicular drawn from point P to a line AB

(figure 2.8). Then:

AD

DB
� PPAB

PPBA

,
AD

AB
� PPAB

2AB
2
,

DB

AB
� PPBA

2AB
2
.

b b

b

b

A B

P

D

Figure 2.8:

Lemma 25 Let AB and PQ be two non-perpendicular lines, and Y be the intersection
of line PQ and the line passing through A and perpendicular to AB (figure 2.9). Then:

PY

QY
� PPAB

PQAB
,

PY

PQ
� PPAB

PPAQB
,

QY

PQ
� PQAB

PPAQB
.

b b

b

b

b

A B

P

Q

Y

Figure 2.9:

Lemma 26 Let R be a point on line PQ with position ratios r1 � PR

PQ
, r2 � RQ

PQ
with

respect to PQ. Then for points A, B, we have (figure 2.10):
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PRAB � r1PQAB � r2PPAB

PARB � r1PAQB � r2PAPB � r1r2PPQP .

b b

b

b

b

A B

P

Q

R

Figure 2.10:

Lemma 27 Let ABCD be a parallelogram. Then for any points P and Q, we have
(figure 2.11):

PAPQ � PCPQ � PBPQ � PDPQ or PAPBQ � PDPCQ

PPAQ � PPCQ � PPBQ � PPDQ � 2PBAD .

b

b

b

b

A

B

C

D

b

b Q

P
PDPQ

PCPQ

PBPQ

PAPQ

Figure 2.11:

2.3 The Constructive Geometry Statements

2.3.1 Constructive Geometry Statements

Points are the basic geometry objects, from which we can introduce two other geometric
objects: lines and circles.

A straight line can be given in one of the following four forms.
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(LINE U V) is the line passing through two points U and V .

(PLINE W U V) is the line passing through point W and parallel to (LINE U V).

(TLINE W U V) is the line passing through point W and perpendicular to (LINE U
V).

(BLINE U V) is the perpendicular bisector of UV .

To make sure that the four kinds of lines are well defined, we need to assume that
U � V which is called the non-degenerated condition (ndg) of the corresponding line.

(CIR O U) denotes a circle with point O as its centre and passing through point U .

Constructions: a construction is one of the following ways of introducing new points.
For each construction, we also give its ndg condition and the degrees of freedom for the
constructed point.

C1 – (POINT[S] Y1, . . . , Yn). Take arbitrary points Y1, . . . , Yn in the plane. Each
Yi has two degrees of freedom.

C2 – (ON Y ln). Take a point Y on a line ln. The ndg condition of C2 is the ndg
condition of the line ln. A point Y has one degree of freedom.

C3 – (ON Y (Cir O P)). Take a point Y on a circle (CIR O P). The ndg condition
is O � P . Point Y has one degree of freedom.

C4 – (INTER Y ln1 ln2). Point Y is the intersection of line ln1 and line ln2. Point
Y is a fixed point. The ndg condition is ln1 ∦ ln2. More precisely, we have:

1. If ln1 is (LINE U V) or (PLINE W U V) and ln2 is (LINE P Q) or (PLINE
R P Q), the ndg condition is UV ∦ PQ.

2. If ln1 is (LINE U V) or (PLINE W U V) and ln2 is (BLINE P Q) or (TLINE
R P Q), then the ndg condition is UV M PQ.

3. If ln1 is (BLINE U V) or (TLINE W U V) and ln2 is (BLINE P Q) or (TLINE
R P Q), then the ndg condition is UV ∦ PQ.

C5 – (INTER Y ln (CIR O P)). Point Y is the intersection of line ln and circle
(CIR O P) other than point P . Line ln could be (LINE P U), (PLINE P U V),
or (TLINE P U V). The ndg conditions are O � P , Y � P , and line ln is not
degenerate. Point Y is a fixed point.

C6 – (INTER Y (CIR O1 P) (CIR O2 P)). Point Y is the intersection of the cir-
cle (CIR O1 P) and the circle (CIR O2 P) other them point P . The ndg condition
is that O1, O2, and P are not collinear. Point Y is a fixed point.

C7 – (PRATIO Y W U V r). Take a point Y on the line (PLINE W U V) such that
WY � rUV , where r can be a rational number, a rational expression in geometric
quantities, or a variable.

If r is a fixed quantity the Y is a fixed point; if r is a variable the Y has one degree
of freedom. The ndg condition is U � V . If r is a rational expression in geometric
quantities the we will further assume that the denominator of r could not be zero.
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C8 – (TRATIO Y U V r). Take a point Y on line (TLINE U U V) such that r �
4SUV Y

PUV U
p� UY

UV
q, where r can be a rational number, a rational expression in geometric

quantities, or a variable.

If r is a fixed quantity then Y is a fixed point; if r is a variable Y has one degree
of freedom. The ndg condition is the same as that of C7.

Since there are four kinds of lines, constructions C2, C4, C5 have 4, 10, 3 possible
forms respectively. Thus, totally we have 22 different forms of constructions.

Definition 9 (Class of Constructive Geometry Statements) The class of Con-
structive Geometry Statements, C, is the class of statements defined as follows. A
statement in class C is a list S � pC1, C2, . . . , Cn, Gq where Ci for 1 ¤ i ¤ n are con-
structions such that each Ci introduces a new point from the points introduced before;
and G � pE1, E2q where E1 and E2 are polynomials in geometric quantities of the points
introduced by the Ci and E1 � E2 is the conclusion of the statement.

Let S � pC1, C2, . . . , Cn, pE1, E2qq be a statement in C. The ndg condition of S is
the set of ndg conditions of the Cis plus the condition that the denominators of the
length ratios in E1 and E2 are not equal to zero.

The 22 constructions are not independent to each other. We now introduce a minimal
set of constructions which are equivalent to all the 22 constructions but much few in
number.

A minimal set of constructions consist of C1, C7, C8, and the following two con-
structions.

C41 – (INTER Y (LINE U V) (LINE P Q)) .

C42 – (FOOT Y P U V) or equivalently (INTER Y (LINE U V) (TLINE P U V)).
The ndg condition is U � V .

We first show how to represent the four kinds of lines by one kind: (LINE U V).
For ln �(PLINE W U V), we first introduce a new point N by (PRATIO N W U V

1). Then ln �(LINE W N).
For ln �(TLINE W U V), we have two cases: if W , U , V are collinear, ln �(LINE N

W) where N is introduced by (TRATIO N W U 1); otherwise ln �(LINE N W) where
N is given by (FOOT N W U V).

(BLINE U V) can be written as (LINE N M) where N and M are introduced as
follows (MIDPOINT M U V) (i.e. (PRATIO M U U V 1/2)), and (TRATIO N M U 1).

Since now there is only one kind of line, to represent all the 22 constructions by the
constructions in the minimal set we only need to consider the following cases.

• (ON Y (LINE U V)) is equivalent to (PRATIO Y U U V r) where r is an indeter-
minate.

• (INTER Y (LINE U V) (CIR O U)) is equivalent to two constructions: (FOOT
N O U V), (PRATIO Y N N U -1).

• C6 can be reduced to (FOOT N P O1 O2) and (PRATIO Y N N P -1).

• For C3, i.e., to take an arbitrary point Y on a circle (CIR O P), we first take an
arbitrary point Q. Then Y is introduced by (INTER Y (LINE P Q) (CIR O P)).
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2.4 The Algorithm

The key step of the method is to eliminate points from geometry quantities. The point
are introduced naturally and are eliminated from the conclusion in the reverse order.

2.4.1 The Elimination Procedures

Considering only the minimal set of constructions: C1, C7, C8, C41, and C42 we need
only to eliminate points introduced by four constructions from three kinds of geometry
quantities.

Lemma 28 Let GpY q be one of the following geometry quantities: SABY , SABCY ,
PABY , or PABCY for distinct points A, B, C, and Y . For three collinear points Y ,
U , and V , by lemmas 9 and 26 we have:

GpY q � UY

UV
GpV q � Y V

UV
GpUq. (2.9)

We call GpY q a linear geometry quantity for variable Y . Elimination procedures for
all linear geometry quantities are similar for constructions C7, C41, and C42.

Demonstration

GpY q � SABY

SABY � SY AB by lemma 1� UY

UV
SV AB � Y V

UV
SUAB by lemma 9; U , V , and Y are collinear� UY

UV
SABV � Y V

UV
SABU by lemma 1� UY

UV
GpV q � Y V

UV
GpUq

GpY q � PABY

PABY � PY BA by lemma 18� UY

UV
PV BA � Y V

UV
PUBA by lemma 26; U , V , and Y are collinear� UY

UV
PABV � Y V

UV
PABU by lemma 18� UY

UV
GpV q � Y V

UV
GpUq

GpY q � SABCY
def 5� SABC � PACY� SABC � UY

UV
SABC � UY

UV
SABC � Y V

UV
SABC � Y V

UV
SABC � SACY
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UV
� Y V

UV
qSABC � UY

UV
SABC � Y V

UV
SABC � SACY� 0� UY

UV
SABC � Y V

UV
SABC � SACY U , V , and Y are collinear� UY

UV
SABC � Y V

UV
SABC � SY AC by lemma 1� UY

UV
SABC � UY

UV
SACV � Y V

UV
SABC � Y V

UV
SACU by lemma 9; U , V , and Y are collinear� UY

UV
SABCV � Y V

UV
SABCU by definition 5� UY

UV
GpV q � Y V

UV
GpUq

GpY q � PABCY
def 7� PABY � PCBY� UY

UV
PABV � Y V

UV
PABU � pUY

UV
PCBV � Y V

UV
PCBU q� UY

UV
pPABV � PCBV q � Y V

UV
pPABU � PCBU q� UY

UV
PABCV � Y V

UV
PABCU by definition 7� UY

UV
GpV q � Y V

UV
GpUq

q.e.d.

Lemma 29 (EL2) Let GpY q be a linear geometry quantity and point Y be introduced
by construction (PRATIO Y W U V r). Then we have:

GpY q � GpW q � rpGpV q �GpUqq.
Demonstration

Take a point S such that WS � UV .

b

U
b

V

b

W

b

Y

b

S

WY

UV
= r

By (2.9)[U:=A,V:=B,W;=U,S:=V]
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GpY q � WY

WS
GpSq � Y S

WS
GpW q WY

WS
� 1,by hypothesis� rGpSq ��WY �WS

WS



GpW q W , Y , S are collinear� rGpSq � p1� rqGpW q

By lemmas 16 (SAPQ � SBPQ � SDPQ � SCPQ) and 27, (PAPQ � PBPQ � PDPQ ��PCPQ) considering the parallelogram UV SW and the points W and Y we have GpSq �
GpW q �GpV q �GpUq. Substituting this into the above equation, we obtain the result.

GpY q � rGpSq � p1� rqGpW q� rpGpW q �GpV q �GpUqq � p1� rqGpW q� rGpW q � rGpW q �GpW q � rpGpV q �GpUqq� GpW q � rpGpV q �GpUqq
Notice that we need the ndg condition U � V .

q.e.d.

Lemma 30 (EL3) Let GpY q be a linear geometry quantity and point Y be introduced
by construction (INTER Y (LINE U V) (LINE P Q). Then we have:

GpY q � SUPQGpV q � SV PQGpUq
SUPV Q

.

Demonstration

bU

bV

b

P
b

Q
b

Y

By the co-side theorem[P:=U,Q:=V,A:=P,B:=Q,M:=Y], UY

UV
� SUPQ

SUPV Q
, Y V

UV
� �V Y

UV
�

SV PQ

SUPV Q
. Substituting these into equation (2.9), we prove the result.

q.e.d.

Lemma 31 (EL4) Let GpY q be a linear geometry quantity (� PAY B) and point Y be
introduced by construction (FOOT Y P U V). Then we have:

GpY q � PPUV GpV q � PPV UGpUq
2UV

2
.

Demonstration

b

U
b

V

bP

b
Y
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By lemma 24[A:=U,B:=V,D:=Y], UY

UV
� PPUV

2UV
2 , Y V

UV
� PPV U

2UV
2 . Substituting these into

(2.9), we prove the result.
q.e.d.

Lemma 32 (EL5) Let GpY q � PAY B and point Y be introduced by construction (FOOT
Y P U V) or (INTER Y (LINE U V) (LINE P Q)). Then we have:

GpY q � UY

UV
GpV q � Y V

UV
GpUq � UY

UV
� Y V

UV
PUV U . (2.10)

Demonstration
By lemma 26[R:=Y,P:=U,Q:=V], for three collinear points Y , U , and V , we have

r1 � UY

UV
, r2 � Y V

UV
, and PAY B � r1PAV B � r2PAUB � r1r2PUV U , that is, GpY q �

UY

UV
GpV q � Y V

UV
GpUq � UY

UV
� Y V

UV
PUV U .

q.e.d.

Lemma 33 (EL6) Let Y be introduced by (PRATIO Y W U V r). Then we have:

PAY B � PAWB � rpPAV B � PAUB � PWUV q � rp1� rqPUV U .

Construction C8 needs special treatment.

Lemma 34 (EL7) Let Y be introduced by (TRATIO Y P Q r). Then we have:

SABY � SABP � r

4
PPAQB.

Demonstration
Let A1 be the orthogonal projection from A to PQ. Then by lemmas 3 and 24:

SPAY

SPQY
� SPA1Y

SPQY
� PA1

PQ
� PA1PQ

PQPQ
� PAPQ

PQPQ

Thus SPAY � PAPQ

PQPQ
SPQY � r

4
PAPQ. Similarly, SPBY � PBPQ

PQPQ
SPQY � r

4
PBPQ. Now

SABY � SABP � SPBY � SPAY � SABP � r
4
PPAQB.

q.e.d.

Lemma 35 (EL8) Let Y be introduced by (TRATIO Y P Q r). Then we have:

PABY � PABP � 4rSPAQB.

Demonstration
Let the orthogonal projections from A and B to PY be A1 and B1. Then

PBPAY

PY PY
� PB1PA1Y

PY PY
� A1B1

PY
� SPA1QB1

SPQY
� SPAQB

SPQY
.

Since PY K PQ, S2
PQY � 1

4
PQ

2 � PY
2
. Then PY PY � 2PY

2 � 4rSPQY . Therefore
PABY � PABP � PBPAY � PABP � 4rSPAQB.

q.e.d.
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Lemma 36 (EL9) Let Y be introduced by (TRATIO Y P Q r). Then we have:

PAY B � PAPB � r2PPQP � 4rpSAPQ � SBPQq.
Demonstration

By Lemma 35

PAPY � 4rSAPQ, PBPY � 4rSBPQ.

Then

PY PY � 2PY
2 � 4rSPQY � r2PPQP

Then

PAY B � PAPB � PAPY � PBPY � PY PY � PAPB � r2PPQP � 4rpSAPQ � SBPQq.
q.e.d.

Now we consider how to eliminate points from the ratio of lengths.

Lemma 37 (EL10) Let Y be introduced by (INTER Y (LINE U V) (LINE P Q)). The
we have:

AY

CD
� # SAUV

SCUDV
if A is not on UV

SAPQ

SCPDQ
otherwise

Demonstration

If A is not on UV , let S be a point such that AS � CD.

b

b

b bb

U

V

P QY

b b

b b

A

S

C

D

AY

CD
� AY

AS
by construction

� SAUV

SAUSV
by lemma 8

b

b

b

U

V

Y

b

b

A

S

� SAUV

SUAV S
by lemma 21
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� SAUV

SUCV D
by lemma 16

b

b

U

V

b b

b b

A

S

C

D

� SAUV

SCUDV
by lemma 21

If A is on UV

b

b

b bb

U

V

P QY

b b

b b

A

S

C

D

AY

CD
� AY

AS
by construction� SAPQ

SAPSQ
by lemma 8� SAPQ

SCPDQ

q.e.d.

Lemma 38 (EL11) Let Y be introduced by (FOOT Y P U V). We assume D � U ;
otherwise interchange U and V .

AY

CD
� # PPCAD

PCDC
if A is on UV

SAUV

SCUDV
otherwise

Demonstration

If A is on UV , let T be a point such that AT � CD. By lemma 24 and 27,
AY

CD
� AY

AT
� PPAT

PATA
� PPCAD

PCDC
.

The second equation is a direct consequence of the co-side theorem.

b

U

b

V

b P

b

Y
b A

b C

b D
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By the co-side theorem (lemma 8) with line CD and UV we have:

CY

CD
� SCUV

SCUDV

and also by the co-side theorem with line AC and UV we have:

CY

AY
� SCUV

SAUV
� AY � CY SAUV

SCUV

so:

AY

CD
� CY SAUV

SCUV

CD
� CY

CD
� SAUV

SCUV

� SCUV

SCUDV

� SAUV

SCUV

� SAUV

SCUDV

q.e.d.

Lemma 39 (EL12) Let Y be introduced by (PRATIO Y R P Q r). Then we have

AY

CD
� $'&'% AR

PQ
�r

CD

PQ

if A is on RY

SAPRQ

SCPDQ
otherwise

Demonstration
The first case is obvious:

b

P
b

Q

b

R

b

Y

RY

PQ
= r

b

A

b

C

b

D

AY

CD
� AY

PQ

CD

PQ

� AR�AY

PQ

CD

PQ

� AR

PQ
� r

CD

PQ

The second case, take points T and S such that RT

PQ
� 1 and AS

CD
� 1. By the co-side

theorem, AY

CD
� AY

AS
� SART

SARST
� SAPRQ

SCPDQ
.

q.e.d.

Lemma 40 (EL13) Let Y be introduced by (TRATIO Y P Q r). Then we have

AY

CD
� # PAPQ

PCPDQ
if A is on PY

SAPQ� r
4
PPQP

SCPDQ
otherwise

Demonstration
The first case is a direct consequence of lemma 25. If A is on PY , then AY

CD
�

AP

CD
� Y P

CD
. By the co-side theorem, AP

CD
� SAPQ

SCPDQ
; AY

CD
� SY PQ

SCPDQ
� rPPQP

4SCPDQ
. Now the

second result follows immediately
q.e.d.
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EL9 EL8 EL7 EL13

3 C41
bU

bV

b

P
b

Q
b

Y

EL5 EL3 EL10 EL1

4 C42

b

U
b

V

bP

b
Y

U �� V EL5 EL4 EL11

A B C D E

C7 – (PRATIO Y W U V r)
C8 – (TRATIO Y U V r)
C41 – (INTER Y (LINE U V) (LINE P Q))
C42 – (FOOT Y P U V)

2
.4

.3
F
r
e
e

P
o
in

ts
a
n
d

th
e

A
lg

o
r
ith

m

F
or

a
geom

etry
statem

en
t
S�pC

1 ,C
2 ,...,C

m
,pE

,Fqq,
after

elim
in

atin
g

all
th

e
n
on

-free
p
oin

ts
in

tro
d
u
ced

b
y

C
i
from

E
an

d
F

u
sin

g
th

e
lem

m
as

in
th

e
p
reced

in
g

su
b
section

s,



2.4. THE ALGORITHM 27

we obtain two rational expression E1 and F 1 in indeterminates, areas and Pythagoras
differences of free points. These geometric quantities are generally not independent, e.g.
for any four points A, B, C, and D we have

SABC � SABD � SADC � SDBC

We thus need to reduce E1 and F 1 to expressions in independent variables. To do
that, we need the concept of area coordinates.

Definition 10 (Area Coordinates) Let A, O, U , and V be four points such that O,
U , and V are not collinear. The area coordinates of A with respect to OUV are

xA � SOUA

SOUV

, yA � SOAV

SOUV

, zA � SAUV

SOUV

.

It is clear that xA� yA� zA � 1. Since xA, yA, and zA are not independent, we also
call xA, yA the area coordinates of A with respect to OUV .

It is clear that the points in the plane are in a one to one correspondence with their
area coordinates. To represent E and F as expressions in independent variables, we first
introduce three new points O, U , and V , such that, UO K OV . We will reduce E and
F to expressions in the area coordinates of the free points with respect to OUV .

For any free points A, B, and C, we have the following results.

Lemma 41 SABC � pSOV B�SOV CqSOUA�pSOV C�SOV AqSOUB�pSOV A�SOV BqSOUC

SOUV
.

Lemma 42 PABC � AB
2 �CB

2 �AB
2

Lemma 43 AB
2 � OU

2pSOV A�SOV Bq2
S2

OUV

� OV
2pSOUA�SOUBq2

S2

OUV

.

Lemma 44 S2
OUV � OU

2� OV
2

4
.

Demonstration For the proof of 41, see Case 15 of algorithm ELIM in (Zhang et al., 1995)
(or Zhang et. al. TR-92-3, Department of Computer Science, WSU, 1992). Lemma 42
is the definition of Pythagoras difference. For Lemma 43, we introduce a new point M

by construction (INTER M (PLINE A O U) (PLINE B O V)). Then by Lemma 22,

AB
2 � AM

2 � BM
2
. By the second case of Lemma 39, AM

OU
� SAOBV

SOOUV
� SAOV �SBOV

SOUV
;

BM

OV
� SAOU�SBOU

SOUV
. We have Lemma 43. Lemma 44 is another basic fact taken for

granted.

q.e.d.

Using Lemma 41 to 44, E and F can be written as expressions in OU , OV , and
the area coordinates of the free points. Since the area coordinates of free points are
independent, E � F iff E and F are literally the same.
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2.4.4 The Area AlgorithmÑ S � pC1, C2, . . . , Cm, pE,F qq is a statement in C.� The algorithm tells whether S is true, or not, and if it is true, produces a proof for
S.

for (i=m;i==1;i--) {

if (the ndg conditions of Ci is satisfied) exit;

// Let G1,\ldots,Gn be the geometric quantities in E and F

for (j=1;j<=n,j++) {

Hj <- eliminating the point introduced by construction Ci from Gj

E <- E[Gj:=Hj]

F <- F[Gj:=Hj]

}

}

if (E==F) S <- true

else S<-false

The ndg condition of a construction has three forms: A � B, PQ ∦ UV , or PQ M
UV . For the first case we check if PABA � 2AB

2 � 0. For the second case, we check if
SPUV � SQUV . For the third case, we check if PPUV � PQUV . If a ndg condition of a
geometry statement is not satisfied, the statement is trivially true.

Proof of the correctness. Only the last step needs explanation. If E � F , the
statement is obviously true. Note that the ndg condition ensure that the denominators
of all the expressions occurring in the proof do not vanish.

Otherwise, since the geometric quantities in E and F are all free parameters, i.e., in
the geometric configuration of S they can take arbitrary values. Since E � F , we can
take some concrete values for these quantities such that when replacing these quantities
by the corresponding values in E and F , we obtain two different numbers. In other
words, we obtain a counter example for S.

q.e.d.
In the next chapter we will describe an implementation of this method.



Chapter 3

Implementation of the area

method within GCLC

GCLC (Djorić & Janičić, 2004; Janičić & Trajković, 2003) (from Geometry Construc-
tions to LATEX Converter) is a tool for producing mathematical illustrations and for
teaching geometry. It basic functionality is converting formal descriptions of geometric
constructions into digital figures.

The theorem prover built into GCLC is based on Chou’s algorithm for proving ge-
ometry theorems (area method) as described in the last chapter. The proofs are expressed
in terms of higher-level geometry lemmas and expression simplifications. The prover can
prove a range of non-trivial theorems, including theorems due to Ceva, Menelaus, Gauss,
Pappus, Tales etc (see appendix A).

Support for the prover involves only three commands: prove (for providing a conjec-
ture), prooflevel (for setting the level of proof details), and prooflimit (for setting
maximal size of a proof). The prover works in both command line version and in
WinGCLC (and it does not use any specific functionalities of WinGCLC ). Proofs
of theorems are generated in LATEX form and saved in a file. Each deduction step is
accompanied by its semantics counterpart — corresponding numeric values in Cartesian
plane.

The theorem prover is very efficient. Many conjectures are proved in only millisec-
onds. However, some conjecture may take several seconds, several minutes, or even sev-
eral hours. The maximal number of proof steps can be set by the command prooflimit.
The default value is 10000 proof steps.1 If the prover perform more proof steps, the
proving process is stopped.

3.1 Introductory Example

The theorem prover is tightly integrated into GCLC . This means that one can use
the prover to reason about a GCLC construction (i.e., about objects introduced in it),
without any required adaptations required for the deduction process. Of course, only
the conjecture itself has to be added.

The example GCLC code given in Figure 3.1 describes a triangle and midpoints of
two of triangle’s sides. This GCLC code produces the figure 3.2. It holds that the lines
AB and A1B1 are parallel and this can be proved by the theorem prover. The conjecture

1On a modern PC computer, 10000 steps are performed in less then 1 minute.

29
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point A 20 10

point B 70 10

point C 35 40

midpoint B_1 B C

midpoint A_1 A C

drawsegment A B

drawsegment A C

drawsegment B C

drawsegment A_1 B_1

cmark_b A

cmark_b B

cmark_t C

cmark_l A_1

cmark_r B_1

prove { equal { signed_area3 A_1 B_1 A } { signed_area3 A_1 B_1 B } }

Figure 3.1: Description of a triangle and midpoints of two of triangle’s sides and the
conjecture of midpoint theorem

“AB and A1B1 are parallel” can (and has to be) stated in terms of “geometry quantities”:
SA1B1A � SA1B1B . This conjecture is given as argument to the prove command (in this
case: equal { signed_area3 A_1 B_1 A } { signed_area3 A_1 B_1 B }). At the
end of the processing of the GCLC file, the theorem prover is invoked; it produces a
proof in LATEX form in the file name-proof.tex (in the current directory, name is the
name of the input file) and, within the GCLC report, a report about the proving
process: whether the conjecture was proved, data about CPU time spent, and number
of proof steps performed (in several categories).

3.2 Geometry Quantities and Stating Conjectures

The theorem prover deals with the geometry quantities described above, e.g. ratios
of directed segments, signed areas, and Pythagoras differences. In GCLC , geometry
quantities are written as in the following examples:

ratio of directed segments PQ

AB
sratio P Q A B

signed area (arity 3) SABC signed_area3 A B C

signed area (arity 4) SABCD signed_area4 A B C D

Pythagoras difference (arity 3) PABC pythagoras_difference3 A B C

Pythagoras difference (arity 4) PABCD pythagoras_difference4 A B C D

A conjecture to be proved is given as argument to the prove command. It has to
be of the form L � R. The conjecture can involve geometry quantities (only) over
points already introduced (by a subset of commands) within the current construction.
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A B

C

A
1

B
1

Figure 3.2: Illustration generated from the GCLC code from Figure 3.1

Geometry quantities can be combined together into more complex terms by operators
for addition, multiplication and division. Operators are written in textual form as in
the following table: � equality� sum� mult{ ratio

The conjecture and all its sub-terms are written in prefix form, with brackets if
needed. For instance,

SA1B1A � SA1B1B

is given to be proved in the following way:

prove { equal { signed_area3 A_1 B_1 A }

{ signed_area3 A_1 B_1 B }

}

and ��
AF

FB
� BD

DC


 � CE

EA


 � 1

is given to be proved in the following way:

prove { equal { mult { mult { sratio A F F B }

{ sratio B D D C } }

{ sratio C E E A } }

1 }

A range of geometry conjectures can be stated in terms of geometry quantities. Some
of them are given in the following table.
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points A and B are identical iff PABA � 0

points A, B, C are collinear iff SABC � 0

AB is perpendicular to CD iff PACD � PBCD

AB is parallel to CD iff SACD � SBCD

O is the midpoint of AB iff AO

OB
� 1

AB has the same length as CD iff PABA � PCDC

points A, B, C, D are harmonic iff AC

CB
� DA

DB

The conjecture can involve geometry quantities only over points and lines already
introduced within the current construction, and by using (only) the following commands:

• point

• line

• intersec

• midpoint

• med

• perp

• foot

• parallel

• translate

• towards

• online

The prover cannot prove conjectures about object constructed by using some other
commands. For instance, if a line a is constructed by the command bis, then the prove
cannot prove conjectures involving a or involving points constructed by using a.

3.3 Underlying Algorithm

The theorem prover is based on the algorithm described in the previous chapter. The
basic idea of the algorithm is to express a theorem in terms of geometry quantities, to
eliminate (by appropriate lemmas) all occurrences of constructed point and to simplify
the expression, yielding a trivial equality.

3.3.1 Underlying Constructions

As we have stated in section 2.4.2 For each point X constructed, and for each geometry
quantity g involving X, there is a suitable lemma that enables replacing g by an expres-
sion with no occurrences of X. Thanks to these lemmas, all constructed points can be
eliminated from the conjecture.
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3.3.2 Integration of Algorithm and Auxiliary Points

In order to be tightly integrated into GCLC , the prover uses standard GCLC con-
struction commands and, if needed, transforms them internally into form required by
the algorithm and/or introduces some auxiliary points:

midpoint is expressed in terms of PRATIO, it does not introduce new points;

foot is expressed in terms of FOOT, it does not introduce new points;

med introduces two auxiliary points: for instance, med m A B introduce a point Mm as
the midpoint of AB and a point Tm on the bisector of AB (such that TRATIO Tm Mm A 1);
the line m is then determined by the points Mm and Tm;

perp introduces one auxiliary point: if A lies on the line q, then perp p A q introduces
a point Tp on a line perpendicular to q (such that TRATIO Tp A Q1 1; where the
line q is determined by points Q1 and Q2); in this case, the line p is determined
by the points A and Tp; if A does not lie on the line q, then perp p A q introduce
a point Fp which is a foot of the normal from A to the line q; in this case, the line
p is determined by the points A and Fp;

parallel introduces one auxiliary point: for instance, parallel p A q introduces a
point Pp on a line parallel to q (such that PRATIO Pp A Q1 Q2 1; the line p is
then determined by the points A and Pp;

translate is expressed in terms of PRATIO, it does not introduce new points;

towards is expressed in terms of PRATIO, it does not introduce new points;

online is expressed in terms of PRATIO, it does not introduce new points, but intro-
duces a (indeterminate) constant r: for instance, online X A B is interpreted as
PRATIO X A A B r.

Definitions of auxiliary points are given at the beginning of the proof.

3.3.3 Non-degenerative Conditions and Lemmas

Some constructions are possible only if certain conditions are met. For instance, the
construction inter X a b is possible only if the lines a and b are not parallel. For such
constructions non-degenerative conditions are store for future possible use and listed at
the end of the proof.

Some non-degenerative conditions can also be introduced during the proving process:

• some lemmas have two cases (for instance, ,,if A belongs to CD“ and ,,if A does
not belong to CD“); if a condition for one case can be proved (as a lemma), then
that case is applied, otherwise, a condition for one case (the one of the form L � R)
is assumed and introduced as a non-degenerative condition.

• in the cancellation rule, if all summands on both sides of the equality have the
same multiplication factor X, the rule tries to prove (as a lemma) that X � 0;
if this fails, a condition X � 0 is assumed and introduced as a non-degenerative
condition and the equality is cancelled by X.

Lemmas are being proved as separate conjectures, but, of course, sharing the con-
struction and non-degenerative conditions with outer context.
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3.3.4 Structure of Algorithm

The algorithm has one main while loop — it process the sequence of all (relevant)
constructions in backward manner (from last to first construction step) and transforms
the current goal as follows:

• the current goal is initially the given conjecture;

• while there are construction steps do:

– apply geometric simplifications to the current goal;

– apply algebraic simplifications to the current goal;

– if the current construction step introduce a new point P , then eliminate (using
the elimination rules) one of occurrences of P (from the current goal) and go
to the top of the while loop; otherwise, go to next construction step.

• apply geometric simplifications to the current goal;

• apply algebraic simplifications to the current goal.

• if the current goal is a trivial equation, then the conjecture has been proved,
otherwise, the conjecture has not been proved.

The reasoning steps, as seen from the above overall algorithm, are divided into three
groups:

algebraic simplifications: applies simplification rewrite rule (not directly related to
geometry) such as:

x� 0 Ñ x

0� x Ñ x

x � 1 Ñ x

x � 0 Ñ 0
x

y
� u

v
Ñ x � v � u � y

y � v
. . .

Algebraic simplifications are discussed in more details in §3.3.5.

geometric simplifications: applies simplification rewrite rule, directly related to ge-
ometry quantities such as:

SAAB Ñ 0

SABC Ñ SBCA

PAAB Ñ 0

. . .

Geometric simplifications are discussed in more details in §3.3.6.
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elimination simplifications: applies elimination lemmas for eliminating constructed
points for the current goal; for instance, if the point Y is introduced by as the
intersection of lines l1 (determined by U and V ) and l2 (determined by P and

Q), then Y can be eliminated from expression of the form AY

CD
using the following

equality:

AY

CD
� # SAPQ

SCPDQ
, if A P UV

SAUV

SCUDV
, if A R UV

The lemmas 8 and 29 through 40 are used for elimination simplifications. Note
that some lemmas have two cases, one of them is chosen in the manner described
in §3.3.3.

3.3.5 Algebraic Simplification

The author of the paper (Chou et al., 1993) do not discuss the important issue of simpli-
fication of expressions, but only geometrical aspects and elimination lemmas. However,
this is not sufficient for implementing the prover based on the area method. In this part
of the paper, we give a full description of the algebraic simplification used in our imple-
mentation of the area method. Algebraic simplifications are based on rewrite rules, with
some of them conditional rewrite rules and with some of them that cannot be described
as first-order rules. The following rules are used:

Multiplication by zero:

x � 0 Ñ 0

0 � x Ñ 0

Multiplication by one:

x � 1 Ñ x

1 � x Ñ x

Zero fraction up:

0

x
Ñ 0

Fraction equal zero:

x

y
� 0 Ñ x � 0

Summation with zero:

x� 0 Ñ x

0� x Ñ x

Multiplication of constants:

c1 � c2 Ñ c3 where c1 and c2 are constants (constant real numbers) and c1 � c2 � c3
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Ratio cancellation:

AB

AB
Ñ 1

AB

BA
Ñ �1

E1 � . . . �Ei�1 � . . . � C �Ei�1 � . . . �En

E1
1
� . . . �E1

j�1
� . . . � C �E1

j�1
� . . . �E1

m

Ñ E1 � . . . �Ei�1 �Ei�1 � . . . �En

E1
1
� . . . � E1

j�1
�E1

j�1
� . . . � E1

m

Similar summands:

E1 � � � � �Ei�1 � c1 � C �Ei�1� � � � �Ej�1 � c2 � C 1 �Ej�1 � � � � �EnÑ
E1 � � � �Ei�1 � c3 � C �Ei�1� � � � �Ej�1 � 0�Ej�1 � � � � �En

where c1 and c2 are constants (constant real numbers) and c1 �c2 � c3 and C and C 1
are equal products (with all multiplicands equal up to permutation). Note that this
rule assumes that multiplication and addition are commutative and associative.

Similar summands on two sides:

E1 � � � � �Ei�1 � c1 � C �Ei�1 � � � � �En � E1
1 � � � � �E1

j�1 � c2 � C 1 �E1
j�1 � � � � �E1

mÑ
E1 � � � � �Ei�1 � c3 � C �Ei�1 � � � � �En � E1

1 � � � � �E1
j�1 � 0�E1

j�1 � � � � �E1
m

where c1 and c2 are constants (constant real numbers) and c1 � c2 � c3 and
C and C 1 are equal products (with all multiplicands equal up to permutation).
Note that this rule assumes that multiplication and addition are commutative and
associative.

Fraction with constant numerator:

x

1
Ñ x

x

c
Ñ p1{cq � x

where c is a constant (constant real number) and c � 1

Multiple fraction:

a
b
c

Ñ a � c
b

a
b

c
Ñ a

b � c
a
b
c
d

Ñ a � d
c � b
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Multiplication of fractions:

a � b

c
Ñ a � b

c
a

b
� c Ñ a � c

b
a

b
� c

d
Ñ a � c

b � d
Commutativity with number:

x � c Ñ c � x
where c is a constant (constant real number) and x is not a constant.

Associativity and commutativity:

x � pc � yq Ñ c � px � yq
where c is a constant (constant real number) and x is not a constant.

Cancellation: If the current goal is of the form

E1 � � � �Ei�1 � � �C �Ei�1 � � � � �En � E1
1 � � � �E1

j�1 � � �C �E1
j�1 � � � � �E1

m

and if all summands Ei and E1
j have a common multiplication factor X, then try

to prove that it holds X � 0:

• if X � 0 has been proved, the current goal can be rewritten to 0 � 0;

• if X � 0 has been disproved (i.e., if X � 0 has been proved), then both sides
in the current goal can be cancelled by X;

• if neither X � 0 nor X � 0 can be proved, then assume X � 0 (and add to
the list of non-degenerative conditions) and cancel both sides in the current
goal by X.

Note that this steps includes proving subgoals (which initiate the whole proving
process on the new goal). However, note that there is no branching, so the proof
is always sequential. See also §3.3.3.

Right associativity: ppa � bq � cq Ñ a � pb � cq
Distributivity over addition:

a � pb� cq Ñ a � b� a � cpb� cq � a Ñ b � a� c � a
Sum of fractions:

a

b
� c

b
Ñ a� c

b
a

b
� c Ñ a� c � b

b

c� a

b
Ñ c � b� a

b
a

b
� c

d
Ñ a � d� c � b

bd
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Fractions on two sides:

a

b
� c

b
Ñ a � c

a

b
� c

d
Ñ a � d � c � b

Elimination of fraction:

a

b
� c Ñ a � b � c

a � c

d
Ñ a � d � c

One side:

a � c Ñ a� c � 0

In the algebraic simplification step, these rules are used in the “waterfall” manner:
they are tried for applicability, and when one rule is (once) applied successfully, then
the list of the rules is tried from the top. The algebraic rules are ordered as above. It is
not difficult to prove that such transformation process terminates.

3.3.6 Geometric Simplifications

Geometric simplifications are based on the following lemmas: 1, 2, 4, 10, 11, 17, 18, 19
and on the following definitions: 4, 5, 6. They are applied within the following rules:

Zero-valued geometry quantity:

AA Ñ 0
AA

BC
Ñ 0 Lemma 11

SABC Ñ 0 if A, B, C are collinear; Lemma 2
PAAB Ñ 0 Lemma 17
PBAA Ñ 0 Lemma 17

Matching quantity:

• If there is a term AB in the current goal, apply exhaustively the following
rewrite rule:

BA Ñ AB

• If there is a term SABC in the current goal, apply exhaustively the following
rewrite rules:

SBCA Ñ SABC Lemma 1
SCAB Ñ SABC Lemma 1
SACB Ñ �1 � SABC Lemma 1
SBAC Ñ �1 � SABC Lemma 1
SCBA Ñ �1 � SABC Lemma 1
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• If there is a term PABC in the current goal, apply exhaustively the following
rewrite rule:

PCBA Ñ PABC Lemma 18

• If there is a term PABA in the current goal, apply exhaustively the following
rewrite rule:

PBAB Ñ PABA Lemma 19

This transformation is performed in hope that some expression can be cancelled
afterwards.

Orient: This rule is applied when the current construction step2 introduces the point
Y . Elimination lemmas enable eliminating a point from expressions only at certain
positions — usually the last position in the list of the arguments. That is why
it is necessary to transform relevant terms in the current goal. For terms SABCD

and PABCD (of arity 4), the first step is to transform them into terms of arity 3.

Y A

BC
Ñ �1 � AY

BC
Lemma 10

BC

Y A
Ñ �1 � BC

AY
Lemma 10

SAY B Ñ SBAY Lemma 1
SY AB Ñ SABY Lemma 1
PY AB Ñ PBAY Lemma 18
SY ABC Ñ SY AB � SY BC Definition 4
SAY BC Ñ SAY B � SABC Definition 4
SABY C Ñ SABY � SAY C Definition 4
PABCD Ñ PABD ��1 � PCBD Definition 6

Geometric simplification is applied in each iteration of the while-loop in the algo-
rithm, and then after the while-loop. In this last application, apart from the above rules,
there are several additional ones, described below.

S4 to S3:
SABCD Ñ SABC � SACD Definition 4

P4 to P3:
PABCD Ñ PABD ��1 � PCBD Definition 6

H4 points:
SABC Ñ SABD � SADC � SDBC Lemma 4

if there are terms SABD, SADC , SDBC in the current goal.

P3 to segments:

PABC Ñ AB2 � CB2 ��1 �AC2 Definition 5

In the main loop, only the first three of the above rules are used.
In the geometric simplification step, the above rules are used in the “waterfall”

manner: they are tried for applicability, and when one rule is (once) applied successfully,
then the list of the rules is tried from the top. The geometric rules are ordered as above.
It is not difficult to prove that such transformation process terminates.

2Recall that construction steps are processed one by one, in reversed order — from the last to the
first one.



40 CISUC TR 2006/001

3.3.7 Scope

The theorem prover can prove any geometry theorem expressed in terms of geometry
quantities, and involving only points introduced by using the commands point, line,
intersec, midpoint, med, perp, foot, parallel, translate, towards, online. This
can be proved following the ideas from (Chou et al., 1993). However, some of the proofs
can be very long.

3.4 Prover Output

A proof is exported in LATEX form using a special style file gclc.sty, in the file
name-proof.tex (in the current directory, name is the name of the input file). If there
is no prove command within the construction, then the file name-proof.tex will not
be created.

At the beginning of the proof, the auxiliary points are defined, for instance:

Let M0
a be the midpoint of the segment BC.

Let T 1
a be the point on bisector of the segment BC (such that TRATIO

T 1
a M0

a B 1).

The proof consists of proof steps. In each proof step, the current goal is changed. For
each proof step, there is an explanation and its semantics counterpart. This semantic
information is calculated for concrete points used in the construction (note that these
coordinates are never used in the proof itself); it can serve as a semantic test, especially
for conjectures for which is not known whether or not they are theorems. Proof step are
enumerated. For example:��

AF

FB
� BD

DC

	 � CE

EA

	
= 1 by the statement (1)����1 � AF

BF

	 � BD

DC

	 � CE

EA

	
= 1 by geometric simplifications (2)

The gclc style has three options controlling the output, the above example show the
default values, e.g. portrait, small and no semantic values. The options and its values
are:

orientation & style portrait – uses the package longtable to generate a multi-page
table (default value); portraitbreqn – uses the package breqn to try to break au-
tomatically the equations. Notice that the package breqn fails if it encounter extra
large fractions (it fails if the fraction is larger then the textwidth); landscape -
uses the packages lscape, amsmath (with option leqno), and breqn, to generate the
list of equations in landscape mode, with numbers on the left, and with automatic
equation breaking.

size The normal size names of LATEX, from “tiny” up to “large” are used in order to
define the size of the fonts inside a demonstration. The default value is small.

semantics if used, it displays the semantic values of both sides of equations. The
default value is NULL.

Lemmas are proved within the main proof (making nested proof levels), and the
beginning and the end of a proof for a lemma is marked by a horizontal solid line.
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At the end of a proof, it is reported if the conjecture is proved (“Q.E.D.” — lat. Quod
Erat Demonstrandum — which was required to prove) or not.

At the end of the main proof all non-degenerative conditions are listed. For instance:

SM0
aM2

b
T 3

b
� ST 1

a M2

b
T 3

b
i.e., lines M0

aT 1
a and M2

b T 3
b are not parallel (con-

struction based assumption)

See some complete examples in the appendix.

3.4.1 Controlling Level of Output

The level of proof output is controlled by the command prooflevel. This command
has one argument (an integer from 0 to 7) which provides the output level:

0 : no output (except the statement);

1 : elimination steps plus grouped geometric steps and algebraic steps;

2 : elimination steps plus geometric steps plus grouped algebraic steps;

3 : as level 2, plus statements of lemmas;

4 : as level 3, plus elimination steps plus grouped geometric steps and algebraic
steps in lemmas;

5 : as level 4, plus geometric steps in lemmas;

6 : as level 5, plus algebraic steps at proof level 0;

7 : as level 6, plus algebraic steps in lemmas.

The default output level is 1.

3.4.2 Prover Short Report

Apart from the proof exported to file name-proof.tex, the prover produces a short
report (if there was a conjecture given in the gcl file). In the command line version,
this short report is shown and written in the log file, while WinGCLC shows this report
in its output window. The report consists of information on number of steps performed,
on CPU time spent and whether or not the conjecture has been proved. For example:

Number of elimination proof steps: 3

Number of geometric proof steps: 6

Number of algebraic proof steps: 23

Total number of proof steps: 32

Time spent by the prover: 0.002 seconds

The conjecture successfully proved.

The prover output is written in the file ceva-proof.tex.
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Proofs examples

A.1 GeoThms - Geometry Theorems Database

As a support for the other programs there exist the GeoThms data base. The GeoThms
- Geometry Theorems Database aims to provide a common repository of theorems and
proofs in the area of constructive problems in Euclidean Geometry, in particular for the
Area Method.

The examples described next, along with many others can be found in:

http://hilbert.mat.uc.pt/~geothms/

using as user and password “anonymous”.

A.2 Proof of Ceva’s Theorem

A.2.1 Default style

The complete proof compiled with the default options.��ÝÑ
AFÝÝÑ
FB

� ÝÝÑBDÝÝÑ
DC

� � ÝÝÑCEÝÑ
EA

� � 1
by the state-
ment

(0)����1 � ÝÑAFÝÝÑ
BF

� � ÝÝÑBDÝÝÑ
DC

� � ÝÝÑCEÝÑ
EA

�� 1
by geometric
simplifications

(1)��1 ��ÝÑAFÝÝÑ
BF

��ÝÝÑBDÝÝÑ
DC

� ÝÝÑCEÝÑ
EA

���� 1
by algebraic
simplifications

(2)��1 ��SAPC

SBPC

��ÝÝÑBDÝÝÑ
DC

� ÝÝÑCEÝÑ
EA

���� 1

by Lemma
8 (point F

eliminated)
(3)��1 ��SAPC

SBPC

��ÝÝÑBDÝÝÑ
DC

���1 � ÝÝÑCEÝÑ
AE

����� 1
by geometric
simplifications

(4)�
SAPC � �ÝÝÑBDÝÝÑ

DC
� ÝÝÑCEÝÑ
AE




SBPC

� 1
by algebraic
simplifications

(5)

42
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SAPC ��ÝÝÑBDÝÝÑ

DC
� SCP B

SAPB




SBPC

� 1

by Lemma
8 (point E

eliminated)
(6)�

SAPC ����1 � ÝÝÑBDÝÝÑ
CD


 � SCPB

SAPB



p�1 � SCPBq � 1
by geometric
simplifications

(7)�
SAPC � ÝÝÑBDÝÝÑ

CD



SAPB

� 1
by algebraic
simplifications

(8)�
SAPC � SBPA

SCP A

	
SAPB

� 1

by Lemma
8 (point D

eliminated)
(9)�

SAPC � SBPAp�1�SAPCq	p�1 � SBPAq � 1
by geometric
simplifications

(10)

1 � 1
by algebraic
simplifications

(11)

Q.E.D.

NDG conditions are:

SBPA � SCPA i.e., lines BC and PA are not parallel (construction based assump-
tion)

SAPB � SCPB i.e., lines AC and PB are not parallel (construction based assump-
tion)

SAPC � SBPC i.e., lines AB and PC are not parallel (construction based assump-
tion)

PFBF � 0 i.e., points F and B are not identical (conjecture based assumption)

PDCD � 0 i.e., points D and C are not identical (conjecture based assumption)

PEAE � 0 i.e., points E and A are not identical (conjecture based assumption)

Number of elimination proof steps: 3

Number of geometric proof steps: 6

Number of algebraic proof steps: 23

Total number of proof steps: 32

Time spent by the prover: 0.001 seconds

A.2.2 Landscape & Semantics

A fragment of the proof compiled with the options landscape and semantics.
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(1)

  

−→

AF

−→

FB

·

−→

BD

−→

DC

!

·

−→

CE

−→

EA

!

= 1 , by the statement (value 1=1)

(2)

   

−1 ·

−→

AF
−→

BF

!

·

−→

BD
−→

DC

!

·

−→

CE
−→

EA

!

= 1 , by geometric simplifications (value 1=1)

(3)

 

−1 ·

 

−→

AF

−→

BF

·

 

−→

BD

−→

DC

·

−→

CE

−→

EA

!!!

= 1 , by algebraic simplifications (value 1=1)

(4)

 

−1 ·

 

SAPC

SBPC

·

 

−→

BD

−→

DC

·

−→

CE

−→

EA

!!!

= 1 , by Lemma 8 (point F eliminated) (value 1=1)

(5)

 

−1 ·

 

SAPC

SBPC

·

 

−→

BD
−→

DC

·

 

−1 ·

−→

CE
−→

AE

!!!!

= 1 , by geometric simplifications (value 1=1)

(6)

“

SAPC ·

“

−→

BD
−→

DC
·

−→

CE
−→

AE

””

SBPC

= 1 , by algebraic simplifications (value 1=1)

(7)

“

SAPC ·

“

−→

BD
−→

DC
·

SCPB

SAPB

””

SBPC

= 1 , by Lemma 8 (point E eliminated) (value 1=1)

(8)

“

SAPC ·

““

−1 ·

−→

BD
−→

CD

”

·
SCPB

SAPB

””

(−1 · SCPB)
= 1 , by geometric simplifications (value 1=1)

A
.3

H
a
r
m
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n
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S
e
t

P
r
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o
f

A
.3

.1
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r
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w
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A
u
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m
a
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B
r
e
a
k
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g
o
f
E
q
u
a
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n
s

A
fragm
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t
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th

e
p
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of
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p
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w
ith

th
e

op
tion

p
o
r
t
r
a
i
t
b
r
e
q
n
.
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(1)
−→
LF
−−→
KF

=

−→
LG
−−→
GK

, by the statement

(2)
−→
LF
−−→

KF
=

(

−1 ·

−→
LG
−−→

KG

)

,
by geometric
simplifications

(3)
−→
LF
−−→
KF

=

(

−1 ·

SLAC

SKAC

)

,
by Lemma 8 (point G

eliminated)

(4)
−→

LF
−−→
KF

=
(−1 · SLAC)

SKAC

, by algebraic simplifications

(5)
SLBD

SKBD

=
(−1 · SLAC)

SKAC

,
by Lemma 8 (point F

eliminated)

(6)(SLBD · SKAC) = (−1 · (SLAC · SKBD)) , by algebraic simplifications

(7)(SLBD · SACK) = (−1 · (SLAC · SBDK)) ,
by geometric
simplifications

(

SLBD ·

((SABC · SACD) + (−1 · (SDBC · SACA)))

SABDC

)

= (−1 · (SLAC

· SBDK)) ,
by Lemma 30 (point K

eliminated)

(8)

(9)

(

SLBD ·

((SABC · SACD) + (−1 · (SDBC · 0)))

SABDC

)

= (−1 · (SLAC

·SBDK)) ,
by geometric
simplifications

(10)
(SLBD · (SABC · SACD))

SABDC

= (−1 · (SLAC · SBDK)) , by algebraic simplifications

(11)

(SLBD · (SABC · SACD))

SABDC

=

(

−1

·

(

SLAC ·

((SABC · SBDD) + (−1 · (SDBC · SBDA)))

SABDC

))

,
by Lemma 30 (point K

eliminated)

(12)

(SLBD · (SABC · SACD))

SABDC

=

(

−1 ·

(

SLAC ·

((SABC · 0) + (−1 · (SDBC · SBDA)))

SABDC

))

,
by geometric
simplifications

(13)(SLBD · (SABC · SACD)) = (SLAC · (SDBC · SBDA)) , by algebraic simplifications

(14)(SBDL · (SABC · SACD)) = (SACL · (SDBC · SBDA)) ,
by geometric
simplifications

(15)

(

((SACD · SBDB) + (−1 · (SBCD · SBDA)))

SACBD

· (SABC · SACD)

)

= (SACL · (SDBC · SBDA)) ,
by Lemma 30 (point L

eliminated)

(16)

(

((SACD · 0) + (−1 · (SBCD · SBDA)))

SACBD

· (SABC · SACD)

)

= (SACL · (SBCD · SBDA)) ,
by geometric
simplifications

(17)

(−1 · (SBCD · (SBDA · (SABC · SACD))))

SACBD

= (SACL · (SBCD

· SBDA)) , by algebraic simplifications
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