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On Restriction Properties of
Multiplication Operators

A. Plichko and V. Shevchik

Abstract. A multiplication operator A acting in a rearrangement-invariant function space
E is considered. Infinite dimensional subspaces X of E for which the restriction A|X is an
isomorphism are described. Applications to multiplied trigonometric sequences in Banach
function spaces are given.
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1. Introduction

Let (T, X, 1) be a finite measure space and let E be a rearrangement-invariant function
space defined on T (see [4: p. 118]). We consider the multiplication operator by a
bounded measurable function @ = a(t) (t € T) given by

Az =ax (z € E), (Az)(t) = a(t)z(t) (teT).

Obviously, A is a bounded linear operator acting in E. In general A is not invertible
and not compact. In order to investigate properties of the operator A we restrict it
to some infinite dimensional subspaces of FE, where A has a more simple nature. We
consider the following two kinds of such subspaces:

1. Infinite dimensional subspaces X C FE such that the restriction A|X is an iso-
morphism, i.e. inf{||Az||: z € X with ||z|| =1} > 0.

2. Infinite dimensional subspaces X C E such that the restriction A|X is compact.
We give a description of subspaces of both kinds. Clearly, properties of such restrictions
are helpful to understand mapping properties of A at all.

In addition, let us make the following observation:

Suppose X C E is an infinite dimensional subspace of F such that A|X is an
isomorphism. If a sequence {z,,} is a basis or unconditional basis of X, then the sequence
{az,} is a basic sequence or unconditional basic sequence in E, respectively. We will
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show that this observation is useful in order to describe properties of the sequences
{a(t) cosnt} and {a(t)sinnt} in some Banach function spaces.

The paper is organized as follows.

In Section 2 we explain some notations and formulate a simple statement on general
properties of a multiplication operator A by a bounded measurable function. In Section
3 we study subspaces X of E such that A|X is an isomorphism (in the sense explained
above). Subspaces of even and of odd functions on a compact symmetric domain 7" C R”
are of special interest. We find conditions on the function @ under which A|X are iso-
morphisms (Proposition 3.4 is the main result here). In Section 4 we consider multiplied
trigonometric sequences, i.e. sequences of the form {a(t) cosnt} and {a(t)sinnt} where
a is a continuous function. Using results of Section 3 we answer questions on basic
properties of such sequences in spaces L,(—m,+7) (1 < p < 4+00). A similar problem
is investigated in the multidimensional case. Namely, we find conditions under which a
multiplied n-dimensional trigonometric sequence on the cube K = [—m, +x]™ is an un-
conditional basic sequence in Ls(K). We also study multiplied lacunary trigonometric
sequences. Under some assumptions on a we show that such sequences are unconditonal
basic sequences in L,(—m,+7) (1 < p < 4+00). The investigation is based on study-
ing normed sequences {z,} C E such that |Az,| — 0 as n — 4oo. Finally, Section
5 is devoted to the study of subspaces X of E such that A|X is compact. The case
E = Ly(0,1) and a(t) = t is considered separately. The question whether A|X is strictly
singular is discussed. We give an example of a subspace X C L,(0,1) (1 <p < 2) such
that A|X, where Af(t) = tf(t), is strictly singular but non-compact. We also discuss
spectral properties of a compact selfadjoint operator that corresponds to a compact
restriction of a multiplication operator in Ly(0,1).

In the case when E = L3(0,1) and a is a continuous function, some of the results
of this paper were announced in [5].

Acknowlegement. The second named author has been supported by DFG, grant
Nr. Tr 374/2.

2. Notation. Simplest properties of multiplication operators

We use the notation suppa = {t € T : a(t) # 0} and y(a) = {t € T : a(t) = 0} =
T \ suppa. By x, we denote the characteristic function of a set o € 3. For § > 0 let
o5 = {t: |a(t)] > 6} and xs := X0, If X is a Banach space, then S(X) denotes the
unit sphere of X. By ”subspace” we mean a closed infinite dimensional subspace.

Let X,Y be Banach spaces and T': X — Y a linear bounded operator. Recall that

T is called strictly singular if, for any subspace Z C X, T'|Z is not an isomorphism, i.e.
inf{||Tz| : z € S(X)} =0.

Proposition 2.1. The following statements are obvious:

1. A is injective on E if and only if p(y(a)) = 0. If u(vy(a)) # 0, then dim (Ker A) =
0.

2. A maps E isomorhically onto E if and only if there exists 6 > 0 such that
u(T \ o5) = 0.
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3. A is compact if and only if A is strictly singular, and A is strictly singular if
and only if A is the zero operator, i.e. p(suppa) = 0.

4. A has closed range if and only if there exists 6 > 0 such that u(suppa \ os) = 0.
If in this case u(T \ suppa) # 0, then dim (ImA) = co.

3. Restrictions of A being isomorphisms

In this section we consider subspaces X of F for which A|X is an isomorphic map. We
will use the following lemma.

Lemma 3.1. Let {zx} C S(E) and |Azg|| — 0 as k — +oo. Then, for every
0 >0,

lIxszkl — 0 (k = +00). (3.1)

Proof. Indeed, ||xszx| < ||3axszs|l < ||3az| = 3||Azk| — 0 as k — +oo, and
the proof is complete il

Proposition 3.2. Let X C E be a subspace. The following conditions are equiva-
lent:

1. A|X is an isomorphism.

2. There exist 0, > 0 such that ||xsz|| > € for every x € S(X).

3. There exists § > 0 such that Ps|X is an isomorphism where Psz = xs%.

Proof. 2 & 3 follows from the definitions and 2 = 1 follows from Lemma 3.1. To

show 1 = 2 let A|X be an isomorphism. Then there exists 6 > 0 such that ||Az| =
|laz|| > 2§ for every x € S(X). Put ¢ = sup{|a(t)|: t € T}. Then

26 < [laz|| < llazxsll + llazxr\es | < cllzxsll + dllexryos | < cllzxsll + 0.

Hence [|lzxs|| > ¢ =€, and the proof is complete i

Proposition 3.3. Let T be a closed domain in R™ with Lebesque measure | and
X a subspace of a rearrangement-invariant space E defined on T. Suppose a : T — R
18 a continuous function. Then the following conditions are equivalent:

1. A|X is an isomorphism.

2. There ezist a closed set ¢ C suppa and € > 0 such that ||x,x| > € for every
z € S(X).

3. There exists a closed set o C supp a such that P,x = X, is an isomorphism in
X.

Proof. It is sufficient to change slightly the proof of Proposition 3.2. Namely, in
the proof of 1 = 2 we note that the set o5 is closed and in the proof of 2 = 1 in view
of the compactness of T we have for the closed subset o C suppa that 6 = inf{|a(¢)] :
teo}>001
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Proposition 3.4. Let T be a compact symmetric domain in R™ with Lebesque
measure i and a : T — R a continuous function. Suppose that X C E is a subspace
consisting of even or odd functions. The restriction A|X is an isomorphism if and only

if
a(t) =0 = a(—t) #0. (3.2)
Remark that condition (3.2) implies a(f) # 0 where § = (0, ...,0) € R".

Proof of Proposition 3.4. Suppose that condition (3.2) holds. First we show
that there exists 6 > 0 such that, for the set o1 = {t € T : |a(t)| < 6}, 05 D 0 = —07.
Indeed, suppose the contrary. Then there exists a sequence {tx} € T such that a(tx) — 0
and a(—tg) — 0 as k — oo. Using the compactness of T' and the continuity of a we find
a point ty € T such that a(tp) = a(—to) = 0. This contradicts (3.2). For every function
f from the rearrangement-invariant space E we have ||f|| = || f~|| where f~ is defined
by f~(t) = f(—t). Thus for even functions x we have

lexoll = llz™xo |l = llexs | = llexo |-

Similarly, for odd functions z we have

lexoll = Il = 27 xo |l = [l7 X0l = l2Xo. |-

In view ||z|| < [|lzxs|| + [|zx0. || < 2]|zxs|| we have in both cases
)
[Az]| = [laz (| > llazxs]| = ollexsll = Fllzl-

Therefore A|X is an isomorphism.

To prove the "only if” part suppose that (3.2) fails, that is there exists ty € T such
that a(to) = a(—to). We consider two cases:

a) tg # 0. We denote by Q) € R the cube with center ¢y and side length % Put
o = Qr NT. It is obvious that pu(oy) # 0. Denote xi := x5, and Put zx = xx + X
and yr = xx — Xj - The function zj is even and the function y; is odd. In view of the
coninuity of the function a,

H (||xk||)H< sup la(0) |5+ sup @] R0 oo 33

t€aw || el T iee, [kl

Since o N —oy = () for every k > kg, we have ||yx|| > ||xx|| > 0 for k > ko. Therefore
the proof of

Yk 00 _
A<||yk||>_)0 (k — +00) (3.4)

is similar to that of (3.3).

b) to = 0. Let o4 be the cube centered at (%, ..., +) with side length . In this case
the proof of (3.3) - (3.4) is the same as that in the case a). It follows from (3.3) - (3.4)
that A|X is not an isomorphism. This completes the proof
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4. Multiplied trigonometric sequences

Recall that a sequence {z,} C X in a Banach space X is said to be a basic sequence if
it is a basis of its closed linear span (see [3: p. 1]).

Proposition 4.1. Let a be a continuous function on [—m,+n| such that condition
(3.2) is fulfilled. Then {a(t)cosnt} and {a(t)sinnt} are basic sequences in the space
Ly(—m,+m) (1 <p < +00) and unconditional basic sequences in the space Lo(—m,+).

Proof. It follows immediately from Proposition 3.4 and the well known property
that the trigonometric sequence is a basis in the space L,(—m,+7) (1 < p < +00,p # 2)
and an unconditonal basis in the space Lo(—m,+m). We also use the simple statement
that each isomorphism maps a basic sequence into a basic sequence and an unconditional
basic sequence into an unconditional basic sequence i

Remark 4.2. It follows from known results of the theory of rearrangement-invari-
ant spaces that Proposition 4.1 is also valid for rearrangement-invariant spaces on
[—7, +7] with non-trivial Boyd indices (see [4: p. 130]).

Remark 4.3. Proposition 3.4 implies that {¢ cos nt},cn and {tsinnt},en are basic
sequences in L,(0,27) (1 < p < +oo,p # 2) and unconditonal basic sequences in
L4(0,2m). This contrasts to properties of the sequence {te,(t)}n>1, where e;(t) = 1,
ea(t) = cost, eg(t) = sint, ... - the trigonometric sequence. It is easy to show that
{ten(t)}n>1 is not deficiently minimal in L (0, 27), i.e. it is not minimal after a deletion
of a finite number of elements (see [6: p. 121]).

Let T = K = [—m,+x|™. Then the set of all possible different n-products
sin(k1ti, ) - - -sin(kgt;, ) cos(ksyats,, ) - - -cos(knti, ) (4.1)

where 0 < kp... < 400, 1 < 41,..,ip < n, 0 < 5 < nand t;; € [—m, +7] forms an
orthogonal basis of the space Ly(K). Elements (4.1) with even s generate a subspace
of even functions, elements (4.1) with odd s generate a subspace of odd functions.

The proof of the following assertion is similar to that of Proposition 4.1.

Proposition 4.4. Let a be a continuous function on the cube K such that condition
(3.2) is fulfilled. Then the products of the function a by functions (4.1) in the case of
even or odd s form unconditional basic sequences in the space La(K).

Let us recall some definitions. A sequence {zj} of elements of a rearrangement-
invariant space F is said to be

disjoint if p{t : zx(t)x;(t) #0} =0 (k#I1)
almost disjoint if, for a disjoint (corresponding) sequence {yx} C E, W — 0 as
k — +oo0.

A rearrangement-invariant space F is said to have an absolutely continuous norm if,
for every decreasing sequence of measurable sets {0y} such that Noy = () and for every
z € E, ||xo,z|| = 0 as k — +o0.
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Lemma 4.5. Let E be a rearrangement-invariant space with absolutely continu-
ous norm and p(y(a)) = 0. Assume that a sequence {xr} C S(FE) satisfies (3.1) for
some 6 > 0. Then {xr} contains an almost disjoint subsequence {xy,} such that for a
corresponding disjoint sequence {y;}

sup{|a(t)|: t € suppy;} — 0 (i = +o00). (4.2

~—

N[

Proof. First we show that for every €,0 > 0 and every k there exist 0 < §' <
and k' > k such that for the characteristic function x4 s of the set o5 U (T \ o4)

Ixsr,6 21| < e (4.3)

Indeed, using (3.1) we choose k' > k such that ||xszr/|| < £. Since the norm is

2
absolutely continuous we can choose 0 < &' < & such that |[x7\s 2| < §. Now we
have

lIxsr,6 zie || < |lxs zrr || + [ xr\or Tar || < €.

We construct a required almost disjoint sequence using an inductive process. In the
first step we put £ = 1 and, using the absolute continuity of the norm, choose d; such
that ||xr\s,, z1]| < 1. Suppose that the (i — 1)st step is done. Using (4.3) we choose

ki > k;—1and 0 < §; < &TA such that [|xs,.6, 1 Xkl < % As a correspondent disjoint
sequence {y;} we take ¥; = X{t.5,<|a(t)|<5;_} Tki- By construction, {y;} is disjoint and,
since 6; — 0 if i — oo, condition (4.2) holds. Futhermore,

|k, — vill

1
N 1Tk, = Xgt:5,<lat) <651} Thill = |IX55,6:1 Thsi || < ;0

as ¢ — 400, and the proof is complete B
The following proposition is a simple corollary of Lemmas 3.1 and 4.5.

Proposition 4.6. Let E be a rearrangement-invariant space with absolutely con-
tinuous norm and p(y(a)) = 0. Suppose also that ||Azg|| — 0 (k — +o0) for some
{zr} C S(E). Then {xx} contains an almost disjoint subsequence such that a corre-
sponding disjoint sequence satisfies condition (4.2).

Corollary 4.7. Let E be a rearrangement-invariant space with absolutely continu-
ous norm and p(y(a)) = 0. Suppose also that a subspace X C E does not contain any
almost disjoint sequence. Then A|X is an isomorphism.

Corollary 4.8. Let X be a subspace included into all spaces L,(p) (1 <p < +00).
Suppose that the L,-norms are equivalent on X and p(vy(a)) = 0. Then the restriction
A|X is an isomorphism in every space L,(pn) (1 < p < +00).

Proof. Assume the contrary. Proposition 4.6 yields that X contains an almost
disjoint sequence {zy}. By virtue of well known stability properties of basic sequences,
{z)} contains a subsequense {zy,} such that it is equivalent to the standard basis of
[, in the space L, and to the standard basis of [, in the space L,. But it is a classical
result that the standard bases of [, and [, are not equivalent il
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Let us remind that a sequence {ny} of positive integers is said to be lacunary if
infj, 2L = )
infy = > 1.

Corollary 4.9. Suppose T = [—-m,+7], 1 < p < 400, p(y(a)) = 0 and that the
sequence {n} is lacunary. Then {ae,,} with {e,} being the trigonometric sequence is
an unconditional basic sequence in Ly(—m,+m).

Proof. It follows immediately from a known property of lacunary sequences in
L, (1 < p < +00): the Ly,-norms on the linear span of a lacunary sequence are
equivalent B

5. Restrictions of A with the compact mapping property

In this section we study subspaces X of a rearrangement-invariant space E such that
A|X are compact mappings. The symbol Tp—x means weak convergence.

Proposition 5.1. Let X be a subspace of a reflexive rearrangement-invariant space
E and pu(y(a)) = 0. The following conditions are equivalent:

1. A|X is compact.

2. For every {zy} € S(X) such that x1,—0 and for every § > 0 we have ||xsxx| — 0
as k — +oo.

3. FEvery weakly zero sequence {xy} C S(X) contains an almost disjoint subsequence
such that for a corresponding disjoint sequence {y;} condition (4.2) holds.

Proof. Since in a reflexive Banach space a compact operator maps weakly zero
convergent sequences to sequences converging strongly to zero, 1 = 2 follows from
Lemma 3.1. The proof of 2 = 3 follows from Lemma 4.5. 3 = 1: Let {zx} C S(X)
and z;—0 as k — +oo. Choose an almost disjoint subsequence {z,} of the sequence
{zr} such that for a correspondent disjoint sequence {y;} (4.2) holds. Then ||Ay;|| — 0.
Therefore ||Azy,|| — 0 as ¢ — 4+o0. This means that A|X is compact il

Let us formulate an alternative version of Proposition 5.1 adapted to the Hilbert
space L2(0,1) and the multiplication by the independent variable t.

Proposition 5.2. Let E = L3(0,1) and a(t) = t. Suppose X is a subspace of
Ly(0,1). The following conditions are equivalent:

1. A|X is compact.

2. For every othonormal sequence {z,} C X and for every 6 € (0,1), f; 2k ()% dt
— 0 as k — +o0.

3. Every orthonormal sequence {xi} C X contains an almost disjoint subsequence
{zk,} such that, for a corresponding disjoint sequence {y;}, suppy; C [0;,d;—1] where
{8;} is a decreasing sequence of real numbers with ; — 0 as i — +o00.

Remark 5.3. Proposition 5.2 fails if its conditions are only fulfilled for some or-
thonormal sequences. Namely, it follows from the results of [2] that there exists an
orthonormal basis {zx} of Ly(0,1) such that |[tzg(t)|| — 0 as & — 4o00. But the
multiplication operator by the independent variable ¢ is non-compact in L2(0,1).
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It is well known that every strictly singular operator in a Hilbert space is compact
(see [1]). We have noted (Proposition 2.1) that a strictly singular multiplication op-
erator in a rearrangement-invariant space E is compact. What about restrictions of a
multiplication operator A acting in a rearrangement-invariant space E7 Is every strictly
singular restriction compact? In general the answer is "no”.

Example 5.4. Put £ = L,(—1,+1) (1 <p < 2). By {r,} we denote the sequence
of Rademacher functions defined on [0,1] and extended by zero on [—1,0). Let x,
be the characteristic function of the interval (—2%, —2,1%) and X, the corresponding
normalized function. We consider the sequence {z,} given by z,, = 7, + Xn. It is easy
to show that {z,} in the space L,(—1,+1) (1 < p < 2) is equivalent to the standard
basis of I,. Let X be the subspace of L,(—1,+1) spanned by {z,}. Now we consider
the multiplication operator by the function a(t) =t acting in L,(—1,+1) (1 <p < 2).
It is also easy to see that the sequence {Ax,} is equivalent to the standard basis of the
space lo. But it is well known that the natural imbedding of /,, into I5 is strictly singular
and non-compact.

To close this section, we consider spectral properties of some compact operator
connected with a multiplication operator in Lo(0,1).

Let a be a continuous function such that a(ty) = 0 for some ¢y € [0,1]. Given a
subspace X C L2(0,1), we denote by Px the orthogonal projection onto X. Suppose
that A|X is compact. We denote by Bx = Px APx the compact selfadjoint operator
acting in Ly (0, 1).

Proposition 5.5. Let {\,} be a sequence of real numbers such that

max a(t) > Ay > Aa > ... and lim A, = 0.
te[0,1] k—o0

Then there exists a subspace X C L3[0,1] such that A, (n € N) are eigenvalues of the
compact selfajoint operator Bx.

Proof. It is obvious that for the characteristic function y, of ¢ € ¥ and for the
orthogonal projection P, corresponding to the one-dimensional subspace generated by

Xo
o) _ [ /
PP, = = | “)dt/ e

Using this observation, the continuity of the function a and an induction process it is
easy to construct a sequence of disjoint sets o,, such that, for the orthogonal projection
Px onto the subspace X = clspan{x,,}, PxAPx(Xo,) = AnXo,- This means that

BX (Xan) = )\nXon |
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