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Hyperbolic Functional-Differential Equations
with Unbounded Delay

Z. Kamont

Abstract. The phase space for quasilinear equations with unbounded delay is constructed.
Carathéodory solutions of initial problems are investigated. A theorem on the existence,
uniqueness and continuous dependence upon initial data is given. The method of bichar-
acteristics and integral inequalities are used.
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1. Introduction

For any metric spaces U and V we denote by C(U, V) the class of all continuous func-
tions defined on U and taking values in V. We will use vectorial inequalities with the
understanding that the same inequalities hold between their corresponding components.
Let
E = [-1¢,0] x [-7, +7] C R**™

where 79 € Ry := [0,+00) and 7 = (r1,...,7,) € R}. Assume that a > 0, (t,z) =
(t,z1,...,2,) €[0,a] xR™ and z : [~7p,a] x R* — R. We define a function 2y ;) : £ —
R™ by

Z(t’m)(T,S):Z(t-I-T,:L'-}-S) ((’7',8) EE)
For each (¢, ) € [0,a] x R" the function z(; ;) is the restriction of z to the set [t —ro, ] X
[x — 7,z + 7| and this restriction is shifted to the set E. Suppose that

F:[0,a] xR" x C(E,R) xR" - R

is a given function. In this time numerous papers were published concerning various
problems for the equation

Dyz(t,x) = F(t,z, 2(t,1), Doz(t, z))

where D,z = ( Dy, 2,...,D,, z) and for adequate weakly coupled hyperbolic systems.
The following questions were considered: functional-differential inequalities, uniqueness
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of initial or initial-boundary value problems, difference-functional inequalities, approx-
imate solutions of initial or initial-boundary value problems, existence of classical or
generalized solutions (see [1 - 3, 5 - 8, 10 - 15]). All these problems have the property
that the set E is bounded.

In the paper we start the investigation of first order partial functional-differential
equations with unbounded delay. We give sufficient conditions for the existence and
uniqueness of Carathéodory solutions of initial problems for quasilinear equations with
unbounded delay. We consider functional-differential equations in a Banach space. The
theory of ordinary functional-differential equations with unbounded delay is given in
monographs [4, 9].

We formulate the problem. Let B be a Banach space with norm || - || and D =
(=00, 0] X [=7,+7] C R"™*™ (r € R%?). The norm in R™ will also be denoted by || - ||. For
a function z : (—oo0,b] x R* — B (b > 0) and for a point (¢,z) € [0,b] x R* we define a
function z(;4) : D — B by

z(t,az)(Ta 3) = Z(t+T,$+S) ((T7 S) € D)
The phase space X for equations with unbounded delay is a linear space, with norm
| - ||x and consisting of functions mapping the set D into B. Let a > 0 be fixed and
suppose that
0=(01y---,0n) : [0,a] x R*" x X - R"
f:[0,a] xR* x X - B
¢:(—00,0] x R* - B

are given functions. We consider the quasilinear equation

th(tu .’17) + Z Q’i(t7 z, z(t,m)) Dwzz(ta .’13) = f(t7 z, z(t,m)) (1)

=1
with the intial condition
z(t,z) = p(t, x) on (—o0,0] x R™. (2)

We will deal with Carathéodory solutions of problem (1) - (1.2). A function @ : (—o0, b] x
R™ — B where 0 < b < a is a solution of the above problem provided:

(i) w is continuous on [0,b] x R™ and the derivatives D;u(t,z) and D,u(t,z) exist
for almost all (¢,z) € [0,b] x R™.

(ii) u satisfies equation (1.1) almost everywhere on [0,b] x R™ and condition (1.2)
holds.

We adopt the following notations. If z : (—oo0,b] xR®* — B (0 < b < a) is a function
such that z is continuous on [0,b] x R*, then we put for (¢,z) € [0,b] x R”

0.0 = max {||2(7, 5)[| = (r,5) € [0,4] x [w =,z + 7]}

2l ey = sup {12, )| (7,5) € [0,4] x R" }

121

and
[2(7, s) — 2(7, )|

Lipz‘[o,t;w] = Sup{ : (T7 5)7 (7-7 §) € [Ovt] X [.’13 -7+ ’I“]} :

Is = s

The fundamental axioms assumed on X are the followings.
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Assumption H[X]. Suppose the following:
1) (X,]||-||x) is a Banach space.

2) If z: (—00,b] x R* - B (0 < b < a) is a function such that 2z, € X for
r € R* and z is continuous on [0,b] x R™, then z(; ;) € X for (t,z) € (0,b] x R* and

(i) for (z,z) € [0,b] x R* we have ||z q)llx < K |z|lj0,t;2] + L ||2(0,2)||x Where
K,L € R are constant independent on z

(ii) the function (¢, ) — 2(;,4) is continuous on [0, b] x R™.
3) The linear subspace X1 C X is such that
(i) X1, endowed with the norm || - || x, is a Banach space

(ii) if z : (=o0,b] x R* — B (0 < b < a) is a function such that z ;) € Xr
for x € R", z is continuous on [0,b] x R™ and z(t,-) : R* — B satisfies the Lipschitz
condition with a constant independent on ¢ (¢ € [0,b]), then

(@) 24,0y € X for (¢,7) € (0,0] x R
(B) for (t,x) € [0,b] x R™ we have

22y x2 < Ko(ll2ll[o,6:2) + Lip 2]j0,:07) + Lollz(0,0) Il x:

where Ko, Lo € R, are constants independent on z.
Examples of phase spaces are given in Section 4.

Let us denote by L([c, 8],R) ([e, 8] C R) the class of functions

L([e, B],R) = {,u : [a, B] = R : p integrable on [a,ﬁ]}.

Further, we will use the symbol © to denote the set of functions

v(t,-) is non-decreasing for a.a. t € [0, a] }

0= {7:[0,a] xRy = R, v(-,7) € L([0,a], Ry) for all 7 € Ry

Further, write
X[k ={we X: ||lw|x <~}
Xp[k)={we Xp: |w|x, <~}

where k € R
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2. Bicharacteristics of functional-differential equations

We start with assumptions on the initial function .

Assumption Hy. Suppose that ¢ : (—o0,0] x R* — B and

(i) ¢(,2) € X for x € R?

(ii) there are L, L € R, such that ||¢(0,z)| < L for z € R” and lec0,2) = Po.)llx <
L||lx — z|| for z,Z € R".

Assumption H[p]. Suppose the following:

1) The function o(-,z,w) : [0,a] — R™ is measurable for (z,w) € R® x X and
o(t,") : R® x X — R” is continuous for almost all ¢ € [0, a].

2) There exist a, 8 € © such that ||o(t,z,w)| < a(t,k) for (z,w) € R* x X|[x]
almost everywhere on [0, a] and

ot z,w) = o(t,z, w)|| < B, k) [|lz — 2| + [lw — w||x] 3)

for (z,w), (z,w) € R" x X[k] almost everywhere on [0, a.

Suppose that ¢ : (—00,0] x R* — B and ¢ 4) € X for z € R*. Let ¢ € [0,a],
d = (do,d1) € R% and w € L([0,a],Ry). The symbol Y. ,|w,d] denotes the function
class

Yc,(p[wa d] =
( z(t,x) = p(t,x) on (—o0,0] x R" )

|z(t,z)|| < dy on [0,c] x R"

Q z:(—00,c] x R" - B F

latt2) - 2(t,2) < | [ wir)dr|+ dilla - 3
t

\ for (t,z), (,7) € [0,c] x R". )

For the above ¢ and for z € Y. ,[w, d] consider the Cauchy problem

Q(Ta 77(7—)7 Z(T,n('r)))
xr

7' (7)

n(t) = ®

where (t,z) € [0,c] x R*. We consider Carathéodory solutions of problem (4). Denote
by g[z](-,t, z) the solution of the above problem. The function g[z] is the bicharacteristic
of equation (1) corresponding to z € Y, ,[w, d].

Let A. =[0,¢] x [0,¢] x [0,¢]. For ¢ satisfying Assumption Hy define

lell(x,00) = sup {ll@0,zllx : ©€R"}.

Lemma 2.1. Suppose that Assumptions H[X| and H[p| are satisfied and
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1) the functions @, @ : (—00,0] x R* — B satisfy Assumption Hy
2) ce€[0,a], z € Yo plw,d] and Z € Y, 5w, d].

Then the solutions g[z](-,t,x) and g[z](-,t,x) are defined on [0,c| and they are unique.
Moreover, we have the estimates on A,

|glz)(T,t, %) — glz](r,2,7)|| <

f T (5)
o — 2] + / o6, R) de| | exp |d / BE, o) de
and
lgl2)(r.t,2) — gl (r, )| <
/ﬂ(& K0) [Kllz—il [0,6:R] +M||cp—g5||(X7oo)} d¢ exp J/,B(g,h;o) de (6)
¢ t
where

d=1+Kdy+ ML
k= Kdo+ M ||l (x,00)
ko = Ko(do + d1) + Lo sup {||<p(0,$)||XL i x € R”}.

Proof. Suppose that (¢,7),(&,7) € [0,¢] x R* and a function Z : (—oo, ] x R* — B
is defined by
Z(r,s) = z(T,s+ 10 —n) ((1,5) € (—o0,0] x R™).

Then Z¢ ) = 2(¢,7)- It follows from Assumptions H[X] and Hy that

lze.m — zemllx = 1(z = 2)e.mllx < (Kdo+ ML)|[|n— 7]

The existence and uniqueness of the solutions of problem (4) follows from classical
theorems. Omn this purpose, note that the right-hand side of the differential system
satisfies the Carathéodory assumptions, and the Lipschitz condition

HQ(Ta n, Z(T,’I})) - Q(Ta 7, Z(T,ﬁ)” < J:B(T’ HO) ||77 - ﬁ”

holds on [0, ¢] x R™. The function g[z|(-, ¢, x) satisfies the integral equation

T

glz](r,t,x) = $+/Q(§,g[z](§,t, ), Z(¢ g2l ta))) DE-

t

For (7,t,z),(7,t,Z) € A, we have

Hz(T,g[z](‘r,t,x))”X <K }

|2 gta1rton | x, < 5o



102 Z. Kamont

and

|2 teirt ) = Zrgeirian | x < (Kdi+ ML) |gle](r,t,2) = gl2)(nE2)||. (8)
It follows from Assumption H[X] and from (7) - (8) that the integral inequality
|92](m,t, ) — g[2](7, T, 2)]|
t T
<lle —z|| + /04(6, R)d¢| +d /ﬁ(ﬁ,ﬂo) 9l2(€, . 2) — g[2](€, 1, 7) || d€
t t

is sastisfied. Now we obtain (5) by the Gronwall inequality.
For z € Y, ,|w,d] and Z € Y, g[w, d] we have the estimate

126 ateite £.00) = Ze atzie tonllx
< (Kdi+ ML) |lgl2](¢.t, 2) — g[2](¢, ¢, 2) | (9
+ K| 1+ M e = 8l (x,00)-
It follows from Assumption H[X] and from (9) that the integral inequality

Hg[z](T, t,x) — g[z](, 1, .’IZ)H

< / B(E ko) [l — Zlo.czm) + Mllo — @l (x 000 dE

+d / B, wo)||gl2)(€, 1, 2) — g2 (€, 1, ) |de

is satisfied. Now we obtain (6) by the Gronwall inequality. This completes the proof of
the lemma i

3. Existence and uniqueness of solutions

Now we construct an integral operator corresponding to problem (1) - (2). Suppose that
the function ¢ satisfies Assumption Hy, ¢ € (0,al], 2 € Y. ,[w,d] and g[z](:, ¢, x) is the
bicharacteristic corresponding to z. Let us define the operator U, for all z € Y, ,[w,d]
be the formulas

¢
Uyz(t,z) = ¢(0, g[2](0, ¢, z) —|—/f T, 9[2)(T, 4, %), 2(r g2)(r t.2))) AT (10)
0

where (¢,z) € [0,¢] x R* and
Uyz(t,z) = ¢(t, x) on (—o00,0] x R™. (11)

Remark 3.1. The operator U, is obtained by integration of equation (1) along
bicharacteristics.

Now we give sufficient conditions for the solvability of the equation z = U,z on
Ye olw, d].
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Assumption H[f]. Suppose the following:

1) The function f(-,z,w) : [0,a] — B is measurable for (z,w) € R® x X and
f(t,) : R® x X — B is continuous for almost all ¢ € [0, a].

2) For (z,w) € R™ x X[«] and for almost all ¢ € [0, a] we have
1 (& 2, )l < alt, k). (12)
3) For (z,w),(z,w) € R™ x X[k] and for almost all ¢ € [0, a] we have
£z, w) = f(t, 2, w)|| < Bt 6) [l = 2| + [lw - @] x].

Remark 3.2. We prove a theorem on the existence and uniqueness of solutions of
problem (1) - (2). For simplicity of notations, we have assumed the same estimation for
o and for f. We have assumed also the Lipschitz condition for these functions with the
same coeflicient.

Lemma 3.3. Suppose that Assumptions H[X], Hy, H[p] and H[f] are satisfied.
Then there are (do,d1) = d € R%, ¢ € (0,a] and w € L([0,c],Ry) such that U, :
Yeolw,d] = Yo plw,d].

Proof. Suppose that the constants (dy,d;) = d and ¢ € (0,a] and the function
w € L([0,c],Ry) satisfy the conditions

do > I~/+/ a(r, k) dr
0
dl 2 Fc
w(t) > (1+Te) alt, k)

where

I.= |L+d [ B(r,ko) dr| exp|d [ B(7, ko) dT]| . (13)
/ /

Suppose that z € Y, ,[w,d]. Then we have

|U,2(t,2)|| < L+ /a(T, k) dr < dy on [0,c] x R". (14)
0

If (t,z), (t,Z) € [0,c] x R™, then using Lemma 2.1 and (10) we obtain

|Upz(t, z) — Upz(t, 7) ||

< H(p(O,g[z](O,t,a:)) — ¢(0, g[2](0,%, 3?"))” + /a(T, k) dT
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t
+ / B(r, ko) Hg[Z] 7, t,2) = g[2)(1, 1, )| + || 2(r gla1(rt.)) — Z(T,g[z](T,t_@))Hx]dT
0

t t
<1, ||z — 7 + /a(T, Rydr| | + /a(T R) dr
t t

Thus we see that

|Up2(t, 2) = Upz(t,2)|| < dillw — Z|| + | [ w(r)dr|. (15)

H-\H'I

It follows from (14) and (15) that U,z € Y. ,[w,d] which completes the proof of the
lemma i

Next we will show that there exists exactly one solution of problem (1) - (2). The
solution is local with respect to .

Theorem 3.4. Suppose that Assumptions H[X], Hy, H[p] and H[f] are satisfied.
Then there are (do,d1) = d € R%, ¢ € (0,a] and w € L([0,c],R}) such that problem
(1) — (2) has ezxactly one solution u € Y, ,[w,d].

If ¢: (—00,0] x R* — B satisfies Assumption Hy and 4 € Y. ,[w, d] is a solution of
equation (1) with the initial condition z = ¢ on (—o0,0] X R™, then there is A, € Ry
such that

e|lle = @l x,00) + sup (0, ) — @(0, )l (16)
y n

where t € [0, c].

Proof. Lemma 3.3 shows that there are (dg,d;) = d, ¢ € (0,a] and w € L([0,c],R})
such that U, : Y ,[w, d] — Y, [w, d]. Write

Ae=K(1+T,) /,3(7', Ko) dT
where T'. is given by (13). Let ¢ € (0, a] be such a constant that A, < 1. Now we prove

that U, is a contraction on Y, ,[w,d]. If z,Z € Y, ,|w, d], then

}‘U¢z(t,x) —U,Z(t, x)H <L Hg[z](O, t,z) — g[é](O,t,x)H
+ [ w0 [latlmt.0) = sl o)

+ |#6r gtetirtan — Zorgtiranllx |4
The estimate

| 2(rgll(r tia)) = Zrglel(rtian || x

< (Kdl + Mi’) Hg[Z](T, t ZE) - g[g](T, t,.%')” + K”Z - 2(”[0,7';]1%"]
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and Lemma 2.1 imply
t
[Ua(t,) = Uit )] < K(1+To) [ o)z = Sl remdr
0

for all (¢,z) € [0, c] x R™, and consequently
|Upz = UpZ|[0,crm] < Acllz = Z[[0,en-
By the Banach fixed point theorem there exists a unique solution u € Y, ,|w, d] of the
equation z = U, z.
Now we prove that u is a solution of (1). We have proved that

¢
u(t, z) = ¢(0, g[u](0, ¢, z) +/f 7, g[u](7, , ©), U(r gu)(r t.2))) 4T (17)
0

on [0, c] x R*. For given z € R let us put n = g[ul(0,t,z). It follows that g[u](7,t,z) =
g[u](1,0,n) for 7 € [0,c] and that x = g[u|(¢,0,n). The relations n = g[u|(0,t,x) and
x = g[u](t,0,n) are equivalent for z,n € R™. It follows from (17) that

u(t7 g[u] (t7 0, 77)) = (,0(0, 77) + / f(T7 g[u] (7—7 0, 77), u(T,g[u](T,O,T]))) dr (18)

where (t,n) € [0,c] x R*. By differentiating (18) with respect to ¢ and by using the
transformation n = g[u](0,¢,z) which preserves sets of measure zero, we obtain that
u satisfies equation (1) for almost all (t,z) € [0,¢] x R*. It follows from (11) that u
satisfies also condition (2).

Now we prove relation (16). If u = U,u and @ = Uz, then
Hu(t,x) — u(t, x)”

< suwp (0, 9) — (0, 9)|| + L ||g[u](0, 2, z) — g[u](0, ¢, z)|

+/O ﬁ(T,H,o)[JHg[U](Tyt;x)_g[ﬂ](77t’x)H

+ K ||
where (¢,2) € [0,c] x R*. Put

1+ Mg = Bll x| dr

A= (1+T)M / B(r,ko)dr  and  ~(t) = K(1+T0) (t, ko).

Then we get the integral inequality

||u — |0, 4rn
¢

< sup |2(0,3) — ©(0,9)|| + Aclle — @ll(x,00) +/7(T)I|U—UI|[0,T;Rn]dT
y n
0

for all t € [0, c]. It follows from the Gronwall inequality that we have estimate (16) for
A= exp[ focfy(T) dT}. This completes the proof of the theorem i



106 Z. Kamont
4. Phase spaces

We give examples of spaces X satisfying Assumption H[X].

Example 4.1. Let X be the class of all function w : (—o0, 0] X [—=r, +r] — B which
are uniformly continuous and bounded on (—oo, 0] X [—r, +7]. For w € X we write

Jwllx = sup {Jw(r, )| (7,5) € (=00,0] x [-r, +7]}.
Let X7, C X denote the set of all w € X such that

lw (7, s) — w(T, 5)|

lw|p, = sup{ : (7,8),(7,8) € (—00,0] X [—T, —i—r]} < 4o0. (19)

ls = 5

Write ||w||x, = ||w||x + |w|r where w € X. Then Assumption H[X] is satisfied.
Example 4.2. Let X be the class of all functions w : (—o0, 0] x [—r,4+r] — B such
that
(i) w is continuous and bounded on (—oo, 0] X [—7, +7]
(ii) the limit lim;, o w(t,z) exists uniformly with respect to z € [—r, +7].
Let
Jwllx = sup {Iluw(r, 5)]| : (,5) € (00,0 x [-r, +1]}.

Let X1 C X denote the class of all w € X such that the Lipschitz condition (19) is
satisfied. Write ||w||x, = ||w|lx + |w|r where w € X;. Then Assumption H[X] is
satisfied.

Example 4.3. Let v : (—00,0] — (0,+00) be a continuous function. Assume
also that 7 is non-increasing on (—oo,0]. Let X be the space of continuous functions
w : (—00,0] X [—=r,+r] = B for which

N Go]

R =0 (z € [-r,+7]).

l[w||x = sup {w : (7, 8) € (—00,0] x [, —|—7"]}.

Denote by X7 C X the set of all w € X such that

[w(r, 5) —w(r, 5)|
(s — sl

by = (1), (7:9) € (=00,0] x [-ry 1] <

For w € Xy, put ||w||x, = ||w||x + |w|,.z. Then Assumption H[X] is satisfied.

Example 4.4. Let 6 € Ry and p > 1 be fixed. Denote by X the class of all
functions w : (—o0, 0] x [—7,+7] — B such that
(i) w is continuous on [—4, 0] x [—r, +7]

(ii) for z € [—r, +r] we have f__jo |w(7, z||P dT < 00
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(iii) w(t,-) : [-r,+r] — B is continuous for t € (—oo0, —J].

Write
Jwllx = sup {lz(r,8)l|: (7, 5) € [~6,0] x [=r,+r]}
-9 1/p
+ sup {(/ ||w(, :v||pd7') :x € [, —|—r]}.

—0o0
Let X1, C X be the set of functions w € X such that the Lipschitz condition (19) is
satisfied. Write ||w||x, = ||w||x + |w|r where w € Xy. Then Assumption H[X] is
satisfied.

Remark 4.5. Differential equations with a deviated argument and differential-
integral equations can be obtained from equation (1) by specializing operators g and

f.

Remark 4.6. It is important in our considerations that we have assumed the Lip-
schitz condition for given functions on some special function spaces. More precisely, we
have assumed that the functions g(¢,-) and f(¢,-) satisfy the Lipschitz condition on the
space R™ x X, for almost all ¢ € [0, a], and the condition is local with respect to the
functional variable.

Let us consider simplest assumption on p and f. Suppose that there is P € R, such
that for almost all ¢ € [0, a] we have

z,0)|| < Pllle — 2| + [lw — @] x] (20)
z,@)| < Plllz — Z|| + [lw — @] x] (21)

||Q(ta .’13,’11)) - Q(
Hf(t,:l?,’w) - f(

where (z,w), (Z,w) € R* x X. Of course, our results are true if we assume (20), (21)
instead of (3), (12).

Now we show that formulations (3), (12) are important. We show that there is a
class of quasilinear equations satisfying (3), (12) but not satisfying (20), (21). Let X
and X7 be the spaces given in Example 4.1. Consider the equation with a deviated
argument

2
2

Dyz(t,z) + Y 8i(t, @, 2(1ho(t),1(t, %)) Da, 2(t, ) = f(t, 2, 2(¢0(t), ¥(t, ) (22)

1=1

where
0= (01,---,0n):[0,a] xR" x B = R"

]
f:[0,a] xR* xB— B

Yo : [0,a] = (—o0, al

¥ :[0,a] x R* — R™.
We assume that 9(t) < ¢t and —r < Y(t,z) —z < +r for (t,z) € [0,a] x R*. We get
(22) by putting in (1)

o(t, @, w(to(t) =, 9 (t,7) - x))
f(t,:c,'w) = f(t,:[) w(wO(t) - tﬂﬁ(t,ﬂ?) - :L.))
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From now we consider the function p only. Suppose that there are C, Ce R, such that

|a(t,2,¢) — 8(t, %, Q)| < C[llz — zl| + I — C|]
|, %) — 9, 5)| < Cllz -z

It is evident that for (z,w), (z,w) € R® x X[k] and for almost all ¢ € [0, a] we have
lo(t, z,w) — o(t,z,w)|| < C[1 + &(1 + O] & — 2| + C ||w — w]|x-

Then condition (3) is satisfied.

We see at once the the function g(t, -) does not satisfy the global Lipschitz condition
(20) for (z,w), (z,w) € R* x X. Similar consideration apply to f.
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