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Chapter 14

Knots and links

In this chapter we introduce the basic notions and constructions of knot theory.
Many of these apply equally well in all dimensions, and for the most part we
have framed our definitions in such generality, although our main concern is with
2-knots (embeddings of S2 in S4 ). In particular, we show how the classification
of higher dimensional knots may be reduced (essentially) to the classification
of certain closed manifolds, and we give Kervaire’s characterization of high
dimensional knot groups.

In the final sections we comment briefly on links and link groups.

14.1 Knots

The standard orientation of Rn induces an orientation on the unit n-disc Dn =
{(x1, . . . xn) ∈ Rn | Σx2

i ≤ 1} and hence on its boundary Sn−1 = ∂Dn , by the
convention “outward normal first”. We shall assume that standard discs and
spheres have such orientations. Qualifications shall usually be omitted when
there is no risk of amiguity. In particular, we shall often abbreviate X(K),
M(K) and πK (defined below) as X , M and π , respectively.

An n-knot is a locally flat embedding K : Sn → Sn+2 . (We shall also use the
terms “classical knot” when n = 1, “higher dimensional knot” when n ≥ 2 and
“high dimensional knot” when n ≥ 3.) It is determined up to (ambient) isotopy
by its image K(Sn), considered as an oriented codimension 2 submanifold of
Sn+2 , and so we may let K also denote this submanifold. Let rn be an orienta-
tion reversing self homeomorphism of Sn . Then K is invertible, +amphicheiral
or -amphicheiral if it is isotopic to rK = rn+2K , Kρ = Krn or −K = rKρ,
respectively. An n-knot is trivial if it is isotopic to the composite of equatorial
inclusions Sn ⊂ Sn+1 ⊂ Sn+2 .

Every knot has a product neighbourhood: there is an embedding j : Sn ×D2

onto a closed neighbourhood N of K , such that j(Sn × {0}) = K and ∂N is
bicollared in Sn+2 [KS75,FQ]. We may assume that j is orientation preserving,
and it is then unique up to isotopy rel Sn × {0}. The exterior of K is the
compact (n + 2)-manifold X(K) = Sn+2 − intN with boundary ∂X(K) ∼=
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268 Chapter 14: Knots and links

Sn × S1 , and is well defined up to homeomorphism. It inherits an orientation
from Sn+2 . An n-knot K is trivial if and only if X(K) ' S1 ; this follows from
Dehn’s Lemma if n = 1, is due to Freedman if n = 2 ([FQ] - see Corollary
17.1.1 below) and is an easy consequence of the s-cobordism theorem if n ≥ 3.

The knot group is πK = π1(X(K)). An oriented simple closed curve isotopic
to the oriented boundary of a transverse disc {j} × S1 is called a meridian for
K , and we shall also use this term to denote the corresponding elements of π .
If µ is a meridian for K , represented by a simple closed curve on ∂X then
X ∪µ D2 is a deformation retract of Sn+2 − {∗} and so is contractible. Hence
π is generated by the conjugacy class of its meridians.

Assume for the remainder of this section that n ≥ 2. The group of pseu-
doisotopy classes of self homeomorphisms of Sn×S1 is (Z/2Z)3 , generated by
reflections in either factor and by the map τ given by τ(x, y) = (ρ(y)(x), y) for
all x in Sn and y in S1 , where ρ : S1 → SO(n+ 1) is an essential map [Gl62,
Br67, Kt69]. As any self homeomorphism of Sn×S1 extends across Dn+1×S1

the knot manifold M(K) = X(K)∪(Dn+1×S1) obtained from Sn+2 by surgery
on K is well defined, and it inherits an orientation from Sn+2 via X . Moreover
π1(M(K)) ∼= πK and χ(M(K)) = 0. Conversely, suppose that M is a closed
orientable 4-manifold with χ(M) = 0 and π1(M) is generated by the conjugacy
class of a single element. (Note that each conjugacy class in π corresponds to
an unique isotopy class of oriented simple closed curves in M .) Surgery on a
loop in M representing such an element gives a 1-connected 4-manifold Σ with
χ(Σ) = 2 which is thus homeomorphic to S4 and which contains an embedded
2-sphere as the cocore of the surgery. We shall in fact study 2-knots through
such 4-manifolds, as it is simpler to consider closed manifolds rather than pairs.

There is however an ambiguity when we attempt to recover K from M =
M(K). The cocore γ = {0} × S1 ⊂ Dn+1 × S1 ⊂ M of the original surgery is
well defined up to isotopy by the conjugacy class of a meridian in πK = π1(M).
(In fact the orientation of γ is irrelevant for what follows.) Its normal bundle
is trivial, so γ has a product neighbourhood, P say, and we may assume that
M − intP = X(K). But there are two essentially distinct ways of identifying
∂X with Sn×S1 = ∂(Sn×D2), modulo self homeomorphisms of Sn×S1 that
extend across Sn×D2 . If we reverse the original construction of M we recover
(Sn+2,K) = (X ∪j Sn ×D2, Sn × {0}). If however we identify Sn × S1 with
∂X by means of jτ we obtain a new pair

(Σ,K∗) = (X ∪jτ Sn ×D2, Sn × {0}).
It is easily seen that Σ ' Sn+2 , and hence Σ ∼= Sn+2 . We may assume that
the homeomorphism is orientation preserving. Thus we obtain a new n-knot
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K∗ , which we shall call the Gluck reconstruction of K . The knot K is reflexive
if it is determined as an unoriented submanifold by its exterior, i.e., if K∗ is
isotopic to K , rK , Kρ or −K .

If there is an orientation preserving homeomorphism from X(K1) to X(K) then
K1 is isotopic to K , K∗ , Kρ or K∗ρ. If the homeomorphism also preserves
the homology class of the meridians then K1 is isotopic to K or to K∗ . Thus
K is determined up to an ambiguity of order at most 2 by M(K) together with
the conjugacy class of a meridian.

A Seifert hypersurface for K is a locally flat, oriented codimension 1 subman-
ifold V of Sn+2 with (oriented) boundary K . By a standard argument these
always exist. (Using obstruction theory it may be shown that the projection
pr2j

−1 : ∂X → Sn × S1 → S1 extends to a map p : X → S1 [Ke65]. By
topological transversality we may assume that p−1(1) is a bicollared, proper
codimension 1 submanifold of X . The union p−1(1) ∪ j(Sn × [0, 1]) is then
a Seifert hypersurface for K .) We shall say that V is minimal if the natural
homomorphism from π1(V ) to πK is a monomorphism.

In general there is no canonical choice of Seifert surface. However there is one
important special case. An n-knot K is fibred if there is such a map p : X → S1

which is the projection of a fibre bundle. (Clearly K∗ is then fibred also.) The
exterior is then the mapping torus of a self homeomorphism θ of the fibre F of
p. The isotopy class of θ is called the (geometric) monodromy of the bundle.
Such a map p extends to a fibre bundle projection q : M(K)→ S1 , with fibre
F̂ = F ∪Dn+1 , called the closed fibre of K . Conversely, if M(K) fibres over
S1 then the cocore γ is homotopic (and thus isotopic) to a cross-section of the
bundle projection, and so K is fibred. If the monodromy has finite order (and
is nontrivial) then it has precisely two fixed points on ∂F , and we may assume
that the closed monodromy also has finite order. However the converse is false;
the closed monodromy may have finite order but not be isotopic to a map of
finite order with nonempty fixed point set.

14.2 Covering spaces

Let K be an n-knot. Then H1(X(K);Z) ∼= Z and Hi(X(K);Z) = 0 if
i > 1, by Alexander duality. The meridians are all homologous and generate
π/π′ = H1(X;Z), and so determine a canonical isomorphism with Z . Moreover
H2(π;Z) = 0, since it is a quotient of H2(X;Z) = 0.

We shall let X ′(K) and M ′(K) denote the covering spaces corresponding to
the commutator subgroup. (The cover X ′/X is also known as the infinite
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270 Chapter 14: Knots and links

cyclic cover of the knot.) Since π/π′ = Z the (co)homology groups of X ′ are
modules over the group ring Z[Z], which may be identified with the ring of
integral Laurent polynomials Λ = Z[t, t−1]. If A is a Λ-module, let zA be the
Z-torsion submodule, and let eiA = ExtiΛ(A,Λ).

Since Λ is noetherian the (co)homology of a finitely generated free Λ-chain
complex is finitely generated. The Wang sequence for the projection of X ′ onto
X may be identified with the long exact sequence of homology corresponding
to the exact sequence of coefficients

0→ Λ→ Λ→ Z → 0.

Since X has the homology of a circle it follows easily that multiplication by
t− 1 induces automorphisms of the modules Hi(X; Λ) for i > 0. Hence these
homology modules are all finitely generated torsion Λ-modules. It follows that
HomΛ(Hi(X; Λ),Λ) is 0 for all i, and the UCSS collapses to a collection of
short exact sequences

0→ e2Hi−2 → H i(X; Λ)→ e1Hi−1 → 0.

The infinite cyclic covering spaces X ′ and M ′ behave homologically much like
(n+1)-manifolds, at least if we use field coefficients [Mi68, Ba80]. If Hi(X; Λ) =
0 for 1 ≤ i ≤ (n+ 1)/2 then X ′ is acyclic; thus if also π = Z then X ' S1 and
so K is trivial. All the classifications of high dimensional knots to date assume
that π = Z and that X ′ is highly connected.

When n = 1 or 2 knots with π = Z are trivial, and it is more profitable to
work with the universal cover X̃ (or M̃ ). In the classical case X̃ is contractible
[Pa57]. In higher dimensions X is aspherical only when the knot is trivial
[DV73]. Nevertheless the closed 4-manifolds M(K) obtained by surgery on 2-
knots are often aspherical. (This asphericity is an additional reason for choosing
to work with M(K) rather than X(K).)

14.3 Sums, factorization and satellites

The sum of two knots K1 and K2 may be defined (up to isotopy) as the n-knot
K1]K2 obtained as follows. Let Dn(±) denote the upper and lower hemispheres
of Sn . We may isotope K1 and K2 so that each Ki(Dn(±)) contained in
Dn+2(±), K1(Dn(+)) is a trivial n-disc in Dn+2(+), K2(Dn(−)) is a trivial
n-disc in Dn+2(−) and K1|Sn−1 = K2|Sn−1 (as the oriented boundaries of
the images of Dn(−)). Then we let K1]K2 = K1|Dn(−) ∪ K2|Dn(+) . By van
Kampen’s theorem π(K1]K2) = πK1∗ZπK2 where the amalgamating subgroup
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is generated by a meridian in each knot group. It is not hard to see that
X ′(K1]K2) ' X ′(K1) ∨ X ′(K2) and so in particular π′(K1]K2) ∼= π′(K1) ∗
π′(K2).

The knot K is irreducible if it is not the sum of two nontrivial knots. Every
knot has a finite factorization into irreducible knots [DF87]. (For 1- and 2-
knots whose groups have finitely generated commutator subgroups this follows
easily from the Grushko-Neumann theorem on factorizations of groups as free
products.) In the classical case the factorization is essentially unique, but for
each n ≥ 3 there are n-knots with several distinct such factorizations [BHK81].
Essentially nothing is known about uniqueness (or otherwise) of factorization
when n = 2.

If K1 and K2 are fibred then so is their sum, and the closed fibre of K1]K2 is the
connected sum of the closed fibres of K1 and K2 . However in the absence of an
adequate criterion for a 2-knot to fibre, we do not know whether every summand
of a fibred 2-knot is fibred. In view of the unique factorization theorem for
oriented 3-manifolds we might hope that there would be a similar theorem for
fibred 2-knots. However the closed fibre of an irreducible 2-knot need not be
an irreducible 3-manifold. (For instance, the Artin spin of a trefoil knot is an
irreducible fibred 2-knot, but its closed fibre is (S2 × S1)](S2 × S1)).

A more general method of combining two knots is the process of forming satel-
lites. Although this process arose in the classical case, where it is intimately
connected with the notion of torus decomposition, we shall describe only the
higher-dimensional version of [Kn83]. Let K1 and K2 be n-knots (with n ≥ 2)
and let γ be a simple closed curve in X(K1), with a product neighbourhood
U . Then there is a homeomomorphism h which carries Sn+2− intU ∼= Sn×D2

onto a product neighbourhood of K2 . The knot Σ(K2;K1, γ) is called the
satellite of K1 about K2 relative to γ . We also call K2 a companion of hK1 .
If either γ = 1 or K2 is trivial then Σ(K2;K1, γ) = K1 . If γ is a merid-
ian for K1 then Σ(K2;K1, γ) = K1]K2 . If γ has finite order in πK1 let q
be that order; otherwise let q = 0. Let w be a meridian in πK2 . Then
π = πK ∼= (πK2/〈〈wq〉〉) ∗Z/qZ πK1 , where w is identified with γ in πK1 , by
Van Kampen’s theorem.

14.4 Spinning and twist spinning

The first nontrivial examples of higher dimensional knots were given by Artin
[Ar25]. We may paraphrase his original idea as follows. As the half space
R3

+ = {(w, x, y, z) ∈ R4 | w = 0, z ≥ 0} is spun about the axis A = {(0, x, y, 0)}
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272 Chapter 14: Knots and links

it sweeps out the whole of R4 , and any arc in R3
+ with endpoints on A sweeps

out a 2-sphere.

Fox incorporated a twist into Artin’s construction [Fo66]. Let r be an integer
and choose a small (n+2)-disc Bn+2 which meets K in an n-disc Bn such that
(Bn+2, Bn) is homeomorphic to the standard pair. Then Sn+2 − intBn+2 =
Dn ×D2 , and we may choose the homeomorphism so that ∂(K − intBn) lies
in ∂Dn × {0}. Let ρθ be the self homeomorphism of Dn × D2 that rotates
the D2 factor through θ radians. Then ∪0≤θ<2π(ρrθ(K − intBn) × {θ}) is a
submanifold of (Sn+2 − intBn+2) × S1 homeomorphic to Dn × S1 and which
is standard on the boundary. The r-twist spin of K is the (n + 1)-knot τrK
with image

τrK = ∪0≤θ<2π(ρrθ(K − intBn)× {θ})) ∪ (Sn−1 ×D2)

in Sn+3 = ((Sn+2 − intBn+2)× S1) ∪ (Sn+1 ×D2).

The 0-twist spin is the Artin spin σK = τ0K , and πσK ∼= πK . The group of
τrK is obtained from πK by adjoining the relation making the rth power
of (any) meridian central. Zeeman discovered the remarkable fact that if
r 6= 0 then τrK is fibred, with geometric monodromy of order dividing r ,
and the closed fibre is the r-fold cyclic branched cover of Sn+2 , branched over
K [Ze65]. Hence τ1K is always trivial. Twist spins of -amphicheiral knots
are -amphicheiral, while twist spinning interchanges invertibility and +am-
phicheirality [Li85].

If K is a classical knot the factors of the closed fibre of τrK are the cyclic
branched covers of the prime factors of K , and are Haken, hyperbolic or Seifert
fibred. With some exceptions for small values of r , the factors are aspherical,
and S2 × S1 is never a factor [Pl84]. If r > 1 and K is nontrivial then τrK is
nontrivial, by the Smith Conjecture.

For other formulations and extensions of twist spinning see [GK78], [Li79],
[Mo83,84] and [Pl84’].

14.5 Ribbon and slice knots

An n-knot K is a slice knot if it is concordant to the unknot; equivalently, if
it bounds a properly embedded (n + 1)-disc ∆ in Dn+3 . Such a disc is called
a slice disc for K . Doubling the pair (Dn+3,∆) gives an (n + 1)-knot which
meets the equatorial Sn+2 of Sn+3 transversally in K ; if the (n+ 1)-knot can
be chosen to be trivial then K is doubly slice. All even-dimensional knots are
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slice [Ke65], but not all slice knots are doubly slice, and no adequate criterion
is yet known. The sum K]−K is a slice of τ1K and so is doubly slice [Su71].

An n-knot K is a ribbon knot if it is the boundary of an immersed (n+ 1)-disc
∆ in Sn+2 whose only singularities are transverse double points, the double
point sets being a disjoint union of discs. Given such a “ribbon” (n + 1)-disc
∆ in Sn+2 the cartesian product ∆×Dp ⊂ Sn+2×Dp ⊂ Sn+2+p determines a
ribbon (n+ 1 + p)-disc in Sn+2+p . All higher dimensional ribbon knots derive
from ribbon 1-knots by this process [Yn77]. As the p-disc has an orientation
reversing involution this easily imples that all ribbon n-knots with n ≥ 2 are
-amphicheiral. The Artin spin of a 1-knot is a ribbon 2-knot. Each ribbon
2-knot has a Seifert hypersurface which is a once-punctured connected sum of
copies of S1 × S2 [Yn69]. Hence such knots are reflexive. (See [Su76] for more
on geometric properties of such knots.)

An n-knot K is a homotopy ribbon knot if it has a slice disc whose exterior W
has a handlebody decomposition consisting of 0-, 1- and 2-handles. The dual
decomposition of W relative to ∂W = M(K) has only (n + 1)- and (n + 2)-
handles, and so the inclusion of M into W is n-connected. (The definition
of “homotopically ribbon” for 1-knots given in Problem 4.22 of [GK] requires
only that this latter condition be satisfied.) Every ribbon knot is homotopy
ribbon and hence slice [Hi79]. It is an open question whether every classical
slice knot is ribbon. However in higher dimensions “slice” does not even imply
“homotopy ribbon”. (The simplest example is τ231 - see below.)

More generally, we shall say that K is π1 -slice if the inclusion of M(K) into
the exterior of some slice disc induces an isomorphism on fundamental groups.
Nontrivial classical knots are never π1 -slice, since H2(π1(M(K));Z) ∼= Z is
nonzero while H2(π1(D4 −∆);Z) = 0. On the other hand higher-dimensional
homotopy ribbon knots are π1 -slice.

Two 2-knots K0 and K1 are s-concordant if there is a concordance K : S2 ×
[0, 1] → S4 × [0, 1] whose exterior is an s-cobordism (rel ∂ ) from X(K0) to
X(K1). (In higher dimensions the analogous notion is equivalent to ambient
isotopy, by the s-cobordism theorem.)

14.6 The Kervaire conditions

A group G has weight 1 if it has an element whose conjugates generate G. Such
an element is called a weight element for G, and its conjugacy class is called a
weight class for G. If G is solvable then it has weight 1 if and only if G/G′ is
cyclic, for a solvable group with trivial abelianization must be trivial.
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If π is the group of an n-knot K then

(1) π is finitely presentable;

(2) π is of weight 1;

(3) H1(π;Z) = π/π′ ∼= Z ; and

(4) H2(π;Z) = 0.

Kervaire showed that any group satisfying these conditions is an n-knot group,
for every n ≥ 3 [Ke65]. These conditions are also necessary when n = 1 or
2, but are then no longer sufficient, and there are as yet no corresponding
characterizations for 1- and 2-knot groups. If (4) is replaced by the stronger
condition that def(π) = 1 then π is a 2-knot group, but this condition is not
necessary [Ke65]. (See §9 of this chapter, §4 of Chapter 15 and §4 of Chapter 16
for examples with deficiency ≤ 0.) Gonzalez-Acuña has given a characterization
of 2-knot groups as groups admitting certain presentations [GA94]. (Note also
that if π is a high dimensional knot group then q(π) ≥ 0, and q(π) = 0 if and
only if π is a 2-knot group.)

If K is a nontrivial classical knot then πK has one end [Pa57], so X(K) is
aspherical, and X(K) collapses to a finite 2-complex, so g.d.π ≤ 2. Moreover
π has a Wirtinger presentation of deficiency 1, i.e., a presentation of the form

〈xi, 0 ≤ i ≤ n | xj = wjx0w
−1
j , 1 ≤ j ≤ n〉.

A group has such a presentation if and only if it has weight 1 and has a defi-
ciency 1 presentation P such that the presentation of the trivial group obtained
by adjoining the relation killing a weight element is AC-equivalent to the empty
presentation [Yo82’]. (See [Si80] for connections between Wirtinger presenta-
tions and the condition that H2(π;Z) = 0.) If G is an n-knot group then
g.d.G = 2 if and only if c.d.G = 2 and def(G) = 1, by Theorem 2.8.

Since the group of a homotopy ribbon n-knot (with n ≥ 2) is the fundamental
group of a (n + 3)-manifold W with χ(W ) = 0 and which can be built with
0-, 1- and 2-handles only, such groups also have deficiency 1. Conversely, if a
finitely presentable group G has weight 1 and and deficiency 1 then we use such
a presentation to construct a 5-dimensional handlebody W = D5 ∪{h1

i }∪ {h2
j}

with π1(∂W ) = π1(W ) ∼= G and χ(W ) = 0. Adjoining another 2-handle h
along a loop representing a weight class for π1(∂W ) gives a homotopy 5-ball B
with 1-connected boundary. Thus ∂B ∼= S4 , and the boundary of the cocore of
the 2-handle h is clearly a homotopy ribbon 2-knot with group G. (In fact any
group of weight 1 with a Wirtinger presentation of deficiency 1 is the group of
a ribbon n-knot, for each n ≥ 2 [Yj69] - see [H3].)
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The deficiency may be estimated in terms of the minimum number of generators
of the Λ-module e2(π′/π′′). Using this observation, it may be shown that if
K is the sum of m + 1 copies of τ231 then def(πK) = −m [Le78]. Moreover
there are irreducible 2-knots whose groups have deficiency −m, for each m ≥ 0
[Kn83].

A knot group π has two ends if and only if π′ is finite. We shall determine all
such 2-knots in §4 of Chapter 15. Nontrivial torsion free knot groups have one
end [Kl93]. There are also many 2-knot groups with infinitely many ends. The
simplest is perhaps the group with presentation

〈a, b, t | a3 = b7 = 1, ab = b2a, ta = a2t〉.
It is evidently an HNN extension of the metacyclic group generated by {a, b},
but is also the free product of such a metacyclic group with πτ231 , amalgamated
over a subgroup of order 3 [GM78].

14.7 Weight elements, classes and orbits

Two 2-knots K and K1 have homeomorphic exteriors if and only if there is
a homeomorphism from M(K1) to M(K) which carries the conjugacy class of
a meridian of K1 to that of K (up to inversion). In fact if M is any closed
orientable 4-manifold with χ(M) = 0 and with π = π1(M) of weight 1 then
surgery on a weight class gives a 2-knot with group π . Moreover, if t and u
are two weight elements and f is a self homeomorphism of M such that u is
conjugate to f∗(t±1) then surgeries on t and u lead to knots whose exteriors
are homeomorphic (via the restriction of a self homeomorphism of M isotopic
to f ). Thus the natural invariant to distinguish between knots with isomorphic
groups is not the weight class, but rather the orbit of the weight class under
the action of self homeomorphisms of M . In particular, the orbit of a weight
element under Aut(π) is a well defined invariant, which we shall call the weight
orbit. If every automorphism of π is realized by a self homeomorphism of
M then the homeomorphism class of M and the weight orbit together form
a complete invariant for the (unoriented) knot. (This is the case if M is an
infrasolvmanifold.)

For oriented knots we need a refinement of this notion. If w is a weight element
for π then we shall call the set {α(w) | α ∈ Aut(π), α(w) ≡ w mod π′} a strict
weight orbit for π . A strict weight orbit determines a transverse orientation for
the corresponding knot (and its Gluck reconstruction). An orientation for the
ambient sphere is determined by an orientation for M(K). If K is invertible or
+amphicheiral then there is a self homeomorphism of M which is orientation
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preserving or reversing (respectively) and which reverses the transverse orien-
tation of the knot, i.e., carries the strict weight orbit to its inverse. Similarly,
if K is -amphicheiral there is an orientation reversing self homeomorphism of
M which preserves the strict weight orbit.

Theorem 14.1 Let G be a group of weight 1 and with G/G′ ∼= Z . Let t be
an element of G whose image generates G/G′ and let ct be the automorphism
of G′ induced by conjugation by t. Then

(1) t is a weight element if and only if ct is meridianal;

(2) two weight elements t, u are in the same weight class if and only if there
is an inner automorphism cg of G′ such that cu = cgctc

−1
g ;

(3) two weight elements t, u are in the same strict weight orbit if and only if
there is an automorphism d of G′ such that cu = dctd

−1 and dctd
−1c−1

t

is an inner automorphism;

(4) if t and u are weight elements then u is conjugate to (g′′t)±1 for some
g′′ in G′′ .

Proof The verification of (1-3) is routine. If t and u are weight elements then,
up to inversion, u must equal g′t for some g′ in G′ . Since multiplication by
t − 1 is invertible on G′/G′′ we have g′ = khth−1t−1 for some h in G′ and k
in G′′ . Let g′′ = h−1kh. Then u = g′t = hg′′th−1 .

An immediate consequence of this theorem is that if t and u are in the same
strict weight orbit then ct and cu have the same order. Moreover if C is the
centralizer of ct in Aut(G′) then the strict weight orbit of t contains at most
[Aut(G′) : C.Inn(G′)] ≤ |Out(G′)| weight classes. In general there may be
infinitely many weight orbits [Pl83’]. However if π is metabelian the weight
class (and hence the weight orbit) is unique up to inversion, by part (4) of the
theorem.

14.8 The commutator subgroup

It shall be useful to reformulate the Kervaire conditions in terms of the auto-
morphism of the commutator subgroup induced by conjugation by a meridian.
An automorphism φ of a group G is meridianal if 〈〈g−1φ(g) | g ∈ G〉〉G = G.
If H is a characteristic subgroup of G and φ is meridianal the induced au-
tomorphism of G/H is then also meridianal. In particular, H1(φ) − 1 maps
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H1(G;Z) = G/G′ onto itself. If G is solvable an automorphism satisfying the
latter condition is meridianal, for a solvable perfect group is trivial.

It is easy to see that no group G with G/G′ ∼= Z can have G′ ∼= Z or D . It
follows that the commutator subgroup of a knot group never has two ends.

Theorem 14.2 [HK78, Le78] A finitely presentable group π is a high dimen-
sional knot group if and only if π ∼= π′×θZ for some meridianal automorphism
θ of π′ such that H2(θ)− 1 is an automorphism of H2(π′;Z).

If π is a knot group then π′/π′′ is a finitely generated Λ-module. Levine and
Weber have made explicit the conditions under which a finitely generated Λ-
module may be the commutator subgroup of a metabelian high dimensional
knot group [LW78]. Leaving aside the Λ-module structure, Hausmann and
Kervaire have characterized the finitely generated abelian groups A that may
be commutator subgroups of high dimensional knot groups [HK78]. “Most”
can occur; there are mild restrictions on 2- and 3-torsion, and if A is infinite
it must have rank at least 3. We shall show that the abelian groups which are
commutator subgroups of 2-knot groups are Z3 , Z[1

2 ] (the additive group of
dyadic rationals) and the cyclic groups of odd order. The commutator subgroup
of a nontrivial classical knot group is never abelian.

Hausmann and Kervaire also showed that any finitely generated abelian group
could be the centre of a high dimensional knot group [HK78’]. We shall show
that the centre of a 2-knot group is either Z2 , torsion free of rank 1, finitely
generated of rank 1 or is a torsion group. (The only known examples are Z2 ,
Z⊕ (Z/2Z), Z , Z/2Z and 1.) The centre of a classical knot group is nontrivial
if and only if the knot is a torus knot [BZ]; the centre is then Z .

Silver has given examples of high dimensional knot groups π with π′ finitely
generated but not finitely presentable [Si91]. He has also shown that there are
embeddings j : T → S4 such that π1(S4 − j(T ))′ is finitely generated but
not finitely presentable [Si97]. However no such 2-knot groups are known. If
the commutator subgroup is finitely generated then it is the unique HNN base
[Si96]. Thus knots with such groups have no minimal Seifert hypersurfaces.

The first examples of high dimensional knot groups which are not 2-knot groups
made use of Poincaré duality with coefficients Λ. Farber [Fa77] and Levine
[Le77] independently found the following theorem.

Theorem 14.3 (Farber, Levine) Let K be a 2-knot and A = H1(M(K); Λ).
Then H2(M(K); Λ) ∼= e1A, and there is a nondegenerate Z-bilinear pairing
[ , ] : zA× zA→ Q/Z such that [tα, tβ] = [α, β] for all α and β in zA.
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Most of this theorem follows easily from Poincaré duality with coefficients Λ,
but some care is needed in order to establish the symmetry of the pairing.
When K is a fibred 2-knot, with closed fibre F̂ , the Farber-Levine pairing is
just the standard linking pairing on the torsion subgroup of H1(F̂ ;Z), together
with the automorphism induced by the monodromy.

In particular, Farber observed that the group π with presentation

〈a, t | tat−1 = a2, a5 = 1〉
is a high dimensional knot group but if ` is any nondegenerate Z-bilinear pairing
on π′ ∼= Z/5Z with values in Q/Z then `(tα, tβ) = −`(α, β) for all α, β in π′ ,
and so π is not a 2-knot group.

Corollary 14.3.1 [Le78] H2(π′;Z) is a quotient of HomΛ(π′/π′′,Q(t)/Λ) .

In many cases every orientation preserving meridianal automorphism of a tor-
sion free 3-manifold group is realizable by a fibred 2-knot.

Theorem 14.4 Let N be a closed orientable 3-manifold whose prime factors
are virtually Haken or S1×S2 . If K is a 2-knot such that (πK)′ ∼= ν = π1(N)
then M(K) is homotopy equivalent to the mapping torus of a self homeomor-
phism of N . If θ is a meridianal automorphism of ν then π = ν ×θ Z is a
2-knot group if and only if θ fixes the image of the fundamental class of N in
H3(ν;Z).

Proof The first assertion follows from Corollary 4.6.1. The classifying maps
for the fundamental groups induce a commuting diagram involving the Wang
sequences of M(K) and π from which the necessity of the orientation condition
follows easily. (It is vacuous if ν is free group.)

If θ∗(cN∗[N ]) = cN∗[N ] then θ may be realized by an orientation preserving self
homotopy equivalence g of N [Sw74]. Let N = P]R where P is a connected
sum of copies of S1 × S2 and R has no such factors. By the Splitting The-
orem of [La74], g is homotopic to a connected sum of homotopy equivalences
between the irreducible factors of R with a self homotopy equivalence of P .
Every virtually Haken 3-manifold is either Haken, hyperbolic or Seifert-fibred,
by [CS83] and [GMT96], and self homotopy equivalences of such manifolds are
homotopic to homeomorphisms, by [Hm], Mostow rigidity and [Sc83], respec-
tively. A similar result holds for P = ]r(S1 × S2), by [La74]. Thus we may
assume that g is a self homeomorphism of N . Surgery on a weight class in the
mapping torus of g gives a fibred 2-knot with closed fibre N and group π .
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If Thurston’s Geometrization Conjecture is true then it would suffice to assume
that N is a closed orientable 3-manifold with π1(N) torsion free. The mapping
torus is determined up to homeomorphism among fibred 4-manifolds with fibre
N by its homotopy type if N is hyperbolic, Seifert fibred or if its prime factors
are Haken or S1×S2 , since homotopy implies isotopy in each case, by Mostow
rigidity, [Sc85, BO91] and [HL74], respectively.

Yoshikawa has shown that a finitely generated abelian group is the base of
some HNN extension which is a high dimensional knot group if and only if
it satisfies the restrictions on torsion of [HK78], while if a knot group has a
non-finitely generated abelian base then it is metabelian. Moreover a 2-knot
group π which is an HNN extension with abelian base is either metabelian or
has base Z ⊕ (Z/βZ) for some odd β ≥ 1 [Yo86, Yo92]. In §6 of Chapter 15
we shall show that in the latter case β must be 1, and so π has a deficiency
1 presentation 〈t, x | txnt−1 = xn+1〉. No nontrivial classical knot group is an
HNN extension with abelian base. (This is implicit in Yoshikawa’s work, and
can also be deduced from the facts that classical knot groups have cohomological
dimension ≤ 2 and symmetric Alexander polynomial.)

14.9 Deficiency and geometric dimension

J.H.C.Whitehead raised the question “is every subcomplex of an aspherical 2-
complex also aspherical?” This is so if the fundamental group of the subcomplex
is a 1-relator group [Go81] or is locally indicable [Ho82] or has no nontrivial
superperfect normal subgroup [Dy87]. Whitehead’s question has interesting
connections with knot theory. (For instance, the exterior of a ribbon n-knot
or of a ribbon concordance between classical knots is homotopy equivalent to
such a 2-complex. The asphericity of such ribbon exteriors has been raised in
[Co83] and [Go81].)

If the answer to Whitehead’s question is YES, then a high dimensional knot
group has geometric dimension at most 2 if and only if it has deficiency 1 (in
which case it is a 2-knot group). For let G be a group of weight 1 and with
G/G′ ∼= Z . If C(P ) is the 2-complex corresponding to a presentation of defi-
ciency 1 then the 2-complex obtained by adjoining a 2-cell to C(P ) along a loop
representing a weight element for G is 1-connected and has Euler characteristic
1, and so is contractible. The converse follows from Theorem 2.8. On the other
hand a positive answer in general implies that there is a group G such that
c.d.G = 2 and g.d.G = 3 [BB97].
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If the answer is NO then either there is a finite nonaspherical 2-complex X such
that X ∪f D2 is contractible for some f : S1 → X or there is an infinite as-
cending chain of nonaspherical 2-complexes whose union is contractible [Ho83].
In the finite case χ(X) = 0 and so π = π1(X) has deficiency 1; moreover, π
has weight 1 since it is normally generated by the conjugacy class represented
by f . Such groups are 2-knot groups. Since X is not aspherical β(2)

1 (π) 6= 0,
by Theorem 2.4, and so π′ cannot be finitely generated, by Lemma 2.1.

A group is called knot-like if it has abelianization Z and deficiency 1. If the
commutator subgroup of a classical knot group is finitely generated then it
is free; Rapaport asked whether this is true of all knot-like groups G, and
established this in the 2-generator, 1-relator case [Rp60]. This is true also if G′

is FP2 , by Corollary 2.5.1. If every knot-like group has a finitely presentable
HNN base then this Corollary would settle Rapaport’s question completely, for
if G′ is finitely generated then it is the unique HNN base for G [Si96].

In particular, if the group of a fibred 2-knot has a presentation of deficiency 1
then its commutator subgroup must be free. Any 2-knot with such a group is
s-concordant to a fibred homotopy ribbon knot (see §6 of Chapter 17). Must
it in fact be a ribbon knot?

It follows also that if τrK is a nontrivial twist spin then def(πτrK) ≤ 0 and
τrK is not a homotopy ribbon 2-knot. For S2 × S1 is never a factor of the
closed fibre of τrK [Pl84], and so (πτrK)′ is never a nontrivial free group.

The next result is a consequence of Theorem 2.5, but the argument below is
self contained.

Lemma 14.5 If G is a group with def(G) = 1 and e(G) = 2 then G ∼= Z .

Proof The group G has an infinite cyclic subgroup A of finite index, since
e(G) = 2. Let C be the finite 2-complex corresponding to a presentation of
deficiency 1 for G, and let D be the covering space corresponding to A. Then
D is a finite 2-complex with π1(D) = A ∼= Z and χ(D) = [π : A]χ(C) = 0.
Since H2(D;Z[A]) = H2(D̃;Z) is a submodule of a free Z[A]-module and is of
rank χ(D) = 0 it is 0. Hence D̃ is contractible, and so G must be torsion free
and hence abelian.

It follows immediately that def(πτ231) = 0, since πτ231
∼= (Z/3Z) ×−1 Z .

Moreover, if K is a nontrivial classical knot then π′ is infinite. Hence if π′ is
finitely generated then H1(π;Z[π]) = 0, and so X(K) is aspherical, by Poincaré
duality.
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Theorem 14.6 Let K be a 2-knot with group π . Then π ∼= Z if and only if
def(π) = 1 and π2(M(K)) = 0.

Proof The conditions are necessary, by Theorem 11.1. If they hold then
β

(2)
j (M) = β

(2)
j (π) for j ≤ 2, by Theorem 6.54 of [Lü], and so 0 = χ(M) =

β
(2)
2 (π)− 2β(2)

1 (π). Now β
(2)
1 (π)−β(2)

2 (π) ≥ def(π)− 1 = 0, by Corollary 2.4.1.
Therefore β

(2)
1 (π) = β

(2)
2 (π) = 0 and so g.d.π ≤ 2, by the same Corollary.

Since def(π) = 1 the manifold M is not aspherical, by Theorem 3.6. Hence
H1(π;Z[π]) ∼= H3(M ;Z[π]) 6= 0. Since π is torsion free it is indecomposable as
a free product [Kl93]. Therefore e(π) = 2 and so π ∼= Z , by Lemma 14.5.

In fact K must be trivial ([FQ] - see Corollary 17.1.1). A simpler argument
is used in [H1] to show that if def(π) = 1 then π2(M) maps onto H2(M ; Λ),
which is nonzero if π′ 6= π′′ .

14.10 Asphericity

The outstanding property of the exterior of a classical knot is that it is aspher-
ical. Swarup extended the classical Dehn’s lemma criterion for unknotting to
show that if K is an n-knot such that the natural inclusion of Sn (as a factor
of ∂X(K)) into X(K) is null homotopic then X(K) ' S1 , provided πK is
accessible [Sw75]. Since it is now known that finitely presentable groups are
accessible [DD], it follows that the exterior of a higher dimensional knot is as-
pherical if and only if the knot is trivial. Nevertheless, we shall see that the
closed 4-manifolds M(K) obtained by surgery on 2-knots are often aspherical.

Theorem 14.7 Let K be a 2-knot. Then M(K) is aspherical if and only if
πK is a PD4 -group (which must then be orientable).

Proof The condition is clearly necessary. Suppose that it holds. Let M+ be
the covering space associated to π+ = Ker(w1(π)). Then [π : π+] ≤ 2, so
π′ < π+ . Since π/π′ ∼= Z and t− 1 acts invertibly on H1(π′;Z) it follows that
β1(π+) = 1. Hence β2(M+) = 0, since M+ is orientable and χ(M+) = 0.
Hence β2(π+) is also 0, so χ(π+) = 0, by Poincaré duality for π+ . Therefore
χ(π) = 0 and so M must be aspherical, by Corollary 3.5.1.

We may use this theorem to give more examples of high dimensional knot groups
which are not 2-knot groups. Let A ∈ GL(3,Z) be such that det(A) = −1,
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det(A−I) = ±1 and det(A+I) = ±1. The characteristic polynomial of A must
be either f1(X) = X3−X2−2X+1, f2(X) = X3−X2+1, f3(X) = X3f1(X−1)
or f4(X) = X3f2(X−1). It may be shown that the rings Z[X]/(fi(X)) are
principal ideal domains. Hence there are only two conjugacy classes of such
matrices, up to inversion. The Kervaire conditions hold for Z3×A Z , and so it
is a 3-knot group. However it cannot be a 2-knot group, since it is a PD4 -group
of nonorientable type. (Such matrices have been used to construct fake RP 4s
[CS76’].)

Is every (torsion free) 2-knot group with Hs(π;Z[π]) = 0 for s ≤ 2 a PD4 -
group? Is every 3-knot group which is also a PD4 -group a 2-knot group? (Note
that by Theorem 3.6 such a group cannot have deficiency 1.)

We show next that knots with such groups cannot be a nontrivial satellite.

Theorem 14.8 Let K = Σ(K2;K1, γ) be a satellite 2-knot. If πK is a PD4 -
group then K = K1 or K2 .

Proof Let q be the order of γ in πK1 . Then π = πK ∼= πK1 ∗C B , where
B = πK2/〈〈wq〉〉, and C is cyclic. Since π is torsion free q = 0 or 1. Suppose
that K 6= K1 . Then q = 0, so C ∼= Z , while B 6= C . If πK1 6= C then
πK1 and B have infinite index in π , and so c.d.πK1 ≤ 3 and c.d.B ≤ 3, by
Strebel’s Theorem. A Mayer-Vietoris argument then gives 4 = c.d.π ≤ 3, which
is impossible. Therefore K1 is trivial and so K = K2 .

In particular if πK is a PD4 -group then K is irreducible.

14.11 Links

A µ-component n-link is a locally flat embedding L : µSn → Sn+2 . The
exterior of L is X(L) = Sn+2\intN(L), where N(L) ∼= µSn ×D2 is a regular
neighbourhood of the image of L, and the group of L is πL = π1(X(L)). Let
M(L) = X(L) ∪ µDn+1 × S1 be the closed manifold obtained by surgery on L
in Sn+2 .

An n-link L is trivial if it bounds a collection of µ disjoint locally flat 2-
discs in Sn . It is split if it is isotopic to one which is the union of nonempty
sublinks L1 and L2 whose images lie in disjoint discs in Sn+2 , in which case
we write L = L1 q L2 , and it is a boundary link if it bounds a collection of
µ disjoint hypersurfaces in Sn+2 . Clearly a trivial link is split, and a split
link is a boundary link; neither implication can be reversed if µ > 1. Knots
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are boundary links, and many arguments about knots that depend on Seifert
hypersurfaces extend readily to boundary links. The definitions of slice and
ribbon knots and s-concordance extend naturally to links.

A 1-link is trivial if and only if its group is free, and is split if and only if its
group is a nontrivial free product, by the Loop Theorem and Sphere Theorem,
respectively. (See Chapter 1 of [H3].) Gutiérrez has shown that if n ≥ 4 an
n-link L is trivial if and only if πL is freely generated by meridians and the
homotopy groups πj(X(L)) are all 0, for 2 ≤ j ≤ (n + 1)/2 [Gu72]. His
argument applies also when n = 3. While the fundamental group condition is
necessary when n = 2, we cannot yet use surgery to show that it is a complete
criterion for triviality of 2-links with more than one component. We shall settle
for a weaker result.

Theorem 14.9 Let M be a closed 4-manifold with π1(M) free of rank r and
χ(M) = 2(1 − r). If M is orientable it is s-cobordant to ]r(S1 × S3), while if
it is nonorientable it is s-cobordant to (S1×̃S3)](]r−1(S1 × S3)).

Proof We may assume without loss of generality that π1(M) has a free basis
{x1, ...xr} such that xi is an orientation preserving loop for all i > 1, and
we shall use cM∗ to identify π1(M) with F (r). Let N = ]r(S1 × S3) if M
is orientable and let N = (S1×̃S3)](]r−1(S1 × S3)) otherwise. (Note that
w1(N) = w1(M) as homomorphisms from F (r) to {±1}.) Since c.d.π1(M) ≤ 2
and χ(M) = 2χ(π1(M)) we have π2(M) ∼= H2(F (r);Z[F (r)]), by Theorem
3.12. Hence π2(M) = 0 and so π3(M) ∼= H3(M̃ ;Z) ∼= D = H1(F (r);Z[F (r)]),
by the Hurewicz theorem and Poincaré duality. Similarly, we have π2(N) = 0
and π3(N) ∼= D .

Let cM = gMhM be the factorization of cM through P3(M), the third stage
of the Postnikov tower for M . Thus πi(hM ) is an isomorphism if i ≤ 3 and
πj(P3(M)) = 0 if j > 3. As K(F (r), 1) = ∨rS1 each of the fibrations gM
and gN clearly have cross-sections and so there is a homotopy equivalence
k : P3(M) → P3(N) such that gM = gNk . (See Section 5.2 of [Ba].) We
may assume that k is cellular. Since P3(M) = M ∪ {cells of dimension ≥ 5}
it follows that khM = hNf for some map f : M → N . Clearly πi(f) is an
isomorphism for i ≤ 3. Since the universal covers M̃ and Ñ are 2-connected
open 4-manifolds the induced map f̃ : M̃ → Ñ is an homology isomorphism,
and so is a homotopy equivalence. Hence f is itself a homotopy equivalence.
As Wh(F (r)) = 0 any such homotopy equivalence is simple.

If M is orientable [M,G/TOP ] ∼= Z , since H2(M ;Z/2Z) = 0. As the surgery
obstruction in L4(F (r)) ∼= Z is given by a signature difference, it is a bijection,
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and so the normal invariant of f is trivial. Hence there is a normal cobordism
F : P → N × I with F |∂−P = f and F |∂+P = idN . There is another
normal cobordism F ′ : P ′ → N × I from idN to itself with surgery obstruction
σ5(P ′, F ′) = −σ5(P,F ) in L5(F (r)), by Theorem 6.7 and Lemma 6.9. The
union of these two normal cobordisms along ∂+P = ∂−P ′ is a normal cobordism
from f to idN with surgery obstruction 0, and so we may obtain an s-cobordism
W by 5-dimensional surgery (rel ∂ ).

A similar argument applies in the nonorientable case. The surgery obstruction
is then a bijection from [N ;G/TOP ] to L4(F (r),−) = Z/2Z , so f is normally
cobordant to idN , while L5(Z,−) = 0, so L5(F (r),−) ∼= L5(F (r− 1)) and the
argument of [FQ] still applies.

Corollary 14.9.1 Let L be a µ-component 2-link such that πL is freely
generated by µ meridians. Then L is s-concordant to the trivial µ-component
link.

Proof Since M(L) is orientable, χ(M(L)) = 2(1− µ) and π1(M(L)) ∼= πL =
F (µ), there is an s-cobordism W with ∂W = M(L) ∪ M(µ), by Theorem
14.9. Moreover it is clear from the proof of that theorem that we may assume
that the elements of the meridianal basis for πL are freely homotopic to loops
representing the standard basis for π1(M(µ)). We may realise such homotopies
by µ disjoint embeddings of annuli running from meridians for L to such stan-
dard loops in M(µ). Surgery on these annuli (i.e., replacing D3×S1× [0, 1] by
S2×D2×[0, 1]) then gives an s-concordance from L to the trivial µ-component
link.

A similar strategy may be used to give an alternative proof of the higher di-
mensional unlinking theorem of [Gu72] which applies uniformly for n ≥ 3. The
hypothesis that πL be freely generated by meridians cannot be dropped en-
tirely [Po71]. On the other hand, if L is a 2-link whose longitudes are all null
homotopic then the pair (X(L), ∂X(L)) is homotopy equivalent to the pair
(]µS1 ×D3, ∂(]µS1 ×D3)) [Sw77], and hence the Corollary applies.

There is as yet no satisfactory splitting criterion for higher-dimensional links.
However we can give a stable version for 2-links.

Theorem 14.10 Let M be a closed 4-manifold such that π = π1(M) is
isomorphic to a nontrivial free product G∗H . Then M is stably homeomorphic
to a connected sum MG]MH with π1(MG) ∼= G and π1(MH) ∼= H .
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Proof Let K = KG ∪ [−1, 1] ∪KH/(∗G ∼ −1,+1 ∼ ∗H), where KG and KH

are K(G, 1)- and K(H, 1)-spaces with basepoints ∗G and ∗H (respectively).
Then K is a K(π, 1)-space and so there is a map f : M → K which induces an
isomorphism of fundamental groups. We may assume that f is transverse to
0 ∈ [−1, 1], so V = f−1(0) is a submanifold of M with a product neighbourhood
V × [−ε, ε]. We may also assume that V is connected, by the arc-chasing
argument of Stallings’ proof of Kneser’s conjecture. (See page 67 of [Hm].) Let
j : V → M be the inclusion. Since fj is a constant map and π1(f) is an
isomorphism π1(j) is the trivial homomorphism, and so j∗w1(M) = 0. Hence
V is orientable and so there is a framed link L ⊂ V such that surgery on L
in V gives S3 [Li62]. The framings of the components of L in V extend to
framings in M . Let W = M× [0, 1]∪L×D2×[−ε,ε]×{1} (µD2×D2× [−ε, ε]), where
µ is the number of components of L. Note that if w2(M) = 0 then we may
choose the framed link L so that w2(W ) = 0 also [Kp79]. Then ∂W = M ∪M̂ ,
where M̂ is the result of surgery on L in M . The map f extends to a map
F : W → K such that π1(F |

M̂
) is an isomorphism and (F |

M̂
)−1(0) ∼= S3 .

Hence M̂ is a connected sum as in the statement. Since the components of
L are null-homotopic in M they may be isotoped into disjoint discs, and so
M̂ ∼= M](]µS2 × S2). This proves the theorem.

Note that if V is a homotopy 3-sphere then M is a connected sum, for V ×R
is then homeomorphic to S3 ×R, by 1-connected surgery.

Theorem 14.11 Let L be a µ-component 2-link with sublinks L1 and L2 =
L\L1 such that there is an isomorphism from πL to πL1 ∗ πL2 which is com-
patible with the homomorphisms determined by the inclusions of X(L) into
X(L1) and X(L2). Then X(L) is stably homeomorphic to X(L1 q L2).

Proof By Theorem 14.10, M(L)](]aS2 × S2) ∼= N]P , where π1(N) ∼= πL1

and π1(P ) ∼= πL2 . On undoing the surgeries on the components of L1 and L2 ,
respectively, we see that M(L2)](]aS2×S2) ∼= N]P̄ , and M(L1)](]aS2×S2) ∼=
N̄]P , where N̄ and P̄ are simply connected. Since undoing the surgeries on
all the components of L gives ]aS2×S2 ∼= N̄]P̄ , N̄ and P̄ are each connected
sums of copies of S2 × S2 , so N and P are stably homeomorphic to M(L1)
and M(L2), respectively. The result now follows easily.

Similar arguments may be used to show that, firstly, if L is a 2-link such
that c.d.πL ≤ 2 and there is an isomorphism θ : πL → πL1 ∗ πL2 which
is compatible with the natural maps to the factors then there is a map fo :
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M(L)o = M(L)\intD4 →M(L1)]M(L2) such that π1(fo) = θ and π2(fo) is an
isomorphism; and secondly, if moreover fo extends to a homotopy equivalence
f : M(L) → M(L1)]M(L2) and the factors of πL are either classical link
groups or are square root closed accessible then L is s-concordant to the split
link L1qL2 . (The surgery arguments rely on [AFR97] and [Ca73], respectively.)
However we do not know how to bridge the gap between the algebraic hypothesis
and obtaining a homotopy equivalence.

14.12 Link groups

If π is the group of a µ-component n-link L then

(1) π is finitely presentable;

(2) π is of weight µ;

(3) H1(π;Z) = π/π′ ∼= Zµ ; and

(4) (if n > 1) H2(π;Z) = 0.

Conversely, any group satisfying these conditions is the group of an n-link, for
every n ≥ 3 [Ke 65’]. (Note that q(π) ≥ 2(1 − µ), with equality if and only
if π is the group of a 2-link.) If (4) is replaced by the stronger condition that
def(π) = µ (and π has a deficiency µ Wirtinger presentation) then π is the
group of a (ribbon) 2-link which is a sublink of a (ribbon) link whose group is
a free group. (See Chapter 1 of [H3].) The group of a classical link satisfies
(4) if and only if the link splits completely as a union of knots in disjoint
balls. If subcomplexes of aspherical 2-complexes are aspherical then a higher-
dimensional link group group has geometric dimension at most 2 if and only if
it has deficiency µ (in which case it is a 2-link group).

A link L is a boundary link if and only if there is an epimorphism from π(L) to
the free group F (µ) which carries a set of meridians to a free basis. If the lat-
ter condition is dropped L is said to be an homology boundary link. Although
sublinks of boundary links are clearly boundary links, the corresponding result
is not true for homology boundary links. It is an attractive conjecture that
every even-dimensional link is a slice link. This has been verified under addi-
tional hypotheses on the link group. For a 2-link L it suffices that there be a
homomorphism φ : πL → G where G is a high-dimensional link group such
that H3(G;F2) = H4(G;Z) = 0 and where the normal closure of the image of
φ is G [Co84]. In particular, sublinks of homology boundary 2-links are slice
links.
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A choice of (based) meridians for the components of a link L determines a ho-
momorphism f : F (µ)→ πL which induces an isomorphism on abelianization.
If L is a higher dimensional link H2(πL;Z) = H2(F (µ);Z) = 0 and hence f in-
duces isomorphisms on all the nilpotent quotients F (µ)/F (µ)[n]

∼= πL/(πL)[n] ,
and a monomorphism F (µ)→ πL/(πL)[ω] = πL/ ∩n≥1 (πL)[n] [St65]. (In par-
ticular, if µ ≥ 2 then πL contains a nonabelian free subgroup.) The latter map
is an isomorphism if and only if L is a homology boundary link. In that case
the homology groups of the covering space X(L)ω corresponding to πL/(πL)[ω]

are modules over Z[πL/(πL)[ω]] ∼= Z[F (µ)], which is a coherent ring of global
dimension 2. Poincaré duality and the UCSS then give rise to an isomorphism
e2e2(πL/(πL)[ω]) ∼= e2(πL/(πL)[ω]), where ei(M) = ExtiZ[F (µ)](M,Z[F (µ)]),
which is the analogue of the Farber-Levine pairing for 2-knots.

The argument of [HK78’] may be adapted to show that every finitely generated
abelian group is the centre of the group of some µ-component boundary n-link,
for any µ ≥ 1 and n ≥ 3. However the centre of the group of a 2-link with
more than one component must be finite. (In all known examples the centre is
trivial.)

Theorem 14.12 Let L be a µ-component 2-link with group π . If µ > 1 then

(1) π has no infinite amenable normal subgroup;

(2) π is not an ascending HNN extension over a finitely generated base.

Proof If (1) or (2) is false then β
(2)
1 (π) = 0 (see §2 of Chapter 2), and clearly

µ > 0. Since β
(2)
2 (M(L)) = χ(M(L)) + 2β(2)

1 (π) = 2(1 − µ), we must have
µ = 1.

In particular, the exterior of a 2-link with more than one component never
fibres over S1 . (This is true of all higher dimensional links: see Theorem 5.12
of [H3].) Moreover a 2-link group has finite centre and is never amenable. In
contrast, we shall see that there are many 2-knot groups which have infinite
centre or are solvable.

The exterior of a classical link is aspherical if and only the link is unsplittable,
while the exterior of a higher dimensional link with more than one component
is never aspherical [Ec76]. Is M(L) ever aspherical?
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14.13 Homology spheres

A closed connected n-manifold M is an homology n-sphere if Hq(M ;Z) = 0
for 0 < q < n. In particular, it is orientable and so Hn(M ;Z) ∼= Z . If π is the
group of an homology n-sphere then

(1) π is finitely presentable;

(2) π is perfect, i.e., π = π′ ; and

(3) H2(π;Z) = 0.

A group satisfying the latter two conditions is said to be superperfect. Every
finitely presentable superperfect group is the group of an homology n-sphere,
for every n ≥ 5 [Ke69], but in low dimensions more stringent conditions hold.
As any closed 3-manifold has a handlebody structure with one 0-handle and
equal numbers of 1- and 2-handles, homology 3-sphere groups have deficiency
0. Every perfect group with a presentation of deficiency 0 is an homology
4-sphere group (and therefore is superperfect) [Ke69]. However none of the
implications “G is an homology 3-sphere group” ⇒ “G is finitely presentable,
perfect and def(G) = 0” ⇒ “G is an homology 4-sphere group” ⇒ “G is
finitely presentable and superperfect” can be reversed, as we shall now show.

Although the finite groups SL(2,Fp) are perfect and have deficiency 0 for each
prime p ≥ 5 [CR80] the binary icosahedral group I∗ = SL(2,F5) is the only
nontrivial finite perfect group with cohomological period 4, and thus is the only
finite homology 3-sphere group.

Let G = 〈x, s | x3 = 1, sxs−1 = x−1〉 be the group of τ231 and let H =
〈a, b, c, d | bab−1 = a2, cbc−1 = b2, dcd−1 = c2, ada−1 = d2〉 be the Higman
group [Hg51]. Then H is perfect and def(H) = 0, so there is an homology
4-sphere Σ with group H . Surgery on a loop representing sa−1 in Σ]M(τ231)
gives an homology 4-sphere with group π = (G ∗H)/〈〈sa−1〉〉. Then π is the
semidirect product ρoH , where ρ = 〈〈G′〉〉π is the normal closure of the image
of G′ in π . The obvious presentation for this group has deficiency -1. We shall
show that this is best possible.

Let Γ = Z[H]. Since H has cohomological dimension 2 [DV73’] the augmenta-
tion ideal I = Ker(ε : Γ→ Z) has a short free resolution

C∗ : 0→ Γ4 → Γ4 → I → 0.

Let B = H1(π; Γ) ∼= ρ/ρ′ . Then B ∼= Γ/Γ(3, a + 1) as a left Γ-module and
there is an exact sequence

0→ B → A→ I → 0,
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in which A = H1(π, 1; Γ) is a relative homology group [Cr61]. Since B ∼=
Γ⊗Λ (Λ/Λ(3, a + 1)), where Λ = Z[a, a−1], there is a free resolution

0→ Γ
(3,a+1)−−−−−→ Γ2

(
a+1
−3

)
−−−−−→ Γ→ B → 0.

Suppose that π has deficiency 0. Evaluating the Jacobian matrix associated
to an optimal presentation for π via the natural epimorphism from Z[π] to Γ
gives a presentation matrix for A as a module (see [Cr61] or [Fo62]). Thus
there is an exact sequence

D∗ : · · · → Γn → Γn → A→ 0.

A mapping cone construction leads to an exact sequence of the form

D1 → C1 ⊕D0 → B ⊕ C0 → 0

and hence to a presentation of deficiency 0 for B of the form

D1 ⊕ C0 → C1 ⊕D0 → B.

Hence there is a free resolution

0→ L→ Γp → Γp → B → 0.

Schanuel’s Lemma gives an isomorphism Γ1+p+1 ∼= L ⊕ Γp+2 , on comparing
these two resolutions of B . Since Γ is weakly finite the endomorphism of Γp+2

given by projection onto the second summand is an automorphism. Hence
L = 0 and so B has a short free resolution. In particular, TorΓ

2 (R,B) = 0 for
any right Γ-module R. But it is easily verified that if B ∼= Γ/(3, a + 1)Γ is
the conjugate right Γ-module then TorΓ

2 (B,B) 6= 0. Thus our assumption was
wrong, and def(π) = −1 < 0.

If k ≥ 0 let Gk = (F2
5)koI∗ , where I∗ acts diagonally on (F2

5)k , with respect to
the standard action on F2

5 , and let Hk be the subgroup generated by F2k
5 and(−1 2

0 −1

)
. Then Gk is a finite superperfect group, [Gk : Hk] = 12, β1(Hk;F5) =

1 and β2(Hk;F5) = k2 . Applying part (1) of Lemma 3.11 we find that defGk <
0 if k > 3 and qSG(Gk) > 2 if k > 4. In the latter case Gk is not realized by
any homology 4-sphere. (This argument derives from [HW85].)

Does every finite homology 4-sphere group have deficiency 0? Our example
above is “very infinite” in the sense that the Higman group H has no finite
quotients, and therefore no finite-dimensional representations over any field
[Hg51]. The smallest finite superperfect group which is not known to have
deficiency 0 nor to be an homology 4-sphere group is G1 , which has order 3000
and has the deficiency -2 presentation

〈x, y, e | x2 = y3 = (xy)5, xex−1 = yey−1, eyey−1 = yey−1e, ey2e = yey〉.
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Kervaire’s criteria may be extended further to the groups of links in homology
spheres. Unfortunately, the condition χ(M) = 0 is central to most of our
arguments, and is satisfied only by the manifolds arising from knots in homology
4-spheres.
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Chapter 15

Restrained normal subgroups

It is plausible that if K is a 2-knot whose group π = πK has an infinite
restrained normal subgroup N then either π′ is finite or π ∼= Φ (the group of
Fox’s Example 10) or M(K) is aspherical and

√
π 6= 1 or N is virtually Z and

π/N has infinitely many ends. In this chapter we shall give some evidence in this
direction. In order to clarify the statements and arguments in later sections, we
begin with several characterizations of Φ, which plays a somewhat exceptional
role. In §2 we assume that N is almost coherent and locally virtually indicable,
but not locally finite. In §3 we assume that N is abelian of positive rank
and almost establish the tetrachotomy in this case. In §4 we determine all
such π with π′ finite, and in §5 we give a version of the Tits alternative for
2-knot groups. In §6 we shall complete Yoshikawa’s determination of the 2-knot
groups which are HNN extensions over abelian bases. We conclude with some
observations on 2-knot groups with infinite locally finite normal subgroups.

15.1 The group Φ

Let Φ ∼= Z∗2 be the group with presentation 〈a, t | tat−1 = a2〉. This group is
an ascending HNN extension with base Z , is metabelian, and has commutator
subgroup isomorphic to Z[1

2 ]. The 2-complex corresponding to this presentation
is aspherical and so g.d.Φ = 2.

The group Φ is the group of Example 10 of Fox, which is the boundary of the
ribbon D3 in S4 obtained by “thickening” a suitable immersed ribbon D2 in
S3 for the stevedore’s knot 62 [Fo62]. Such a ribbon disc may be constructed by
applying the method of §7 of Chapter 1 of [H3] to the equivalent presentation
〈t, u, v | vuv−1 = t, tut−1 = v〉 for Φ (where u = ta and v = t2at−1 ).

Theorem 15.1 Let π be a 2-knot group such that c.d.π = 2 and π has a
nontrivial normal subgroup E which is either elementary amenable or almost
coherent, locally virtually indicable and restrained. Then either π ∼= Φ or π is
an iterated free product of (one or more) torus knot groups, amalgamated over
central subgroups. In either case def(π) = 1.
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Proof If π is solvable then π ∼= Z∗m , for some m 6= 0, by Corollary 2.6.1.
Since π/π′ ∼= Z we must have m = 2 and so π ∼= Φ.

Otherwise E ∼= Z , by Theorem 2.7. Then [π : Cπ(E)] ≤ 2 and Cπ(E)′ is
free, by Bieri’s Theorem. This free subgroup must be nonabelian for otherwise
π would be solvable. Hence E ∩ Cπ(E)′ = 1 and so E maps injectively to
H = π/Cπ(E)′ . As H has an abelian normal subgroup of index at most 2 and
H/H ′ ∼= Z we must in fact have H ∼= Z . It follows easily that Cπ(E) = π , and
so π′ is free. The further structure of π is then due to Strebel [St76]. The final
observation follows readily.

The following alternative characterizations of Φ shall be useful.

Theorem 15.2 Let π be a 2-knot group with maximal locally finite normal
subgroup T . Then π/T ∼= Φ if and only if π is elementary amenable and
h(π) = 2. Moreover the following are equivalent:

(1) π has an abelian normal subgroup A of rank 1 such that π/A has two
ends;

(2) π is elementary amenable, h(π) = 2 and π has an abelian normal sub-
group A of rank 1;

(3) π is almost coherent, elementary amenable and h(π) = 2;

(4) π ∼= Φ.

Proof Since π is finitely presentable and has infinite cyclic abelianization it
is an HNN extension π ∼= H∗φ with base H a finitely generated subgroup of
π′ , by Theorem 1.13. Since π is elementary amenable the extension must be
ascending. Since h(π′/T ) = 1 and π′/T has no nontrivial locally-finite normal
subgroup [π′/T :

√
π′/T ] ≤ 2. The meridianal automorphism of π′ induces

a meridianal automorphism on (π′/T )/
√
π′/T and so π′/T =

√
π′/T . Hence

π′/T is a torsion free rank 1 abelian group. Let J = H/H ∩T . Then h(J) = 1
and J ≤ π′/T so J ∼= Z . Now φ induces a monomorphism ψ : J → J and
π/T ∼= J∗ψ . Since π/π′ ∼= Z we must have J∗ψ ∼= Φ.

If (1) holds then π is elementary amenable and h(π) = 2. Suppose (2) holds.
We may assume without loss of generality that A is the normal closure of
an element of infinite order, and so π/A is finitely presentable. Since π/A
is elementary amenable and h(π/A) = 1 it is virtually Z . Therefore π is
virtually an HNN extension with base a finitely generated subgroup of A, and
so is coherent. If (3) holds then π ∼= Φ, by Corollary 3.17.1. Since Φ clearly
satisfies conditions (1-3) this proves the theorem.

Corollary 15.2.1 If T is finite and π/T ∼= Φ then T = 1 and π ∼= Φ.
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15.2 Almost coherent, restrained and locally virtually indicable

We shall show that the basic tetrachotomy of the introduction is essentially
correct, under mild coherence hypotheses on πK or N . Recall that a restrained
group has no noncyclic free subgroups. Thus if N is a countable restrained
group either it is elementary amenable and h(N) ≤ 1 or it is an increasing
union of finitely generated one-ended groups.

Theorem 15.3 Let K be a 2-knot whose group π = πK is an ascending
HNN extension over an FP2 base H with finitely many ends. Then either π′

is finite or π ∼= Φ or M(K) is aspherical.

Proof This follows from Theorem 3.17, since a group with abelianization Z
cannot be virtually Z2 .

Is M(K) still aspherical if we assume only that H is finitely generated and
one-ended?

Corollary 15.3.1 If H is FP3 and has one end then π′ = H and is a PD+
3 -

group.

Proof This follows from Lemma 3.4 of [BG85], as in Theorem 2.13.

Does this remain true if we assume only that H is FP2 and has one end?

Corollary 15.3.2 If π is an ascending HNN extension over an FP2 base H
and has an infinite restrained normal subgroup A then either π′ is finite or
π ∼= Φ or M(K) is aspherical or π′ ∩A = 1 and π/A has infinitely many ends.

Proof If H is finite or A ∩H is infinite then H has finitely many ends (cf.
Corollary 1.16.1) and Theorem 15.3 applies. Therefore we may assume that H
has infinitely many ends and A∩H is finite. But then A 6≤ π′ , so π is virtually
π′×Z . Hence π′ = H and M(K)′ is a PD3 -complex. In particular π′ ∩A = 1
and π/A has infinitely many ends.

In §4 we shall determine all 2-knot groups with π′ finite. If K is the r-twist
spin of an irreducible 1-knot then the rth power of a meridian is central in π
and either π′ is finite or M(K) is aspherical. (See §3 of Chapter 16.) The final
possibility is realized by Artin spins of nontrivial torus knots.
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Theorem 15.4 Let K be a 2-knot whose group π = πK is an HNN extension
with FP2 base B and associated subgroups I and φ(I) = J . If π has a

restrained normal subgroup N which is not locally finite and β
(2)
1 (π) = 0 then

either π′ is finite or π ∼= Φ or M(K) is aspherical or N is locally virtually Z
and π/N has infinitely many ends.

Proof If π′∩N is locally finite then it follows from Britton’s lemma (on normal
forms in HNN extensions) that either B∩N = I∩N or B∩N = J∩N . Moreover
N 6≤ π′ (since N is not locally finite), and so π′/π′ ∩ N is finitely generated.
Hence B/B ∩ N ∼= I/I ∩ N ∼= J/J ∩ N . Thus either B = I or B = J and
so the HNN extension is ascending. If B has finitely many ends we may apply
Theorem 15.3. Otherwise B∩N is finite, so π′∩N = B∩N and N is virtually
Z . Hence π/N is commensurable with B/B ∩N , and e(π/N) =∞.

If π′∩N is locally virtually Z and π/π′∩N has two ends then π is elementary
amenable and h(π) = 2, so π ∼= Φ. Otherwise we may assume that either
π/π′ ∩N has one end or π′ ∩N has a finitely generated, one-ended subgroup.
In either case Hs(π;Z[π]) = 0 for s ≤ 2, by Theorem 1.18, and so M(K) is
aspherical, by Theorem 3.5.

Note that β(2)
1 (π) = 0 if N is amenable. Every knot group is an HNN extension

with finitely generated base and associated subgroups, by Theorem 1.13, and
in all known cases these subgroups are FP2 .

Theorem 15.5 Let K be a 2-knot such that π = πK has an almost coherent,
locally virtually indicable, restrained normal subgroup E which is not locally
finite. Then either π′ is finite or π ∼= Φ or M(K) is aspherical or E is abelian
of rank 1 and π/E has infinitely many ends or E is elementary amenable,
h(E) = 1 and π/E has one or infinitely many ends.

Proof Let F be a finitely generated subgroup of E . Since F is FP2 and
virtually indicable it has a subgroup of finite index which is an HNN extension
over a finitely generated base, by Theorem 1.13. Since F is restrained the HNN
extension is ascending, and so β

(2)
1 (F ) = 0, by Lemma 2.1. Hence β(2)

1 (E) = 0
and so β

(2)
1 (π) = 0, by Theorem 7.2 of [Lü].

If every finitely generated infinite subgroup of E has two ends, then E is
elementary amenable and h(E) = 1. If π/E is finite then π′ is finite. If π/E
has two ends then π is almost coherent, elementary amenable and h(π) = 2,
and so π ∼= Φ, by Theorem 15.2. If E is abelian and π/E has one end, or if E
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has a finitely generated, one-ended subgroup and π is not elementary amenable
of Hirsch length 2 then Hs(π;Z[π]) = 0 for s ≤ 2, by Theorem 1.17. Hence
M(K) is aspherical, by Theorem 3.5.

The remaining possibilities are that either π/E has infinitely many ends or that
E is locally virtually Z but nonabelian and π/E has one end.

Does this theorem hold without any coherence hypothesis? Note that the other
hypotheses hold if E is elementary amenable and h(E) ≥ 2. If E is elementary
amenable, h(E) = 1 and π/E has one end is H2(π;Z[π]) = 0?

Corollary 15.5.1 Let K be a 2-knot with group π = πK . Then either π′ is
finite or π ∼= Φ or M(K) is aspherical and

√
π ∼= Z2 or M(K) is homeomorphic

to an infrasolvmanifold or h(
√
π) = 1 and π/

√
π has one or infinitely many

ends or
√
π is locally finite.

Proof Finitely generated nilpotent groups are polycyclic. If π/
√
π has two

ends we may apply Theorem 15.3. If h(
√
π) = 2 then

√
π ∼= Z2 , by Theorem

9.2, while if h > 2 then π is virtually poly-Z , by Theorem 8.1.

Under somewhat stronger hypotheses we may assume that π has a nontrivial
torsion free abelian normal subgroup.

Theorem 15.6 Let N be a group which is either elementary amenable or is
locally FP3 , virtually indicable and restrained. If c.d.N ≤ 3 then N is virtually
solvable.

Proof Suppose first that N is locally FP3 and virtually indicable, and let
E be a finitely generated subgroup of N which maps onto Z . Then E is an
ascending HNN extension H∗φ with FP3 base H and associated subgroups.
If c.d.H = 3 then H3(H;Z[E]) ∼= H3(H;Z[H]) ⊗H Z[E] 6= 0 and the homo-
morphism H3(H;Z[E])→ H3(H;Z[E]) in the Mayer-Vietoris sequence for the
HNN extension is not onto, by Lemma 3.4 and the subsequent Remark 3.5
of [BG85]. But then H4(E;Z[E]) 6= 0, contrary to c.d.N ≤ 3. Therefore
c.d.H ≤ 2, and so H is elementary amenable, by Theorem 2.7. Hence N is
elementary amenable, and so is virtually solvable by Theorem 1.11.

In particular, ζ
√
N is a nontrivial, torsion free abelian characteristic subgroup

of N . A similar argument shows that if N is locally FPn , virtually indicable,
restrained and c.d.N ≤ n then N is virtually solvable.
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15.3 Abelian normal subgroups

In this section we shall consider 2-knot groups with infinite abelian normal
subgroups. The class with rank 1 abelian normal subgroups includes the groups
of torus knots and twist spins, the group Φ, and all 2-knot groups with finite
commutator subgroup. If there is such a subgroup of rank > 1 the knot manifold
is aspherical; this case is considered further in Chapter 16.

Theorem 15.7 Let K be a 2-knot whose group π = πK has an infinite
abelian normal subgroup A, of rank r . Then r ≤ 4 and

(1) if A is a torsion group then π′ is not FP2 ;

(2) if r = 1 either π′ is finite or π ∼= Φ or M(K) is aspherical or e(π/A) =∞;

(3) if r = 1, e(π/A) =∞ and π′ ≤ Cπ(A) then A and
√
π are virtually Z ;

(4) if r = 1 and A 6≤ π′ then M(K) is a PD+
3 -complex, and is aspherical if

and only if π′ is a PD+
3 -group if and only if e(π′) = 1;

(5) if r = 2 then A ∼= Z2 and M(K) is aspherical;

(6) if r = 3 then A ∼= Z3 , A ≤ π′ and M(K) is homeomorphic to an
infrasolvmanifold;

(7) if r = 4 then A ∼= Z4 and M(K) is homeomorphic to a flat 4-manifold.

Proof If π′ is FP2 then M(K)′ is a PD3 -complex, by Corollary 4.5.2, and
so locally finite normal subgroups of π are finite.

The four possibilities in case (2) correspond to whether π/A is finite or has one,
two or infinitely many ends, by Theorem 15.5. These possibilities are mutually
exclusive; if e(π/A) = ∞ then a Mayer-Vietoris argument as in Lemma 14.8
implies that π cannot be a PD4 -group.

Suppose that r = 1, and A ≤ ζπ′ . Then A is a module over Z[π/π′] ∼= Λ.
On replacing A by a subgroup, if necessary, we may assume that A is cyclic
as a Λ-module and is Z-torsion free. If moreover e(π/A) = ∞ then

√
π/A

must be finite and K = π′/A is not finitely generated. We may write K as an
increasing union of finitely generated subgroups K = ∪n≥1Kn . Let S be an
infinite cyclic subgroup of A and let G = π′/S . Then G is an extension of K by
A/S , and so is an increasing union G = ∪Gn , where Gn is an extension of Kn

by A/S . If A is not finitely generated then A/S is an infinite abelian normal
subgroup. Therefore if some Gn is finitely generated then it has one end, and
so H1(Gn;F ) = 0 for any free Z[Gn]-module F . Otherwise we may write Gn
as an increasing union of finitely generated subgroups Gn = ∪m≥1Gnm , where
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Gnm is an extension of Kn by a finite cyclic group Z/dmZ , dm divides dm+1 for
all m ≥ 1, and A/S = ∪Z/dmZ . Let u be a generator of the subgroup Z/d1Z ,
and let Ḡn = Gn/〈u〉 and Ḡnm = Gnm/〈u〉 for all m ≥ 1. Then Ḡn1

∼= Kn ,
and so Ḡn ∼= Kn × (A/d−1

1 S). Since Kn is finitely generated and A/d−1
1 S is

infinite we again find that H1(Ḡn;F ) = 0 for any free Z[Ḡ]-module F . It now
follows from Theorem 1.16 that H1(Ḡ;F ) = 0 for any free Z[Ḡ]-module F . An
application of the LHSSS for π′ as an extension of Ḡ by the normal subgroup
d−1

1 S ∼= Z then gives Hs(π′;Z[π]) = 0 for s ≤ 2. Another LHSSS argument
then gives Hs(π;Z[π]) = 0 for s ≤ 2 and so M(K) is aspherical. As observed
above, this contradicts the hypothesis e(π/A) =∞.

Suppose next that r = 1 and A is not contained in π′ . Let x1, . . . xn be a set
of generators for π and let s be an element of A which is not in π′ . As each
commutator [s, xi] is in π′ ∩ A it has finite order, ei say. Let e = Πei . Then
[se, x] = se(xs−1x−1)e = (sxs−1x−1)e , so se commutes with all the generators.
The subgroup generated by {se} ∪ π′ has finite index in π and is isomorphic
to Z × π′ , so π′ is finitely presentable. Hence M(K)′ is an orientable PD3 -
complex, by Corollary 4.5.2, and M(K) is aspherical if and only if π′ has one
end, by Theorem 4.1. (In particular, A is finitely generated.)

If r = 2 then A ∼= Z2 and M(K) is aspherical by Theorem 9.2. If r > 2
then r ≤ 4, A ∼= Zr and M(K) is homeomorphic to an infrasolvmanifold by
Theorem 8.1. In particular, π is virtually poly-Z and h(π) = 4. If r = 3 then
A ≤ π′ , for otherwise h(π/π′ ∩ A) = 2, which is impossible for a group with
abelianization Z . If r = 4 then [π : A] < ∞ and so M(K) is homeomorphic
to a flat 4-manifold.

It remains an open question whether abelian normal subgroups of PDn groups
must be finitely generated. If this is so, Φ is the only 2-knot group with an
abelian normal subgroup of positive rank which is not finitely generated.

The argument goes through with A a nilpotent normal subgroup. Can it be
extended to the Hirsch-Plotkin radical? The difficulties are when h(

√
π) = 1

and e(π/
√
π) = 1 or ∞.

Corollary 15.7.1 If A has rank 1 its torsion subgroup T is finite, and if
moreover π′ is infinite and π′/A is finitely generated T = 1.

The evidence suggests that if π′ is finitely generated and infinite then A is
free abelian. Little is known about the rank 0 case. All the other possibilities
allowed by this theorem occur. (We shall consider the cases with rank ≥ 2
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further in Chapter 16.) In particular, if π is torsion free and π′∩A = 1 then π′

is a free product of PD+
3 -groups and free groups, and the various possibilities

(π′ finite, e(π′) = 1 or e(π′) = ∞) are realized by twists spins of classical
knots. Is every 2-knot K such that ζπ 6≤ π′ and π is torsion free s-concordant
to a fibred knot?

Corollary 15.7.2 If π′ finitely generated then either π′ is finite or π′∩A = 1
or M(K) is aspherical. If moreover π′ ∩A has rank 1 then ζπ′ 6= 1.

Proof As π′∩A is torsion free Aut(π′∩A) is abelian. Hence π′∩A ≤ ζπ′ .

If π′ is FP2 and π′ ∩ A is infinite then π′ is the fundamental group of an
aspherical Seifert fibred 3-manifold. There are no known examples of 2-knot
groups π with π′ finitely generated but not finitely presentable.

We may construct examples of 2-knots with such groups as follows. Let N be
a closed 3-manifold such that ν = π1(N) has weight 1 and ν/ν ′ ∼= Z , and let
w = w1(N). Then H2(N ;Zw) ∼= Z . Let Me be the total space of the S1 -
bundle over N with Euler class e ∈ H2(N ;Zw). Then Me is orientable, and
π1(Me) has weight 1 if e = ±1 or if w 6= 0 and e is odd. In such cases surgery
on a weight class in Me gives S4 , so Me

∼= M(K) for some 2-knot K .

In particular, we may take N to be the result of 0-framed surgery on a classical
knot. If the classical knot is 31 or 41 (i.e., is fibred of genus 1) then the resulting
2-knot group has commutator subgroup Γ1 . For examples with w 6= 0 we may
take one of the nonorientable surface bundles with group 〈t, ai, bi (1 ≤ i ≤ n) |
Π[ai, bi] = 1, tait−1 = bi, tbit

−1 = aibi (1 ≤ i ≤ n)〉, where n is odd. (When
n = 1 we get the third of the three 2-knot groups with commutator subgroup
Γ1 . See Theorem 16.13.)

Theorem 15.8 Let K be a 2-knot with a minimal Seifert hypersurface, and
such that π = πK has an abelian normal subgroup A. Then A ∩ π′ is finite
cyclic or is torsion free, and ζπ is finitely generated.

Proof By assumption, π = HNN(H;φ : I ∼= J) for some finitely presentable
group H and isomorphism of φ of subgroups I and J , where I ∼= J ∼= π1(V )
for some Seifert hypersurface V . Let t ∈ π be the stable letter. Either H∩A =
I∩A or H∩A = J∩A (by Britton’s Lemma). Hence π′∩A = ∪n∈Ztn(I∩A)t−n

is a monotone union. Since I∩A is an abelian normal subgroup of a 3-manifold
group it is finitely generated [Ga92], and since V is orientable I ∩A is torsion
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free or finite. If A∩I is finite cyclic or is central in π then A∩I = tn(A∩I)t−n ,
for all n, and so A ∩ π′ = A ∩ I . (In particular, ζπ is finitely generated.)
Otherwise A ∩ π′ is torsion free.

This argument derives from [Yo92,97], where it was shown that if A is a finitely
generated abelian normal subgroup then π′ ∩A ≤ I ∩ J .

Corollary 15.8.1 Let K be a 2-knot with a minimal Seifert hypersurface. If
π = πK has a nontrivial abelian normal subgroup A then π′∩A is finite cyclic
or is torsion free. Moreover ζπ ∼= 1, Z/2Z , Z , Z ⊕ (Z/2Z) or Z2 .

The knots τ041 , the trivial knot, τ331 and τ631 are fibred and their groups
have centres 1, Z , Z ⊕ (Z/2Z) and Z2 , respectively. A 2-knot with a minimal
Seifert hypersurface and such that ζπ = Z/2Z is constructed in [Yo82]. This
paper also gives an example with ζπ ∼= Z , ζπ < π′ and such that π/ζπ has
infinitely many ends. In all known cases the centre of a 2-knot group is cyclic,
Z ⊕ (Z/2Z) or Z2 .

15.4 Finite commutator subgroup

It is a well known consequence of the asphericity of the exteriors of classical
knots that classical knot groups are torsion free. The first examples of higher
dimensional knots whose groups have nontrivial torsion were given by Mazur
[Mz62] and Fox [Fo62]. These examples are 2-knots whose groups have finite
commutator subgroup. We shall show that if π is such a group π′ must be a
CK group, and that the images of meridianal automorphisms in Out(π′) are
conjugate, up to inversion. In each case there is just one 2-knot group with
given finite commutator subgroup. Many of these groups can be realized by
twist spinning classical knots. Zeeman introduced twist spinning in order to
study Mazur’s example; Fox used hyperplane cross sections, but his examples
(with π′ ∼= Z/3Z ) were later shown to be twist spins [Kn83’].

Lemma 15.9 An automorphism of Q(8) is meridianal if and only if it is
conjugate to σ .

Proof Since Q(8) is solvable an automorphism is meridianal if and only if the
induced automorphism of Q(8)/Q(8)′ is meridianal. It is easily verified that all
such elements of Aut(Q(8)) ∼= (Z/2Z)2 o SL(2,F2) are conjugate to σ .
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Lemma 15.10 All nontrivial automorphisms of I∗ are meridianal. Moreover
each automorphism is conjugate to its inverse. The nontrivial outer automor-
phism class of I∗ cannot be realised by a 2-knot group.

Proof Since the only nontrivial proper normal subgroup of I∗ is its centre
(ζI∗ = Z/2Z ) the first assertion is immediate. Since Aut(I∗) ∼= S5 and the
conjugacy class of a permutation is determined by its cycle structure each au-
tomorphism is conjugate to its inverse. Consideration of the Wang sequence for
the projection of M(K)′ onto M(K) shows that the meridianal automorphism
induces the identity on H3(π′;Z), and so the nontrivial outer automorphism
class cannot occur, by Lemma 11.4.

The elements of order 2 in A5
∼= Inn(I∗) are all conjugate, as are the elements

of order 3. There are two conjugacy classes of elements of order 5.

Lemma 15.11 An automorphism of T ∗k is meridianal if and only if it is con-

jugate to ρ3k−1
or ρ3k−1

η . All such automorphisms have the same image in
Out(T ∗k ).

Proof Since T ∗k is solvable an automorphism is meridianal if and only if the
induced automorphism of T ∗k /(T

∗
k )′ is meridianal. Any such automorphism is

conjugate to either ρ2j+1 or to ρ2j+1η for some 0 ≤ j < 3k−1 . (Note that 3
divides 22j−1 but does not divide 22j+1−1.) However among them only those
with 2j + 1 = 3k−1 satisfy the isometry condition of Theorem 14.3.

Theorem 15.12 Let K be a 2-knot with group π = πK . If π′ is finite then
π′ ∼= P × (Z/nZ) where P = 1, Q(8), I∗ or T ∗k , and (n, 2|P |) = 1, and the
meridianal automorphism sends x and y in Q(8) to y and xy , is conjugation
by a noncentral element on I∗ , sends x, y and z in T ∗k to y−1 , x−1 and z−1 ,
and is −1 on the cyclic factor.

Proof Since χ(M(K)) = 0 and π has two ends π′ has cohomological period
dividing 4, by Theorem 11.1, and so is among the groups listed in §2 of Chapter
11. As the meridianal automorphism of π′ induces a meridianal automorphism
on the quotient by any characteristic subgroup, we may eliminate immediately
the groups O∗(k) and A(m, e) and direct products with Z/2nZ since these all
have abelianization cyclic of even order. If k > 1 the subgroup generated by x
in Q(8k) is a characteristic subgroup of index 2. Since Q(2na) is a quotient of
Q(2na, b, c) by a characteristic subgroup (of order bc) this eliminates this class
also. Thus there remain only the above groups.
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It is clear that automorphisms of a group G = H × J such that (|H|, |J |) = 1
correspond to pairs of automorphisms φH and φJ of H and J , respectively,
and φ is meridianal if and only if φH and φJ are. Multiplication by s induces
a meridianal automorphism of Z/mZ if and only if (s − 1,m) = (s,m) = 1.
If Z/mZ is a direct factor of π′ then it is a direct summand of π′/π′′ =
H1(M(K); Λ) and so s2 ≡ 1 modulo (m), by Theorem 14.3. Hence we must
have s ≡ −1 modulo (m). The theorem now follows from Lemmas 15.9-15.11.

Finite cyclic groups are realized by the 2-twist spins of 2-bridge knots, while
the commutator subgroups of τ331 , τ431 and τ531 are Q(8), T ∗1 and I∗ , re-
spectively. As the groups of 2-bridge knots have 2 generator 1 relator pre-
sentations the groups of these twist spins have 2 generator presentations of
deficiency 0. The groups with π′ ∼= Q(8) × (Z/nZ) also have such presenta-
tions, namely 〈t, u | tu2t−1 = u−2, t2unt−2 = untunt−1〉. They are realized by
fibred 2-knots [Yo82], but if n > 1 no such group can be realized by a twist
spin (see §3 of Chapter 16). An extension of the twist spin construction may
be used to realize such groups by smooth fibred knots in the standard S4 , if
n = 3, 5, 11, 13, 19, 21 or 27 [Kn88,Tr90]. Is this so in general? The direct
products of T ∗k and I∗ with cyclic groups are realized by the 2-twist spins of
certain pretzel knots [Yo82]. The corresponding knot groups have presenta-
tions 〈t, x, y, z | zα = 1, x = ztzt−1, y = z2tzt−1z−1, zyz−1 = xy, tx = xt〉 and
〈t, w | twnt−1 = wnt2wnt−2, t5wn = wnt5, tw10t−1 = w−10〉, respectively. We
may easily eliminate the generators x and y from the former presentations to
obtain 2 generator presentations of deficiency -1. It is not known whether any
of these groups (other than those with π′ ∼= T ∗1 or I∗ ) have deficiency 0. Note
that when P = I∗ there is an isomorphism π ∼= I∗ × (π/I∗).

If P = 1 or Q(8) the weight class is unique up to inversion, while T ∗k and I∗

have 2 and 4 weight orbits, respectively, by Theorem 14.1. If π′ = T ∗1 or I∗

each weight orbit is realized by a branched twist spun torus knot [PS87].

The group πτ531
∼= Z × I∗ = Z × SL(2,F5) is the common member of two

families of high dimensional knot groups which are not otherwise 2-knot groups.
If p is a prime greater than 3 then SL(2,Fp) is a finite superperfect group. Let
ep = ( 1 1

0 1 ). Then (1, ep) is a weight element for Z×SL(2,Fp). Similarly, (I∗)m

is superperfect and (1, e5, . . . , e5) is a weight element for G = Z × (I∗)m , for
any m ≥ 0. However SL(2,Fp) has cohomological period p− 1 (see Corollary
1.27 of [DM85]), while ζ(I∗)m ∼= (Z/2Z)m and so (I∗)m does not have periodic
cohomology if m > 1.

Geometry & Topology Monographs, Volume 5 (2002)



302 Chapter 15: Restrained normal subgroups

Kanenobu has shown that for every n > 0 there is a 2-knot group with an
element of order exactly n [Kn80].

15.5 The Tits alternative

An HNN extension (such as a knot group) is restrained if and only if it is
ascending and the base is restrained. The class of groups considered in the next
result probably includes all restrained 2-knot groups.

Theorem 15.13 Let π be a 2-knot group. Then the following are equivalent:

(1) π is restrained, locally FP3 and locally virtually indicable;

(2) π is an ascending HNN extension H∗φ where H is FP3 , restrained and
virtually indicable;

(3) π is elementary amenable and has an abelian normal subgroup of rank
> 0;

(4) π is elementary amenable and is an ascending HNN extension H∗φ where
H is FP2 ;

(5) π′ is finite or π ∼= Φ or π is torsion free virtually poly-Z and h(π) = 4.

Proof Condition (1) implies (2) by Corollary 3.17.1. If (2) holds and H has
one end then π′ = H and is a PD3 -group, by Corollary 15.3.1. Since H
is virtually indicable and admits a meridianal automorphism, it must have a
subgroup of finite index which maps onto Z2 . Hence H is virtually poly-Z , by
Corollary 2.13.1 (together with the remark following it). Hence (2) implies (5).
Conditions (3) and (4) imply (5) by Theorems 15.2 and 15.3, respectively. On
the other hand (5) implies (1-4).

In particular, if K is a 2-knot with a minimal Seifert hypersurface, πK is
restrained and the Alexander polynomial of K is nontrivial then either π ∼= Φ
or π is torsion free virtually poly-Z and h(π) = 4.

15.6 Abelian HNN bases

We shall complete Yoshikawa’s study of 2-knot groups which are HNN exten-
sions with abelian base. The first four paragraphs of the following proof outline
the arguments of [Yo86,92]. (Our contribution is the argument in the final
paragraph, eliminating possible torsion when the base has rank 1.)
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Theorem 15.14 Let π be a 2-knot group which is an HNN extension with
abelian base. Then either π is metabelian or it has a deficiency 1 presentation
〈t, x | txnt−1 = xn+1〉 for some n > 1.

Proof Suppose that π = HNN(A;φ : B → C) where A is abelian. Let j and
jC be the inclusions of B and C into A, and let φ̃ = jCφ. Then φ̃−j : B → A is
an isomorphism, by the Mayer-Vietoris sequence for homology with coefficients
Z for the HNN extension. Hence rank(A) = rank(B) = r , say, and the torsion
subgroups TA, TB and TC of A, B and C coincide.

Suppose first that A is not finitely generated. Since π is finitely presentable
and π/π′ ∼= Z it is also an HNN extension with finitely generated base and
associated subgroups, by the Bieri-Strebel Theorem (1.13). Moreover we may
assume the base is a subgroup of A. Considerations of normal forms with
respect to the latter HNN structure imply that it must be ascending, and so π
is metabelian [Yo92].

Assume now that A is finitely generated. Then the image of TA in π is a
finite normal subgroup N , and π/N is a torsion free HNN extension with base
A/TA ∼= Zr . Let jF and φF be the induced inclusions of B/TB into A/TA,
and let Mj = |det(jF )| and Mφ = |det(φF )|. Applying the Mayer-Vietoris
sequence for homology with coefficients Λ, we find that tφ̃− j is injective and
π′/π′′ ∼= H1(π; Λ) has rank r as an abelian group. Now H2(A;Z) ∼= A ∧ A
(see page 334 of [Ro]) and so H2(π; Λ) ∼= Cok(t ∧2 φ̃ − ∧2j) has rank

(
r
2

)
.

Let δi(t) = ∆0(Hi(π; Λ)), for i = 1 and 2. Then δ1(t) = det(tφF − jF ) and
δ2(t) = det(tφF ∧ φF − jF ∧ jF ). Moreover δ2(t−1) divides δ1(t), by Theorem
14.3. In particular,

(r
2

)
≤ r , and so r ≤ 3.

If r = 0 then clearly B = A and so π is metabelian. If r = 2 then
(
r
2

)
= 1

and δ2(t) = ±(tMφ −Mj). Comparing coefficients of the terms of highest and
lowest degree in δ1(t) and δ2(t−1), we see that Mj = Mφ , so δ2(1) ≡ 0 mod
(2), which is impossible since |δ1(1)| = 1. If r = 3 a similar comparison of
coefficients in δ1(t) and δ2(t−1) shows that M3

j divides Mφ and M3
φ divides

Mj , so Mj = Mφ = 1. Hence φ is an isomorphism, and so π is metabelian.

There remains the case r = 1. Yoshikawa used similar arguments involving
coefficients FpΛ instead to show that in this case N ∼= Z/βZ for some odd
β ≥ 1. The group π/N then has a presentation 〈t, x | txnt−1 = xn+1〉 (with
n ≥ 1). Let p be a prime. There is an isomorphism of the subfields Fp(Xn)
and Fp(Xn+1) of the rational function field Fp(X) which carries Xn to Xn+1 .
Therefore Fp(X) embeds in a skew field L containing an element t such that
tXnt−1 = Xn+1 , by Theorem 5.5.1 of [Cn]. It is clear from the argument of
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this theorem that the group ring Fp[π/N ] embeds as a subring of L, and so
this group ring is weakly finite. Therefore so is the subring Fp[Cπ(N)/N ]. It
now follows from Lemma 3.15 that N must be trivial. Since π is metabelian if
n = 1 this completes the proof.

15.7 Locally finite normal subgroups

Let K be a 2-knot such that π = πK has an infinite locally finite normal
subgroup T , which we may assume maximal. As π has one end and β(2)

1 (π) = 0,
by Gromov’s Theorem (2.3), H2(π;Z[π]) 6= 0. For otherwise M(K) would be
aspherical and so π would be torsion free, by Theorem 3.5. Moreover T < π′

and π/T is not virtually Z , so e(π/T ) = 1 or ∞. (No examples of such 2-knot
groups are known, and we expect that there are none with e(π/T ) = 1).

If H1(T ;R) = 0 for some subring R of Q and Z[π/T ] embeds in a weakly
finite ring S with an involution extending that of the group ring, which is flat
as a right Z[π/T ]-module and such that S ⊗Z[π/T ] Z = 0 then either π/T

is a PD+
4 -group over R or H2(π/T ;R[π/T ]) 6= 0, or e(π/T ) = ∞, by the

Addendum to Theorem 2.7 of [H2]. This applies in particular if π/T has a
nontrivial locally nilpotent normal subgroup U/T , for then U/T is torsion free.
(See Proposition 5.2.7 of [Ro].) Moreover e(π/T ) = 1. An iterated LHSSS
argument shows that if h(U/T ) > 1 or if U/T ∼= Z and e(π/U) = 1 then
H2(π/T ;Q[π/T ]) = 0. (This is also the case if h(U/T ) = 1, e(π/U) = 1 and
π/T is finitely presentable, by Theorem 1 of [Mi87] with [GM86].) Thus if
H2(π/T ;Q[π/T ]) 6= 0 then U/T is abelian of rank 1 and either e(π/U) = 2
(in which case π/T ∼= Φ, by Theorem 15.2), e(π/U) = 1 (and U/T not finitely
generated and π/U not finitely presentable) or e(π/U) = ∞. As Aut(U/T )
is then abelian U/T is central in π′/T . Moreover π/U can have no nontrivial
locally finite normal subgroups, for otherwise T would not be maximal in π ,
by an easy extension of Schur’s Theorem (Proposition 10.1.4 of [Ro]).

Hence if π has an ascending series whose factors are either locally finite or
locally nilpotent then either π/T ∼= Φ or h(

√
π/T ) ≥ 2 and so π/T is a PD+

4 -
group over Q. Since J = π/T is elementary amenable and has no nontrivial
locally finite normal subgroup it is virtually solvable and h(J) = 4, by Theorem
1.11. It can be shown that J is virtually poly-Z and J ′ ∩

√
J ∼= Z3 or Γq for

some q ≥ 1. (See Theorem VI.2 of [H1].) The possibilities for J ′ are examined
in Theorems VI.3-5 and VI.9 of [H1]. We shall not repeat this discussion here
as we expect that if G is finitely presentable and T is an infinite locally finite
normal subgroup such that e(G/T ) = 1 then H2(G;Z[G]) = 0.
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The following lemma suggests that there may be a homological route to showing
that solvable 2-knot groups are virtually torsion free.

Lemma 15.15 Let G be an FP2 group with a torsion normal subgroup T
such that either G/T ∼= Z∗m for some m 6= 0 or G/T is virtually poly-Z . Then
T/T ′ has finite exponent as an abelian group. In particular, if π is solvable
then T = 1 if and only if H1(T ;Fp) = 0 for all primes p.

Proof Let C∗ be a free Z[G]-resolution of the augmentation module Z which
is finitely generated in degrees ≤ 2. Since Z[G/T ] is coherent [BS79], T/T ′ =
H1(Z[G/T ] ⊗G C∗) is finitely presentable as a Z[G/T ]-module. If T/T ′ is
generated by elements ti of order ei then Πei is a finite exponent for T/T ′ .

If π is solvable then so is T , and T = 1 if and only if T/T ′ = 1. Since T/T ′

has finite exponent T/T ′ = 1 if and only if H1(T ;Fp) = 0 for all primes p.

Note also that Fp[Z∗m] is a coherent Ore domain of global dimension 2, while
if J is a torsion free virtually poly-Z group then Fp[J ] is a noetherian Ore
domain of global dimension h(J). (See §4.4 and §13.3 of [Pa].)
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Chapter 16

Abelian normal subgroups of rank
≥ 2

If K is a 2-knot such that h(
√
πK) = 2 then

√
πK ∼= Z2 , by Corollary 15.5.1.

The main examples are the branched twist spins of torus knots, whose groups
usually have centre of rank 2. (There are however examples in which

√
π is

not central.) Although we have not been able to show that all 2-knot groups
with centre of rank 2 are realized by such knots, we have a number of partial
results that suggest strongly that this may be so. Moreover we can characterize
the groups which arise in this way (obvious exceptions aside) as being the
3-knot groups which are PD+

4 -groups and have centre of rank 2, with some
power of a weight element being central. The strategy applies to other twist
spins of prime 1-knots; however in general we do not have satisfactory algebraic
characterizations of the 3-manifold groups involved. If h(

√
πK) > 2 then M(K)

is homeomorphic to an infrasolvmanifold. We shall determine the groups of such
knots and give optimal presentations for them in §4 of this chapter. Two of
these groups are virtually Z4 ; in all other cases h(

√
πK) = 3.

16.1 The Brieskorn manifolds M(p, q, r)

Let M(p, q, r) = {(u, v,w) ∈ C3 | up + vq + wr = 0} ∩ S5 . Thus M(p, q, r) is a
Brieskorn 3-manifold (the link of an isolated singularity of the intersection of
n algebraic hypersurfaces in Cn+2 , for some n ≥ 1). It is clear that M(p, q, r)
is unchanged by a permutation of {p, q, r}.

Let s = hcf{pq, pr, qr}. Then M(p, q, r) admits an effective S1 -action given
by z(u, v,w) = (zqr/su, zpr/sv, zpq/sw) for z ∈ S1 and (u, v,w) ∈ M(p, q, r),
and so is Seifert fibred. More precisely, let ` = lcm{p, q, r}, p′ = lcm{q, r},
q′ = lcm{p, r} and r′ = lcm{p, q}, s1 = qr/p′ , s2 = pr/q′ and s3 = pq/r′ and
t1 = `/p′ , t2 = `/q′ and t3 = `/r′ . Let g = (2+ (pqr/`)− s1− s2− s3)/2. Then
M(p, q, r) = M(g; s1(t1, β1), s2(t2, β2), s3(t3, β3)), in the notation of [NR78],
where the coefficients βi are determined modulo ti by the equation

e = −(qrβ1 + prβ2 + pqβ3)/`) = −pqr/`2
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for the generalized Euler number. (See [NR78].) If p−1 + q−1 + r−1 ≤ 1 the
Seifert fibration is essentially unique. (See Theorem 3.8 of [Sc83’].) In most
cases the triple {p, q, r} is determined by the Seifert structure of M(p, q, r).
(Note however that, for example, M(2, 9, 18) ∼= M(3, 5, 15) [Mi75].)

The map f : M(p, q, r) → CP1 given by f(u, v,w) = [up : vq] is constant on
the orbits of the S1 -action, and the exceptional fibres are those above 0, −1
and ∞ in CP1 . In particular, if p, q and r are pairwise relatively prime f is
the orbit map and M(p, q, r) is Seifert fibred over the orbifold S2(p, q, r). The
involution c of M(p, q, r) induced by complex conjugation in C3 is orientation
preserving and is compatible with f and complex conjugation in CP1 .

The 3-manifold M(p, q, r) is a S3 -manifold if and only if p−1 + q−1 + r−1 > 1.
The triples (2, 2, r) give lens spaces. The other triples with p−1 +q−1 +r−1 > 1
are permutations of (2, 3, 3), (2, 3, 4) or (2, 3, 5), and give the three CK 3-
manifolds with fundamental groups Q(8), T ∗1 and I∗ . The manifolds M(2, 3, 6),
M(3, 3, 3) and M(2, 4, 4) are Nil3 -manifolds; in all other cases M(p, q, r) is a
S̃L-manifold (in fact, a coset space of S̃L [Mi75]), and

√
π1(M(p, q, r)) ∼= Z .

Let A(u, v,w) = (u, v, e2πi/rw) and g(u, v,w) = (u, v)/(|u|2 + |v|2), for (u, v,w)
∈ M(p, q, r). Then A generates a Z/rZ -action which commutes with the
above S1 -action, and these actions agree on their subgroups of order r/s. The
projection to the orbit space M(p, q, r)/〈A〉 may be identified with the map
g : M(p, q, r)→ S3 , which is an r-fold cyclic branched covering, branched over
the (p, q)-torus link. (See Lemma 1.1 of [Mi75].)

16.2 Rank 2 subgroups

In this section we shall show that an abelian normal subgroup of rank 2 in a
2-knot group is free abelian and not contained in the commutator subgroup.

Lemma 16.1 Let ν be the fundamental group of a closed H2 × E1 -, Sol3 - or
S2 × E1 -manifold. Then ν admits no meridianal automorphism.

Proof The fundamental group of a closed Sol3 - or S2 × E1 -manifold has a
characteristic subgroup with quotient having two ends. If ν is a lattice in
Isom+(H2 × E1) then

√
ν ∼= Z and either

√
ν = ζν and is not contained in ν ′

or Cν(
√
ν) is a characteristic subgroup of index 2 in ν . In none of these cases

can ν admit a meridianal automorphism.
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Theorem 16.2 Let K be a 2-knot whose group π = πK has an abelian
normal subgroup A of rank 2. Then π is a PD+

4 -group, A ∼= Z2 , π′ ∩A ∼= Z ,
π′ ∩ A ≤ ζπ′ ∩ I(π′), [π : Cπ(A)] ≤ 2 and π′ = π1(N), where N is a Nil3 -

or S̃L-manifold. If π is virtually solvable then M(K) is homeomorphic to a
Nil3×E1 -manifold. If π is not virtually solvable then M(K) is s-cobordant to

the mapping torus M(Θ) of a self homeomorphism Θ of a S̃L-manifold; M(Θ)
is a S̃L× E1 -manifold if ζπ ∼= Z2 .

Proof The first two assertions follow from Theorem 9.2, where it is also shown
that π/A is virtually a PD2 -group. If A < π′ then π/A has infinite abelian-
ization and so maps onto some planar discontinuous group, with finite kernel
[EM82]. As the planar discontinuous group is virtually a surface group it has a
compact fundamental region. But no such group has abelianization Z . (This
follows for instance from consideration of the presentations given in Theorem
4.5.6 of [ZVC].) Therefore π′ ∩ A ∼= Z . If τ is the meridianal automorphism
of π′/I(π′) then τ − 1 is invertible, and so cannot have ±1 as an eigenvalue.
Hence π′ ∩A ≤ I(π′). In particular, π′ is not abelian.

The image of π/Cπ(A) in Aut(A) ∼= GL(2,Z) is triangular, since π′ ∩ A ∼= Z
is normal in π . Therefore as π/Cπ(A) has finite cyclic abelianization it must
have order at most 2. Thus [π : Cπ(A)] ≤ 2, so π′ < Cπ(A) and π′ ∩A < ζπ′ .
The subgroup H generated by π′ ∪ A has finite index in π and so is also a
PD+

4 -group. Since A is central in H and maps onto H/π′ we have H ∼=
π′ × Z . Hence π′ is a PD+

3 -group with nontrivial centre. As the nonabelian
flat 3-manifold groups either admit no meridianal automorphism or have trivial
centre, π′ = π1(N) for some Nil3 - or S̃L-manifold N , by Theorem 2.14 and
Lemma 16.1.

The manifold M(K) is s-cobordant to the mapping torus M(Θ) of a self home-
omorphism of N , by Theorem 13.2. If N is a Nil3 -manifold M(K) is homeo-
morphic to M(Θ), by Theorem 8.1, and M(K) must be a Nil3×E1 -manifold,
since the groups of Sol41 -manifolds do not have rank 2 abelian normal subgroups,
while the groups of Nil4 -manifolds cannot have abelianization Z , as they have
characteristic rank 2 subgroups contained in their commutator subgroups.

We may assume also that M(Θ) is Seifert fibred over a 2-orbifold B . If moreover
ζπ ∼= Z2 then B must be orientable, and the monodromy representation of
πorb1 (B) in Aut(ζπ) ∼= GL(2,Z) is trivial. Therefore if N is an S̃L-manifold
and ζπ ∼= Z2 then M(Θ) is a S̃L× E1 -manifold, by Theorem B of [Ue91] and
Lemma 16.1.
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If p, q and r are pairwise relatively prime M(p, q, r) is a Z-homology 3-sphere
and π1(M(p, q, r)) has a presentation

〈a1, a2, a3, h | ap1 = aq2 = ar3 = a1a2a3 = h〉

(see [Mi75]). The automorphism c∗ of ν = π1(M(p, q, r)) induced by the invo-
lution c is determined by c∗(a1) = a−1

1 , c∗(a2) = a−1
2 and c∗(h) = h−1 , and

hence c∗(a3) = a2a
−1
3 a−1

2 . If one of p, q and r is even c∗ is meridianal. Surgery
on the mapping torus of c gives rise to a 2-knot whose group ν ×c∗ Z has an
abelian normal subgroup A = 〈t2, h〉. If moreover p−1 + q−1 + r−1 < 1 then
A ∼= Z2 , but is not central.

The only virtually poly-Z groups with noncentral rank 2 abelian normal sub-
groups are the groups π(b, ε) discussed in §4 below.

Theorem 16.3 Let π be a 2-knot group such that ζπ has rank greater than
1. Then ζπ ∼= Z2 , ζπ′ = π′ ∩ ζπ ∼= Z , and ζπ′ ≤ π′′ .

Proof If ζπ had rank greater than 2 then π′ ∩ ζπ would contain an abelian
normal subgroup of rank 2, contrary to Theorem 16.2. Therefore ζπ ∼= Z2 and
π′ ∩ ζπ ∼= Z . Moreover π′ ∩ ζπ ≤ π′′ , since π/π′ ∼= Z . In particular π′ is
nonabelian and π′′ has nontrivial centre. Hence π′ is the fundamental group
of a Nil3 - or S̃L-manifold, by Theorem 16.2, and so ζπ′ ∼= Z . It follows easily
that π′ ∩ ζπ = ζπ′ .

The proof of this result in [H1] relied on the theorems of Bieri and Strebel,
rather than Bowditch’s Theorem.

16.3 Twist spins of torus knots

The commutator subgroup of the group of the r-twist spin of a classical knot
K is the fundamental group of the r-fold cyclic branched cover of S3 , branched
over K [Ze65]. The r-fold cyclic branched cover of a sum of knots is the con-
nected sum of the r-fold cyclic branched covers of the factors, and is irreducible
if and only if the knot is prime. Moreover the cyclic branched covers of a prime
knot are either aspherical or finitely covered by S3 ; in particular no summand
has free fundamental group [Pl84]. The cyclic branched covers of prime knots
with nontrivial companions are Haken 3-manifolds [GL84]. The r-fold cyclic
branched cover of a simple nontorus knot is a hyperbolic 3-manifold if r ≥ 3,
excepting only the 3-fold cyclic branched cover of the figure-eight knot, which is
the Hanztsche-Wendt flat 3-manifold [Du83]. The r-fold cyclic branched cover
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of the (p, q)-torus knot kp,q is the Brieskorn manifold M(p, q, r) [Mi75]. (In
particular, there are only four r-fold cyclic branched covers of nontrivial knots
for any r > 2 which have finite fundamental group.)

Theorem 16.4 Let M be the r-fold cyclic branched cover of S3 , branched
over a knot K , and suppose that r > 2 and that

√
π1(M) 6= 1. Then K is

uniquely determined by M and r , and either K is a torus knot or K ∼= 41 and
r = 3.

Proof As the connected summands of M are the cyclic branched covers of the
factors of K , any homotopy sphere summand must be standard, by the proof
of the Smith conjecture. Therefore M is aspherical, and is either Seifert fibred
or is a Sol3 -manifold, by Theorem 2.14. It must in fact be a E3 -, Nil3 - or S̃L-
manifold, by Lemma 16.1. If there is a Seifert fibration which is preserved by
the automorphisms of the branched cover the fixed circle (the branch set of M )
must be a fibre of the fibration (since r > 2) which therefore passes to a Seifert
fibration of X(K). Thus K must be a (p, q)-torus knot, for some relatively
prime integers p and q [BZ]. These integers may be determined arithmetically
from r and the formulae for the Seifert invariants of M(p, q, r) given in §1.
Otherwise M is flat [MS86] and so K ∼= 41 and r = 3, by [Du83].

All the knots whose 2-fold branched covers are Seifert fibred are torus knots or
Montesinos knots. (This class includes the 2-bridge knots and pretzel knots,
and was first described in [Mo73].) The number of distinct knots whose 2-
fold branched cover is a given Seifert fibred 3-manifold can be arbitrarily large
[Be84]. Moreover for each r ≥ 2 there are distinct simple 1-knots whose r-fold
cyclic branched covers are homeomorphic [Sa81, Ko86].

If K is a fibred 2-knot with monodromy of finite order r and if (r, s) = 1 then
the s-fold cyclic branched cover of S4 , branched over K is again a 4-sphere
and so the branch set gives a new 2-knot, which we shall call the s-fold cyclic
branched cover of K . This new knot is again fibred, with the same fibre and
monodromy the sth power of that of K [Pa78, Pl86]. If K is a classical knot
we shall let τr,sK denote the s-fold cyclic branched cover of the r-twist spin of
K . We shall call such knots branched twist spins, for brevity.

Using properties of S1 -actions on smooth homotopy 4-spheres, Plotnick obtains
the following result [Pl86].

Theorem (Plotnick) A 2-knot is fibred with periodic monodromy if and only
if it is a branched twist spin of a knot in a homotopy 3-sphere.
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Here “periodic monodromy” means that the fibration of the exterior of the knot
has a characteristic map of finite order. It is not in general sufficient that the
closed monodromy be represented by a map of finite order. (For instance, if K
is a fibred 2-knot with π′ ∼= Q(8)× (Z/nZ) for some n > 1 then the meridianal
automorphism of π′ has order 6, and so it follows from the observations above
that K is not a twist spin.)

In our application in the next theorem we are able to show directly that the
homotopy 3-sphere arising there may be assumed to be standard.

Theorem 16.5 A group G which is not virtually solvable is the group of a
branched twist spin of a torus knot if and only if it is a 3-knot group and a
PD+

4 -group with centre of rank 2, some nonzero power of a weight element
being central.

Proof If K is a cyclic branched cover of the r-twist spin of the (p, q)-torus
knot then M(K) fibres over S1 with fibre M(p, q, r) and monodromy of order
r , and so the rth power of a meridian is central. Moreover the monodromy
commutes with the natural S1 -action on M(p, q, r) (see Lemma 1.1 of [Mi75])
and hence preserves a Seifert fibration. Hence the meridian commutes with
ζπ1(M(p, q, r)), which is therefore also central in G. Since (with the above
exceptions) π1(M(p, q, r)) is a PD+

3 -group with infinite centre and which is
virtually representable onto Z , the necessity of the conditions is evident.

Conversely, if G is such a group then G′ is the fundamental group of a Seifert
fibred 3-manifold, N say, by Theorem 2.14. Moreover N is “sufficiently com-
plicated” in the sense of [Zi79], since G′ is not virtually solvable. Let t be an
element of G whose normal closure is the whole group, and such that tn is cen-
tral for some n > 0. Let θ be the automorphism of G′ determined by t, and let
m be the order of the outer automorphism class [θ] ∈ Out(G′). By Corollary
3.3 of [Zi79] there is a fibre preserving self homeomorphism τ of N inducing [θ]
such that the group of homeomorphisms of Ñ ∼= R3 generated by the covering
group G′ together with the lifts of τ is an extension of Z/mZ by G′ , and
which is a quotient of the semidirect product Ĝ = G/〈〈tn〉〉 ∼= G′ ×θ (Z/nZ).
Since the self homeomorphism of Ñ corresponding to the image of t has finite
order it has a connected 1-dimensional fixed point set, by Smith theory. The
image P of a fixed point in N determines a cross-section γ = {P} × S1 of
the mapping torus M(τ). Surgery on γ in M(τ) gives a 2-knot with group G
which is fibred with monodromy (of the fibration of the exterior X ) of finite
order. We may then apply Plotnick’s Theorem to conclude that the 2-knot is
a branched twist spin of a knot in a homotopy 3-sphere. Since the monodromy
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respects the Seifert fibration and leaves the centre of G′ invariant, the branch
set must be a fibre, and the orbit manifold a Seifert fibred homotopy 3-sphere.
Therefore the orbit knot is a torus knot in S3 , and the 2-knot is a branched
twist spin of a torus knot.

Can we avoid the appeal to Plotnick’s Theorem in the above argument?

If p, q and r are pairwise relatively prime then M(p, q, r) is an homology
sphere and the group π of the r-twist spin of the (p, q)-torus knot has a central
element which maps to a generator of π/π′ . Hence π ∼= π′ × Z and π′ has
weight 1. Moreover if t is a generator for the Z summand then an element h
of π′ is a weight element for π′ if and only if ht is a weight element for π . This
correspondance also gives a bijection between conjugacy classes of such weight
elements. If we exclude the case (2, 3, 5) then π′ has infinitely many distinct
weight orbits, and moreover there are weight elements such that no power is
central [Pl83]. Therefore we may obtain many 2-knots whose groups are as in
Theorem 16.5 but which are not themselves branched twist spins by surgery on
weight elements in M(p, q, r)× S1 .

If K is a 2-knot with group as in Theorem 16.5 then M(K) is aspherical, and
so is homotopy equivalent to M(K1) for some K1 which is a branched twist
spin of a torus knot. If we assume that K is fibred, with irreducible fibre, we
get a stronger result. The next theorem is a version of Proposition 6.1 of [Pl86],
starting from more algebraic hypotheses.

Theorem 16.6 Let K be a fibred 2-knot whose group π has centre of rank
2, some power of a weight element being central. Suppose that the fibre is irre-
ducible. Then M(K) is homeomorphic to M(K1), where K1 is some branched
twist spin of a torus knot.

Proof Let F be the closed fibre and φ : F → F the characteristic map.
Then F is a Seifert fibred manifold, as above. Now the automorphism of F
constructed as in Theorem 16.5 induces the same outer automorphism of π1(F )
as φ, and so these maps must be homotopic. Therefore they are in fact isotopic
[Sc85, BO91]. The theorem now follows.

We may apply Plotnick’s theorem in attempting to understand twist spins of
other knots. As the arguments are similar to those of Theorems 16.5 and 16.6,
except in that the existence of homeomorphisms of finite order and “homotopy
implies isotopy” require different justifications, while the conclusions are less
satisfactory, we shall not give prooofs for the following assertions.
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Let G be a 3-knot group such that G′ is the fundamental group of a hyperbolic
3-manifold and in which some nonzero power of a weight element is central. If
the 3-dimensional Poincaré conjecture is true then we may use Mostow rigidity
to show that G is the group of some branched twist spin K of a simple non-torus
knot. Moreover if K1 is any other fibred 2-knot with group G and hyperbolic
fibre then M(K1) is homeomorphic to M(K). In particular the simple knot
and the order of the twist are uniquely determined by G.

Similarly if G′ is the fundamental group of a Haken 3-manifold which is not
Seifert fibred and the 3-dimensional Poincaré conjecture is true then we may
use [Zi82] to show that G is the group of some branched twist spin of a prime
non-torus knot. If moreover all finite group actions on the fibre are geometric
the prime knot and the order of the twist are uniquely determined by G′ [Zi86].

16.4 Solvable PD4-groups

If π is a 2-knot group such that h(
√
π) > 2 then π is virtually poly-Z and

h(π) = 4, by Theorem 8.1. In this section we shall determine all such 2-knot
groups.

Lemma 16.7 Let G be torsion free and virtually poly-Z with h(G) = 4
and G/G′ ∼= Z . Then G′ ∼= Z3 or G6 or

√
G′ ∼= Γq (for some q > 0) and

G′/
√
G′ ∼= Z/3Z or 1.

Proof Let H = G/
√
G′ . Then H/H ′ ∼= Z and h(H ′) ≤ 1, since

√
G′ =

G′ ∩
√
G and h(G′ ∩

√
G) ≥ h(G)− 1 ≥ 2. Hence H ′ = G′/

√
G′ is finite.

If
√
G′ ∼= Z3 then G′ ∼= Z3 or G6 , since these are the only flat 3-manifold

groups which admit meridianal automorphisms.

If
√
G′ ∼= Γq for some q > 0 then ζ

√
G′ ∼= Z is normal in G and so is central

in G′ . Using the known structure of automorphisms of Γq , it follows that the
finite group G′/

√
G′ must act on

√
G′/ζ

√
G′ ∼= Z2 via SL(2,Z) and so must be

cyclic. Moreover it must be of odd order, and hence 1 or Z/3Z , since G/
√
G′

has infinite cyclic abelianization.

Such a group G is the group of a fibred 2-knot if and only if it is orientable, by
Theorems 14.4 and 14.7.
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Theorem 16.8 Let π be a 2-knot group with π′ ∼= Z3 , and let C be the
image of the meridianal automorphism in SL(3,Z). Then ∆C(t) = det(tI−C)
is irreducible, |∆C(1)| = 1 and π′ is isomorphic to an ideal in the domain R =
Λ/(∆C(t)). Two such groups are isomorphic if and only if the polynomials are
equal (after inverting t, if necessary) and the ideal classes then agree. There are
finitely many ideal classes for each such polynomial and each class (equivalently,
each such matrix) is realized by some 2-knot group. Moreover

√
π = π′ and

ζπ = 1. Each such group π has two strict weight orbits.

Proof Let t be a weight element for π and let C be the matrix of the action
of t by conjugation on π′ , with respect to some basis. Then det(C − I) = ±1,
since t−1 acts invertibly. Moreover if K is a 2-knot with group π then M(K) is
orientable and aspherical, so det(C) = +1. Conversely, surgery on the mapping
torus of the self homeomorphism of S1×S1× S1 determined by such a matrix
C gives a 2-knot with group Z3 ×C Z .

The Alexander polynomial of K is the characteristic polynomial ∆K(t) =
det(tI − C) which has the form t3 − at2 + bt − 1, for some a and b = a ± 1.
It is irreducible, since it does not vanish at ±1. Since π′ is annihilated by
∆K(t) it is an R-module; moreover as it is torsion free it embeds in Q ⊗ π′ ,
which is a vector space over the field of fractions Q ⊗ R. Since π′ is finitely
generated and π′ and R each have rank 3 as abelian groups it follows that π′

is isomorphic to an ideal in R. Moreover the characteristic polynomial of C
cannot be cyclotomic and so no power of t can commute with any nontrivial
element of π′ . Hence

√
π = π′ and ζπ = 1.

By Lemma 1.1 two such semidirect products are isomorphic if and only if the
matrices are conjugate up to inversion. The conjugacy classes of matrices in
SL(3,Z) with given irreducible characteristic polynomial ∆(t) correspond to
the ideal classes of Λ/(∆(t)), by Theorem 1.4. Therefore π is determined by
the ideal class of π′ , and there are finitely many such 2-knot groups with given
Alexander polynomial.

Since π′′ = 1 the final observation follows from Theorem 14.1.

We shall call 2-knots with such groups “Cappell-Shaneson” 2-knots.

Lemma 16.9 Let ∆a(t) = t3 − at2 + (a − 1)t − 1 for some a ∈ Z. Then
every ideal in the domain R = Λ/(∆a(t)) can be generated by 2 elements as
an R-module.
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Proof In this lemma “cyclic” shall mean “cyclic as an R-module” or equiva-
lently “cyclic as a Λ-module”. Let M be an ideal in R. We shall show that we
can choose a nonzero element x ∈M such that M/(Rx+ pM) is cyclic, for all
primes p. The result will then follow via Nakayama’s Lemma and the Chinese
Remainder Theorem.

Let D be the discriminant of ∆a(t). Then D = a(a− 2)(a− 3)(a− 5)− 23. If
p does not divide D then ∆a(t) has no repeated roots modulo p. If p divides
D choose integers αp , βp such that ∆a(t) ≡ (t − αp)2(t − βp) modulo (p),
and let Kp = {m ∈ M | (t − βp)m ∈ pM}. If βp 6≡ αp modulo (p) then
Kp = (p, t− αp)M and has index p2 in M .

If βp ≡ αp modulo (p) then α3
p ≡ 1 and (1−αp)3 ≡ −1 modulo (p). Together

these congruences imply that 3αp ≡ −1 modulo (p), and hence that p = 7
and αp ≡ 2 modulo (7). If M/7M ∼= (Λ/(7, t − 2))3 then the automorphism
τ of M/49M induced by t is congruent to multiplication by 2 modulo (7).
But M/49M ∼= (Z/49Z)3 as an abelian group, and so det(τ) = 8 in Z/49Z,
contrary to t being an automorphism of M . Therefore

M/7M ∼= (Λ/(7, t − 2))⊕ (Λ/(7, (t − 2)2))

and K7 has index 7 in M , in this case.

The set M −∪p|DKp is nonempty, since

1
7

+ Σp|D,p 6=7
1
p2

<
1
7

+
∫ ∞

2

1
t2
dt < 1.

Let x be an element of M − ∪p|DKp which is not Z-divisible in M . Then
N = M/Rx is finite, and is generated by at most two elements as an abelian
group, since M ∼= Z3 as an abelian group. For each prime p the Λ/pΛ-
module M/pM is an extension of N/pN by the submodule Xp generated by
the image of x and its order ideal is generated by the image of ∆a(t) in the
P.I.D. Λ/pΛ ∼= Fp[t, t−1].

If p does not divide D the image of ∆a(t) in Λ/pΛ is square free. If p|D and
βp 6= αp the order ideal of Xp is divisible by t− αp . If β7 = α7 = 2 the order
ideal of X7 is (t− 2)2 . In all cases the order ideal of N/pN is square free and
so N/pN is cyclic. By the Chinese Remainder Theorem there is an element
y ∈ M whose image is a generator of N/pN , for each prime p dividing the
order of N . The image of y in N generates N , by Nakayama’s Lemma.

In [AR84] matrix calculations are used to show that any matrix C as in Theorem
16.8 is conjugate to one with first row (0, 0, 1). (The prime 7 also needs special
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consideration in their argument.) This is equivalent to showing that M has
an element x such that the image of tx in M/Zx is indivisible, from which
it follows that M is generated as an abelian group by x, tx and some third
element y . Given this, it is easy to see that the corresponding Cappell-Shaneson
2-knot group has a presentation

〈t, x, y, z | xy = yx, xz = zx, txt−1 = z, tyt−1 = xmynzp, tzt−1 = xqyrzs〉.

Since p and s must be relatively prime these relations imply yz = zy . We may
reduce the number of generators and relations on setting z = txt−1 .

Lemma 16.10 Let π be a finitely presentable group such that π/π′ ∼= Z , and
let R = Λ or Λ/pΛ for some prime p ≥ 2. Then

(1) if π can be generated by 2 elements H1(π;R) is cyclic as an R-module;

(2) if def(π) = 0 then H2(π;R) is cyclic as an R-module.

Proof If π is generated by two elements t and x, say, we may assume that
the image of t generates π/π′ and that x ∈ π′ . Then π′ is generated by the
conjugates of x under powers of t, and so H1(π;R) = R⊗Λ (π′/π′′) is generated
by the image of x.

If X is the finite 2-complex determined by a deficiency 0 presentation for π then
H0(X;R) = R/(t− 1) and H1(X;R) are R-torsion modules, and H2(X;R) is
a submodule of a finitely generated free R-module. Hence H2(X;R) ∼= R, as
it has rank 1 and R is an UFD. Therefore H2(π;R) is cyclic as an R-module,
since it is a quotient of H2(X;R), by Hopf’s Theorem.

Theorem 16.11 Let π = Z3 ×C Z be the group of a Cappell-Shaneson 2-
knot, and let ∆(t) = det(tI − C). Then π has a 3 generator presentation of
deficiency −2. Moreover the following are equivalent.

(1) π has a 2 generator presentation of deficiency 0;

(2) π is generated by 2 elements;

(3) def(π) = 0;

(4) π′ is cyclic as a Λ-module.

Proof The first assertion follows immediately from Lemma 16.9. Condition
(1) implies (2) and (3), since def(π) ≤ 0, by Theorem 2.5, while (2) implies
(4), by Lemma 16.10. If def(π) = 0 then H2(π; Λ) is cyclic as a Λ-module,
by Lemma 16.10. Since π′ = H1(π; Λ) ∼= H3(π; Λ) ∼= Ext1Λ(H2(π; Λ),Λ), by
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Poincaré duality and the UCSS, it is also cyclic and so (3) also implies (4). If π′

is generated as a Λ-module by x then it is easy to see that π has a presentation
of the form

〈t, x | xtxt−1 = txt−1x, t3xt−3 = t2xat−2txbt−1x〉,
for some integers a, b, and so (1) holds.

In fact Theorem A.3 of [AR84] implies that any such group has a 3 generator
presentation of deficiency -1, as remarked before Lemma 16.10.

The isomorphism class of the Λ-module π′ is that of its Steinitz-Fox-Smythe
row invariant, which is the ideal (r, t−n) in the domain Λ/(∆(t)) (see Chapter
3 of [H3]). Thus π′ is cyclic if and only if this ideal is principal. In particular,
this is not so for the concluding example of [AR84], which gives rise to the
group with presentation

〈t, x, y, z | xz = zx, yz = zy, txt−1 = y−5z−8, tyt−1 = y2z3, tzt−1 = xz−7〉.
Let G(+) and G(−) be the extensions of Z by G6 with presentations

〈t, x, y | xy2x−1y2 = 1, txt−1 = (xy)∓1, tyt−1 = x±1〉.
(These presentations have optimal deficiency, by Theorem 2.5.) The group
G(+) is the group of the 3-twist spin of the figure eight knot (G(+) ∼= πτ341 .)

Theorem 16.12 Let π be a 2-knot group with π′ ∼= G6 . Then π ∼= G(+) or
G(−). In each case π is virtually Z4 , π′ ∩ ζπ = 1 and ζπ ∼= Z .

Proof Since Out(G6) is finite π is virtually G6×Z and hence is virtually Z4 .
The groups G(+) and G(−) are the only orientable flat 4-manifold groups with
π/π′ ∼= Z . The next assertion (π′∩ζπ = 1) follows as ζG6 = 1. It is easily seen
that ζG(+) and ζG(−) are generated by the images of t3 and t6x−2y2(xy)−2 ,
respectively, and so in each case ζπ ∼= Z .

Although G(−) is the group of a fibred 2-knot, by Theorem 14.4, it can be
shown that no power of any weight element is central and so it is not the group
of any twist spin. (This also follows from Theorem 16.4 above.)

Theorem 16.13 Let π be a 2-knot group with π′ ∼= Γq for some q > 0, and
let θ be the image of the meridianal automorphism in Out(Γq). Then either
q = 1 and θ is conjugate to [

(
1 −1
1 0

)
, 0] or [( 1 1

1 2 ) , 0], or q is odd and θ is
conjugate to [( 1 1

1 0 ) , 0] or its inverse. Each such group π has two strict weight
orbits.
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Proof If (A,µ) is a meridianal automorphism of Γq then the induced au-
tomorphisms of Γq/ζΓq ∼= Z2 and tors(Γq/Γ′q) ∼= Z/qZ are also meridianal.
Therefore det(A− I) = ±1 and det(A)− 1 is a unit modulo (q), so q must be
odd and det(A) = −1 if q > 1. The characteristic polynomial ∆A(X) of such
a 2× 2 matrix must be X2−X + 1, X2− 3X + 1, X2−X − 1 or X2 +X − 1.
The corresponding rings Z[X]/(∆A(X)) are principal ideal domains (namely
Z[(1 +

√
−3)/2] and Z[(1 +

√
5)/2]) and so A is conjugate to one of

(
1 −1
1 0

)
,

( 1 1
1 2 ), ( 1 1

1 0 ), or ( 1 1
1 0 )−1 =

(
0 1
1 −1

)
, by Theorem 1.4. Now

[A,µ][A, 0][A,µ]−1 = [A,µ(I − det(A)A)−1]

in Out(Γq). (See §7 of Chapter 8.) As in each case I − det(A)A is invertible,
it follows that θ is conjugate to [A, 0] or to [A−1, 0] = [A, 0]−1 . Since π′′ ≤ ζπ′
the final observation follows from Theorem 14.1.

The groups Γq are discrete cocompact subgroups of the Lie group Nil3 and
the coset spaces are S1 -bundles over the torus. Every automorphism of Γq is
orientation preserving and each of the groups allowed by Theorem 16.13 is the
group of some fibred 2-knot, by Theorem 14.4. The group of the 6-twist spin
of the trefoil has commutator subgroup Γ1 and monodromy [

(
1 −1
1 0

)
, 0]. In all

the other cases the meridianal automorphism has infinite order and the group
is not the group of any twist spin.

The groups with commutator subgroup Γ1 have presentations

〈t, x, y | xyxy−1 = yxy−1x, txt−1 = xy, tyt−1 = w〉,

where w = x−1 , xy2 or x (respectively), while those with commutator subgroup
Γq with q > 1 have presentations

〈t, u, v, z | uvu−1v−1 = zq, tut−1 = v, tvt−1 = zuv, tzt−1 = z−1〉.

(Note that as [v, u] = t[u, v]t−1 = [v, zuv] = [v, z]z[v, u]z−1 = [v, z][v, u], we
have vz = zv and hence uz = zu also.) These are easily seen to have 2
generator presentations of deficiency 0 also.

The other Nil3 -manifolds which arise as the closed fibres of fibred 2-knots are
Seifert fibred over S2 with 3 exceptional fibres of type (3, βi), with βi = ±1.
Hence they are 2-fold branched covers of S3 , branched over a Montesinos link
K(0|e; (3, β1), (3, β2), (3, β3)) [Mo73]. If e is even this link is a knot, and is
invertible, but not amphicheiral (see §12E of [BZ]). (This class includes the
knots 935 , 937 , 946 , 948 , 1074 and 1075 .)

Let π(e, η) be the group of the 2-twist spin of K(0|e; (3, 1), (3, 1), (3, η)).
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Theorem 16.14 Let π be a 2-knot group such that
√
π′ ∼= Γq (for some

q ≥ 1) and π′/
√
π′ ∼= Z/3Z . Then q is odd and π ∼= π(e, η), for some e ∈ 2Z

and η = 1 or −1.

Proof It follows easily from Lemma 16.7 that ζ
√
π′ = ζπ′ and G = π′/ζπ′ is

isomorphic to Z2 ×−B (Z/3Z), where B =
(

0 1
−1 1

)
. Thus G may be identified

with the orbifold fundamental group of the flat 2-orbifold S(3, 3, 3), and so is
a discrete subgroup of Isom(E2). As remarked above, π′ is the fundamental
group of the 2-fold branched cover of K(0|e; (3, 1), (3, 1), (3, η)), for some e and
η = ±1. Hence it has a presentation

〈h, x, y, z, | x3η = y3 = z3 = h, xyz = he〉.

(This can also be seen algebraically as π′ is a torsion free central extension of
G by Z .) The image of h in π′ generates ζπ′ , and the images of x−1y and
yx−1 in G = π′/〈h〉 form a basis for the translation subgroup T (G) ∼= Z2 of
G. Since π′/(π′)2 ∼= Z/(2, e − 1) and π′ admits a meridianal automorphism e
must be even.

The isometry group E(2) = Isom(E2) = R2×̃O(2) embeds in the affine group
Aff(2) = R2×̃GL(2,R). The normalizer of G in Aff (2) is the semidirect
product of the dihedral subgroup of GL(2,Z) generated by B and R = ( 0 1

1 0 )
with the normal subgroup (I + B)−1Z2 , and its centralizer there is trivial.
It follows from the Bieberbach theorems (and is easily verified directly) that
Aut(G) ∼= NAff(2)(G). Let b, r, k represent the classes of (0, B), (0, R) and
((−1

3 ,
1
3), I) in Out(G). Then Out(G) ∼= S3 × (Z/2Z ), and has a presentation

〈b, r, k | b2 = r2 = k3 = 1, br = rb, bkb = rkr = k−1〉
Since π′/π′′ is finite Hom(π′, ζπ′) = 1 and so the natural homomorphism from
Out(π′) to Out(G) is injective. As each of the automorphisms b, r and k
lifts to an automorphism of π′ this homomorphism is an isomorphism. On
considering the effect of an automorphism of π′ on its characteristic quotients
π′/
√
π′ = G/T (G) ∼= Z/3Z and G/G′ = (Z/3Z)2 , we see that the only outer

automorphism classes which contain meridianal automorphisms are rb, rbk and
rbk2 . Since these are conjugate in Out(G) and π′ ∼= π(e, η)′ the theorem now
follows from Lemma 1.1.

The subgroup A = 〈t2, x3〉 < π(e, η) is abelian of rank 2 and normal but is
not central. As H1(π; Λ/3Λ) ∼= H2(π; Λ/3Λ) ∼= (Λ/(3, t + 1))2 in all cases the
presentations

〈t, x, y | x3 = y3 = (x1−3ey)−3η, txt−1 = x−1, tyt−1 = xy−1x−1〉
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are optimal, by Lemma 16.10.

We may refine the conclusions of Theorem 15.7 as follows. If K is a 2-knot
whose group π has an abelian normal subgroup of rank ≥ 3 then either K is
a Cappell-Shaneson 2-knot or πK ∼= G(+) or G(−).
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Chapter 17

Knot manifolds and geometries

In this chapter we shall attempt to characterize certain 2-knots in terms of
algebraic invariants. As every 2-knot K may be recovered (up to orientations
and Gluck reconstruction) from M(K) together with the orbit of a weight
class in π = πK under the action of self homeomorphisms of M , we need
to characterize M(K) up to homeomorphism. After some general remarks on
the algebraic 2-type in §1, and on surgery in §2, we shall concentrate on three
special cases: when M(K) is aspherical, when π′ is finite and when g.d.π = 2.

When π is torsion free and virtually poly-Z the surgery obstructions vanish,
and when it is poly-Z the weight class is unique. When π has torsion the
surgery obstruction groups are notoriously difficult to compute. However we
can show that there are infinitely many distinct 2-knots K such that M(K) is
simple homotopy equivalent to M(τ231); if the 3-dimensional Poincaré conjec-
ture is true then among these knots only τ231 has a minimal Seifert hypersur-
face. In the case of Φ the homotopy type of M(K) determines the exterior of
the knot. The difficulty here is in finding a homotopy equivalence from M(K)
to a standard model.

In the final sections we shall consider which knot manifolds are homeomorphic
to geometric 4-manifolds or complex surfaces. If M(K) is geometric then either
K is a Cappell-Shaneson knot or the geometry must be one of E4 , Nil3 × E1 ,
Sol41 , S̃L × E1 , H3 × E1 or S3 × E1 . If M(K) is homeomorphic to a complex
surface then either K is a branched twist spin of a torus knot or M(K) admits
one of the geometries Nil3 × E1 , Sol40 or S̃L× E1 .

17.1 Homotopy classification of M(K)

Let K and K1 be 2-knots and suppose that α : π = πK → πK1 and
β : π2(M) → π2(M1) determine an isomorphism of the algebraic 2-types of
M = M(K) and M1 = M(K1). Since the infinite cyclic covers M ′ and M ′1 are
homotopy equivalent to 3-complexes there is a map h : M ′ → M ′1 such that
π1(h) = α|π and π2(h) = β . If π = πK has one end then π3(M) ∼= Γ(π2(M))
and so h is a homotopy equivalence. Let t and t1 = α(t) be corresponding
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generators of Aut(M ′/M) and Aut(M ′1/M1), respectively. Then h−1t−1
1 ht is

a self homotopy equivalence of M ′ which fixes the algebraic 2-type. If this is
homotopic to idM ′ then M and M1 are homotopy equivalent, since up to ho-
motopy they are the mapping tori of t and t1 , respectively. Thus the homotopy
classification of such knot manifolds may be largely reduced to determining the
obstructions to homotoping a self-map of a 3-complex to the identity.

We may use a similar idea to approach this problem in another way. Under
the same hypotheses on K and K1 there is a map fo : M − intD4 → M1

inducing isomorphisms of the algebraic 2-types. If π has one end π3(fo) is an
epimorphism, and so fo is 3-connected. If there is an extension f : M → M1

then it is a homotopy equivalence, as it induces isomorphisms on the homology
of the universal covering spaces.

If g.d.π ≤ 2 the algebraic 2-type is determined by π , for then π2(M) =
H2(π;Z[π]), by Theorem 3.12, and the k -invariant is 0. In particular, if π′

is free of rank r then M(K) is homotopy equivalent to the mapping torus of a
self-homeomorphism of ]rS1 × S2 , by Corollary 4.5.1. On the other hand, the
group Φ has resisted attack thus far.

The related problem of determining the homotopy type of the exterior of a 2-
knot has been considered in [Lo81], [Pl83] and [PS85]. In each of the examples
considered in [Pl83] either π′ is finite or M(K) is aspherical, so they do not test
the adequacy of the algebraic 2-type for the present problem. The examples
of [PS85] probably show that in general M(K) is not determined by π and
π2(M(K)) alone.

17.2 Surgery

Recall from Chapter 6 that we may define natural transformations IG : G →
Ls5(G) for any group G, which clearly factor through G/G′ . If α : G → Z
induces an isomorphism on abelianization the homomorphism ÎG = IGα

−1I−1
Z

is a canonical splitting for L5(α).

Theorem 17.1 Let K be a 2-knot with group π . If Ls5(π) ∼= Z and N is
simple homotopy equivalent to M(K) then N is s-cobordant to M(K).

Proof Since M = M(K) is orientable and [M,G/TOP ] ∼= H4(M ;Z) ∼= Z
the surgery obstruction map σ4 : [M(K), G/TOP ] → Ls4(π) is injective, by
Theorem 6.6. The image of L5(Z) under Îπ acts trivially on STOP (M(K)), by
Theorem 6.7. Hence there is a normal cobordism with obstruction 0 from any
simple homotopy equivalence f : N →M to idM .
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This theorem applies if π is square root closed accessible [Ca73], or if π is a
classical knot group [AFR97].

Corollary 17.1.1 (Freedman) A 2-knot K is trivial if and only if πK ∼= Z .

Proof The condition is clearly necessary. Conversely, if πK ∼= Z then M(K)
is homeomorphic to S3 × S1 , by Theorem 6.11. Since the meridian is unique
up to inversion and the unknot is clearly reflexive the result follows.

Surgery on an s-concordance K from K0 to K1 gives an s-cobordism from
M(K0) to M(K1) in which the meridians are conjugate. Conversely, if M(K)
and M(K1) are s-cobordant via such an s-cobordism then K1 is s-concordant
to K or K∗ . In particular, if K is reflexive then K and K1 are s-concordant.

Lemma 17.2 Let K be a 2-knot. Then K has a Seifert hypersurface which
contains no fake 3-cells.

Proof Every 2-knot has a Seifert hypersurface, by the standard obstruction
theoretical argument and TOP transversality. Thus K bounds a locally flat 3-
submanifold V which has trivial normal bundle in S4 . If ∆ is a homotopy 3-cell
in V then ∆×R ∼= D3×R, by simply connected surgery, and the submanifold
∂∆ of ∂(∆ ×R) = ∂(D3 × R) is isotopic there to the boundary of a standard
3-cell in D3 ×R which we may use instead of ∆.

The modification in this lemma clearly preserves minimality. (Every 2-knot has
a closed Seifert hypersurface which is a hyperbolic 3-manifold [Ru90], and so
contains no fake 3-cells, but these are rarely minimal).

17.3 The aspherical cases

Whenever the group of a 2-knot K contains a sufficiently large abelian normal
subgroup then M(K) is aspherical. This is notably the case for most twist
spins of prime knots.

Theorem 17.3 Let K be a 2-knot with group π and suppose that either
√
π

is torsion free abelian of rank 1 and π/
√
π has one end or h(

√
π) ≥ 2. Then

the universal cover M̃(K) is homeomorphic to R4 .
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Proof If
√
π is torsion free abelian of rank 1 and π/

√
π has one end M is

aspherical, by Theorem 15.5, and π is 1-connected at ∞, by Theorem 1 of
[Mi87]. If h(

√
π) = 2 then

√
π ∼= Z2 and M is s-cobordant to the mapping

torus of a self homeomorphism of a S̃L-manifold, by Theorem 16.2. If h(
√
π) ≥

3 then M is homeomorphic to an infrasolvmanifold, by Theorem 8.1. In all
cases, M̃ is contractible and 1-connected at ∞, and so is homeomorphic to R4

by [Fr82].

Is there a 2-knot K with M̃(K) contractible but not 1-connected at ∞?

Theorem 17.4 Let K be a 2-knot such that π = πK is torsion free and
virtually poly-Z . Then K is determined up to Gluck reconstruction by π
together with a generator of H4(π;Z) and the strict weight orbit of a meridian.

Proof If π ∼= Z then K must be trivial, and so we may assume that π is
torsion free and virtually poly-Z of Hirsch length 4. Hence M(K) is aspherical
and is determined up to homeomorphism by π , and every automorphism of π
may be realized by a self homeomorphism of M(K), by Theorem 6.11. Since
M(K) is aspherical orientations of M(K) correspond to generators of H4(π;Z).

This theorem applies in particular to the Cappell-Shaneson 2-knots, which
have an unique strict weight orbit, up to inversion. (A similar argument ap-
plies to Cappell-Shaneson n-knots with n > 2, provided we assume also that
πi(X(K)) = 0 for 2 ≤ i ≤ (n+ 1)/2).

Theorem 17.5 Let K be a 2-knot with group π . Then K is s-concordant
to a fibred knot with closed fibre a S̃L-manifold if and only if π is not virtually
solvable, π′ is FP2 and ζπ′ ∼= Z . The fibred knot is determined up to Gluck
reconstruction by π together with a generator of H4(π;Z) and the strict weight
orbit of a meridian.

Proof The conditions are clearly necessary. Suppose that they hold. The
manifold M(K) is aspherical, by Theorem 15.7, so every automorphism of π
is induced by a self homotopy equivalence of M(K). Moreover as π is not
virtually solvable π′ is the fundamental group of a S̃L-manifold. Therefore
M(K) is determined up to s-cobordism by π , by Theorem 13.2. The rest is
standard.

Geometry & Topology Monographs, Volume 5 (2002)



17.4 Quasifibres and minimal Seifert hypersurfaces 327

Branched twist spins of torus knots are perhaps the most important examples
of such knots, but there are others. (See Chapter 16).

Is every 2-knot K such that π = πK is a PD+
4 -group determined up to

s-concordance and Gluck reconstruction by π together with a generator of
H4(π;Z) and a strict weight orbit? Is K s-concordant to a fibred knot with
aspherical closed fibre if and only if π′ is FP2 and has one end? (This is surely
true if π′ ∼= π1(N) for some virtually Haken 3-manifold N ).

17.4 Quasifibres and minimal Seifert hypersurfaces

Let M be a closed 4-manifold with fundamental group π . If f : M → S1

is a map which is transverse to p ∈ S1 then V̂ = f−1(p) is a codimension
1 submanifold with a product neighbourhood N ∼= V̂ × [−1, 1]. If moreover
the induced homomorphism f∗ : π → Z is an epimorphism and each of the
inclusions j± : V̂ ∼= V̂ × {±1} ⊂W = M\V × (−1, 1) induces monomorphisms
on fundamental groups then we shall say that V̂ is a quasifibre for f . The
group π is then an HNN extension with base π1(W ) and associated subgroups
j±∗(π1(V̂ ), by Van Kampen’s Theorem. Every fibre of a bundle projection is
a quasifibre. We may use the notion of quasifibre to interpolate between the
homotopy fibration theorem of Chapter 4 and a TOP fibration theorem. (See
also Theorem 6.12 and Theorem 17.7).

Theorem 17.6 Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is an extension of Z by a finitely generated normal subgroup ν . If
there is a map f : M → S1 inducing an epimorphism with kernel ν and which
has a quasifibre V̂ then the infinite cyclic covering space Mν associated with
ν is homotopy equivalent to V̂ .

Proof As ν is finitely generated the monomorphisms j±∗ must be isomor-
phisms. Therefore ν is finitely presentable, and so Mν is a PD3 -complex, by
Theorem 4.5. Now Mν

∼= W × Z/ ∼, where (j+(v), n) ∼ (j−(v), n + 1) for all
v ∈ V̂ and n ∈ Z . Let j̃(v) be the image of (j+(v), 0) in Mν . Then π1(j̃) is
an isomorphism. A Mayer-Vietoris argument shows that j̃ has degree 1, and
so j̃ is a homotopy equivalence.

One could use duality instead to show that Hs = Hs(W,∂±W ;Z[π]) = 0 for
s 6= 2, while H2 is a stably free Z[π]-module, of rank χ(W,∂±W ) = 0. Since
Z[π] is weakly finite this module is 0, and so W is an h-cobordism.
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Corollary 17.6.1 let K be a 2-knot such that π′ is finitely generated, and
which has a minimal Seifert hypersurface V . If every self homotopy equivalence
of V̂ is homotopic to a homeomorphism then M(K) is homotopy equivalent to
M(K1), where M(K1) is a fibred 2-knot with fibre V .

Proof Let j−1
+ : M(K)′ → V̂ be a homotopy inverse to the homotopy equiva-

lence j+ , and let θ be a self homeomorphism of V̂ homotopic to j−1
+ j− . Then

j+θj
−1
+ is homotopic to a generator of Aut(M(K)′/M(K)), and so the mapping

torus of θ is homotopy equivalent to M(K). Surgery on this mapping torus
gives such a knot K1 .

If a Seifert hypersurface V for a 2-knot has fundamental group Z then the
Mayer-Vietoris sequence for H∗(M(K); Λ) gives H1(X ′) ∼= Λ/(ta+−a−), where
a± : H1(V )→ H1(S4 − V ). Since H1(X) = Z we must have a+ − a− = ±1. If
a+a− 6= 0 then V is minimal. However one of a+ or a− could be 0, in which
case V may not be minimal. The group Φ is realized by ribbon knots with
such minimal Seifert hypersurfaces (homeomorphic to S2×S1− intD3 ) [Fo62].
Thus minimality does not imply that π′ is finitely generated.

It remains an open question whether every 2-knot has a minimal Seifert hyper-
surface, or indeed whether every 2-knot group is an HNN extension with finitely
presentable base and associated subgroups. (There are high dimensional knot
groups which are not of this type [Si91, 96]). Yoshikawa has shown that there
are ribbon 2-knots whose groups are HNN extensions with base a torus knot
group and associated subgroups Z but which cannot be expressed as HNN
extensions with base a free group [Yo88].

17.5 The spherical cases

Let π be a 2-knot group with commutator subgroup π′ ∼= P × (Z/(2r + 1)Z),
where P = 1, Q(8), T ∗k or I∗ . The meridianal automorphism induces the
identity on the set of irreducible real representations of π′ , except when P =
Q(8). (It permutes the three nontrivial 1-dimensional representations when
π′ ∼= Q(8), and similarly when π′ ∼= Q(8) × (Z/nZ)). It then follows as in
Chapter 11 that Ls5(π) has rank r + 1, 3(r + 1), 3k−1(5 + 7r) or 9(r + 1),
respectively. Hence if π′ 6= 1 then there are infinitely many distinct 2-knots
with group π , since the group of self homotopy equivalences of M(K) is finite.

The simplest nontrivial such group is π = (Z/3Z) ×−1 Z . If K is any 2-
knot with this group then M(K) is homotopy equivalent to M(τ231). Since
Wh(Z/3Z) = 0 [Hi40] and L5(Z/3Z) = 0 [Ba75] we have Ls5(π) ∼= L4(π′) ∼= Z2 ,
but we do not know whether Wh(π) = 0.
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Theorem 17.7 Let K be a 2-knot with group π = πK such that π′ ∼= Z/3Z ,
and which has a minimal Seifert hypersurface. Then K is fibred.

Proof Let V be a minimal Seifert hypersurface for K . Then we may assume
V is irreducible. Let V̂ = V ∪D3 and W = M(K)\V × (−1, 1). Then W is an
h-cobordism from V̂ to itself (see the remark following Theorem 6). Therefore
W ∼= V̂ × I , by surgery over Z/3Z . (Note that Wh(Z/3Z) = L5(Z/3Z) = 0).
Hence M fibres over S1 and so K is fibred also.

Free actions of Z/3Z on S3 are conjugate to the standard orthogonal action,
by a result of Rubinstein (see [Th]). If the 3-dimensional Poincaré conjecture
is true then the closed fibre must be the lens space L(3, 1), and so K must be
τ231 . None of the other 2-knots with this group could have a minimal Seifert
surface, and so we would have (infinitely many) further counter-examples to the
most natural 4-dimensional analogue of Farrell’s fibration theorem. We do not
know whether any of these knots (other than τ231 ) is PL in some PL structure
on S4 .

Let F be an S3 -group, and let W = (W ; j±) be an h-cobordism with home-
omorphisms j± : N → ∂±W , where N = S3/F . Then W is an s-cobordism
[KS92]. The set of such s-cobordisms from N to itself is a finite abelian group
with respect to stacking of cobordisms. All such s-cobordisms are products if
F is cyclic, but there are nontrivial examples if F ∼= Q(8) × (Z/pZ), for any
odd prime p [KS95]. If φ is a self-homeomorphism of N the closed 4-manifold
Zφ obtained by identifying the ends of W via j+φj

−1
− is homotopy equivalent

to M(φ). However if Zφ is a mapping torus of a self-homeomorphism of N
then W is trivial. In particular, if φ induces a meridianal automorphism of F
then Zφ ∼= M(K) for an exotic 2-knot K with π′ ∼= F and which has a minimal
Seifert hypersurface, but which is not fibred with geometric fibre.

17.6 Finite geometric dimension 2

Knot groups with finite 2-dimensional Eilenberg-Mac Lane complexes have de-
ficiency 1, by Theorem 2.8, and so are 2-knot groups. This class includes all
classical knot groups, all knot groups with free commutator subgroup and all
knot groups in the class X . (The latter class includes all those as in Theorem
15.1).

Theorem 17.8 Let K be a 2-knot with group π . If π is a 1-knot group or a
X -group then M(K) is determined up to s-cobordism by its homotopy type.
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Proof This is an immediate consequence of Lemma 6.9, if π is a X -group.
If π is a nontrivial classical knot group it follows from Theorem 17.1, since
Wh(π) = 0 [Wd78] and Ls5(π) ∼= Z [AFR97].

Does the conclusion of this theorem hold for every knot whose group has geo-
metric dimension 2?

Corollary 17.8.1 A ribbon 2-knot K with group Φ is determined by the
oriented homotopy type of M(K).

Proof Since Φ is metabelian s-cobordism implies homeomorphism and there
is an unique weight class up to inversion, so the knot exterior is determined by
the homotopy type of M(K), and since K is a ribbon knot it is -amphicheiral
and is determined by its exterior.

Examples 10 and 11 of [Fo62] are ribbon knots with group Φ, and are mirror
images of each other. Although they are -amphicheiral they are not invertible,
since their Alexander polynomials are asymmetric. Thus they are not isotopic.
Are there any other 2-knots with this group? In particular, is there one which
is not a ribbon knot?

Theorem 17.9 A 2-knot K with group π is s-concordant to a fibred knot
with closed fibre ]r(S1×S2) if and only if def(π) = 1 and π′ is FP2 . Moreover
any such fibred 2-knot is reflexive and homotopy ribbon.

Proof The conditions are clearly necessary. If they hold then π′ ∼= F (r), for
some r ≥ 0, by Corollary 2.5.1. Then M(K) is homotopy equivalent to a PL
4-manifold N which fibres over S1 with fibre ]r(S1 × S2), by Corollary 4.5.1.
Moreover Wh(π) = 0, by Lemma 6.3, and π is square root closed accessible, so
Iπ is an isomorphism, by Lemma 6.9, so there is an s-cobordism W from M
to N , by Theorem 17.1. We may embed an annulus A = S1 × [0, 1] in W so
that M ∩A = S1×{0} is a meridian for K and N ∩A = S1×{1}. Surgery on
A in W then gives an s-concordance from K to such a fibred knot K1 , which
is reflexive [Gl62] and homotopy ribbon [Co83].

The group of isotopy classes of self homeomorphisms of ]r(S1 × S2) which
induce the identity in Out(F (r)) is generated by twists about nonseparating
2-spheres, and is isomorphic to (Z/2Z)r . Thus given a 2-knot group π ∼=
F (r)×αZ there are 2r corresponding homotopy types of knot manifolds M(K).
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Is every automorphism of π induced by a self-homeomorphism of each such
fibred manifold? If so, the knot is determined (among such fibred knots) up
to finite ambiguity by its group together with the weight orbit of a meridian.
(However, the group π31 has infinitely many weight orbits [Su85]).

The theorem implies there is a slice disc ∆ for K such that the inclusion of
M(K) into D5 −∆ is 2-connected. Is K itself homotopy ribbon? (This would
follow from “homotopy connectivity implies geometric connectivity”, but our
situation is just beyond the range of known results). Is every such group the
group of a ribbon knot? Which are the groups of classical fibred knots? If
K = σk is the Artin spin of a fibred 1-knot then M(K) fibres over S1 with
fibre ]r(S2 × S1). However not all such fibred 2-knots arise in this way. (For
instance, the Alexander polynomial need not be symmetric [AY81]). There
are just three groups G with G/G′ ∼= Z and G′ free of rank 2, namely π31

(the trefoil knot group), π41 (the figure eight knot group) and the group with
presentation

〈x, y, t | txt−1 = y, tyt−1 = xy〉.
(Two of the four presentations given in [Rp60] present isomorphic groups). The
group with presentation

〈x, y | x2y2x2 = y〉
is the group of a fibred knot in the homology 3-sphere M(2, 3, 11), but is not a
classical knot group [Rt83].

Part of Theorem 17.9 also follows from an argument of Trace [Tr86]. The
embedding of a Seifert hypersurface V for an n-knot K in X extends to an
embeding of V̂ = V ∪Dn+1 in M , which lifts to an embedding in M ′ . Since
the image of [V̂ ] in Hn+1(M ;Z) is Poincaré dual to a generator of H1(M ;Z) =
Hom(π,Z) = [M,S1] its image in Hn+1(M ′;Z) ∼= Z is a generator. Thus if
K is fibred, so M ′ is homotopy equivalent to the closed fibre F̂ , there is a
degree 1 map from V̂ to F̂ , and hence to any factor of F̂ . In particular, if F̂
has a summand which is aspherical or whose fundamental group is a nontrivial
finite group then π1(V ) cannot be free. (In particular, K cannot be a ribbon
knot). Similarly, as the Gromov norm of a 3-manifold does not increase under
degree 1 maps, if F̂ is a H3 -manifold then V̂ cannot be a graph manifold
[Ru90]. Rubermann observes also that the “Seifert volume” of [BG84] may be
used instead to show that if F̂ is a S̃L-manifold then V̂ must have nonzero
Seifert volume. (Connected sums of E3 -, S3 -, Nil3 -, Sol3 -, S2×E1 - or H2×E1 -
manifolds all have Seifert volume 0 [BG84]).

We conclude this section by showing that π1 -slice fibred 2-knots have groups
with free commutator subgroup.
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Theorem 17.10 Let K be a 2-knot with group π = πK . If K is π1 -slice then
the homomorphism from H3(M ′;Z) = H3(M(K); Λ) to H3(π′;Z) = H3(π; Λ)
induced by cM is trivial. If moreover M ′ is a PD3 -complex and π is torsion
free then π′ is a free group.

Proof Let ∆ and R be chosen as above. Since cM factors through D5−R the
first assertion follows from the exact sequence of homology (with coefficients
Λ) for the pair (D5 − R,M). If M ′ is a PD+

3 -complex with torsion free
fundamental group then it is a connected sum of aspherical PD3 -complexes
with handles S2×S1 , by Turaev’s theorem. It is easily seen that if H3(cM ; Λ) =
0 there is no aspherical summand, and so π′ is free.

We may broaden the question raised earlier to ask whether every π1 -slice 2-
knot is a homotopy ribbon knot. (Every homotopy ribbon n-knot with n > 1
is clearly π1 -slice).

17.7 Geometric 2-knot manifolds

The 2-knots K for which M(K) is homeomorphic to an infrasolvmanifold are
essentially known. There are three other geometries which may be realized by
such knot manifolds. All known examples are fibred, and most are derived
from twist spins of classical knots. However there are examples (for instance,
those with π′ ∼= Q(8) × (Z/nZ) for some n > 1) which cannot be constructed
from twist spins. The remaining geometries may be eliminated very easily; only
H2 × E2 and S2 × E2 require a little argument.

Theorem 17.11 Let K be a 2-knot with group π = πK . If M(K) admits
a geometry then the geometry is one of E4 , Nil3 × E1 , Sol40 , Sol41 , Sol4m,n (for

certain m 6= n only), S3×E1 , H3×E1 or S̃L×E1 . All these geometries occur.

Proof The knot manifold M(K) is homeomorphic to an infrasolvmanifold if
and only if h(

√
π) ≥ 3, by Theorem 8.1. It is then determined up to home-

omorphism by π . We may then use the observations of §10 of Chapter 8 to
show that M(K) admits a geometry of solvable Lie type. By Lemma 16.7 and
Theorems 16.12 and 16.14 π must be either G(+) or G(−), π(e, η) for some
even b and ε = ±1 or π′ ∼= Z3 or Γq for some odd q . We may identify the
geometry on looking more closely at the meridianal automorphism.

If π ∼= G(+) or G(−) then M(K) admits the geometry E4 . If π ∼= π(e, η)
then M(K) is the mapping torus of an involution of a Nil3 -manifold, and so
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admits the geometry Nil3 × E1 . If π′ ∼= Z3 then M(K) is homeomorphic to
a Sol4m,n - or Sol40 -manifold. More precisely, we may assume (up to change of
orientations) that the Alexander polynomial of K is X3− (m−1)X2 +mX−1
for some integer m. If m ≥ 6 all the roots of this cubic are positive and the
geometry is Sol4m−1,m . If 0 ≤ m ≤ 5 two of the roots are complex conjugates
and the geometry is Sol40 . If m < 0 two of the roots are negative and π has a
subgroup of index 2 which is a discrete cocompact subgroup of Sol4m′,n′ , where
m′ = m2 − 2m+ 2 and n′ = m2 − 4m + 1, so the geometry is Sol4m′,n′ .

If π′ ∼= Γq and the image of the meridianal automorphism in Out(Γq) has finite
order then q = 1 and K = τ631 or (τ631)∗ = τ6,531 . In this case M(K) admits
the geometry Nil3×E1 . Otherwise (if π′ ∼= Γq and the order of the image of the
meridianal automorphism in Out(Γq) is infinite) M(K) admits the geometry
Sol41 .

If K is a branched r-twist spin of the (p, q)-torus knot then M(K) is a S3 ×
E1 -manifold if p−1 + q−1 + r−1 > 1, and is a S̃L × E1 -manifold if p−1 +
q−1 + r−1 < 1. (The case p−1 + q−1 + r−1 = 1 gives the Nil3 × E1 -manifold
M(τ631)). The manifolds obtained from 2-twist spins of 2-bridge knots and
certain other “small” simple knots also have geometry S3 × E1 . Branched r-
twist spins of simple (nontorus) knots with r > 2 give H3 × E1 -manifolds,
excepting M(τ341) ∼= M(τ3,241), which is the E4 -manifold with group G(+).

Every orientable H2×E2 -manifold is double covered by a Kähler surface [Wl86].
Since the unique double cover of a 2-knot manifold M(K) has first Betti number
1 no such manifold can be an H2 × E2 -manifold. (If K is fibred we could
use Lemma 16.1 instead to exclude this geometry). Since π is infinite and
χ(M(K)) = 0 we may exclude the geometries S4 , CP2 and S2 × S2 , and H4 ,
H2(C), H2 × H2 and S2 × H2 , respectively. The geometry S2 × E2 may be
excluded by Theorem 10.10 or Lemma 16.1 (no group with two ends admits a
meridianal automorphism), while F4 is not realized by any closed 4-manifold.

In particular, no knot manifold is a Nil4 -manifold or a Sol3 × E1 -manifold,
and many of the other Sol4m,n -geometries do not arise in this way. The knot
manifolds which are infrasolvmanifolds or have geometry S3×E1 are essentially
known, by Theorems 8.1, 11.1, 15.12 and §4 of Chapter 16. The knot is uniquely
determined up to Gluck reconstruction and change of orientations if π′ ∼= Z3

(see Theorem 17.4 and the subsequent remarks above), Γq (see §3 of Chapter
18) or Q(8) × (Z/nZ) (since the weight class is then unique up to inversion).
If it is fibred with closed fibre a lens space it is a 2-twist spin of a 2-bridge
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knot [Te89]. The other knot groups corresponding to infrasolvmanifolds have
infinitely many weight orbits.

Corollary 17.11.1 If M(K) admits a geometry then it fibres over S1 .

Proof This is clear if M(K) is an infrasolvmanifold or if the geometry is
S3 × E1 . If the geometry is H3 × E1 then

√
π = π ∩ ({1} ×R), by Proposition

8.27 of [Rg]. Let σ = π∩ (Isom(H3)×R). Then [π : σ] ≤ 2. Since π/π′ ∼= Z it
follows that β1(σ) = 1 and hence that

√
π maps injectively to σ/I(σ) ≤ π/π′ .

Hence π has a subgroup of finite index which is isomorphic to π′×Z , and so π′

is the fundamental group of a closed H3 -manifold. If the geometry is S̃L× E1

then π′ is the fundamental group of a closed S̃L-manifold, by Theorem 16.2.
In each case M(K) fibres over S1 , by Corollary 13.1.1.

If the geometry is H3×E1 is M(K) ∼= M(K1) for some branched twist spin of
a simple non-torus knot? (See §3 of Chapter 16).

If M(K) is Seifert fibred must it be geometric? If so it is a S̃L×E1 -, Nil3×E1 -
or S3 × E1 -manifold. (See §4 of Chapter 7).

17.8 Complex surfaces and 2-knot manifolds

If a complex surface S is homeomorphic to a 2-knot manifold M(K) then S
is minimal, since β2(S) = 0, and has Kodaira dimension κ(S) = 1, 0 or −∞,
since β1(S) = 1 is odd. If κ(S) = 1 or 0 then S is elliptic and admits a
compatible geometric structure, of type S̃L × E1 or Nil3 × E1 , respectively
[Ue90,91, Wl86]. The only complex surfaces with κ(S) = −∞, β1(S) = 1
and β2(S) = 0 are Inoue surfaces, which are not elliptic, but admit compatible
geometries of type Sol40 or Sol41 , and Hopf surfaces [Tl94]. An elliptic surface
with Euler characteristic 0 has no exceptional fibres other than multiple tori.

If M(K) has a complex structure compatible with a geometry then the geome-
try is one of Sol40 , Sol41 , Nil3×E1 , S3×E1 or S̃L×E1 , by Theorem 4.5 of [Wl86].
Conversely, if M(K) admits one of the first three of these geometries then it
is homeomorphic to an Inoue surface of type SM , an Inoue surface of type
S

(+)
N,p,q,r;t or S(−)

N,p,q,r or an elliptic surface of Kodaira dimension 0, respectively.
(See [In74], [EO94] and Chapter V of [BPV]).

Lemma 17.12 Let K be a branched r-twist spin of the (p, q)-torus knot.
Then M(K) is homeomorphic to an elliptic surface.
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Proof We shall adapt the argument of Lemma 1.1 of [Mi75]. (See also [Ne83]).
Let V0 = {(z1, z2, z3) ∈ C3\{0}|zp1 + zq2 + zr3 = 0}, and define an action of
C× on V0 by u.v = (uqrz1, u

prz2, u
pqz3) for all u in C× and v = (z1, z2, z3)

in V0 . Define functions m : V0 → R+ and n : V0 → m−1(1) by m(v) =
(|z1|p + |z2|q + |z3|r)1/pqr and n(v) = m(v)−1.v for all v in V0 . Then the
map (m,n) : V0 → m−1(1) × R+ is an R+ -equivariant homeomorphism, and
so m−1(1) is homeomorphic to V0/R

+ . Therefore there is a homeomorphism
from m−1(1) to the Brieskorn manifold M(p, q, r), under which the action of
the group of rth roots of unity on m−1(1) = V0/R

+ corresponds to the group
of covering homeomorphisms of M(p, q, r) as the branched cyclic cover of S3 ,
branched over the (p, q)-torus knot [Mi75]. The manifold M(K) is the mapping
torus of some generator of this group of self homeomorphisms of M(p, q, r). Let
ω be the corresponding primitive rth root of unity. If t > 1 then tω generates
a subgroup Ω of C× which acts freely and holomorphically on V0 , and the
quotient V0/Ω is an elliptic surface over the curve V0/Ω. Moreover V0/Ω is
homeomorphic to the mapping torus of the self homeomorphism of m−1(1)
which maps v to m(tω.v)−1.tω.v = ωm(t.v)−1t.v . Since this map is isotopic to
the map sending v to ω.v this mapping torus is homeomorphic to M(K). This
proves the Lemma.

The Kodaira dimension of the elliptic surface in the above lemma is 1, 0 or −∞
according as p−1 + q−1 + r−1 is < 1, 1 or > 1. In the next theorem we shall
settle the case of elliptic surfaces with κ = −∞.

Theorem 17.13 Let K be a 2-knot. Then M(K) is homeomorphic to a Hopf
surface if and only if K or its Gluck reconstruction is a branched r-twist spin
of the (p, q)-torus knot for some p, q and r such that p−1 + q−1 + r−1 > 1.

Proof If K = τr,skp,q then M(K) is homeomorphic to an elliptic surface, by
Lemma 17.13, and the surface must be a Hopf surface if p−1 + q−1 + r−1 > 1.

If M(K) is homeomorphic to a Hopf surface then π has two ends, and there
is a monomorphism h : π = πK → GL(2,C) onto a subgroup which contains
a contraction c (Kodaira - see [Kt75]). Hence π′ is finite and h(π′) = h(π) ∩
SL(2,C), since det(c) 6= 1 and π/π′ ∼= Z . Finite subgroups of SL(2,C) are
conjugate to subgroups of SU(2) = S3 , and so are cyclic, binary dihedral or
isomorphic to T ∗1 , O∗1 or I∗ . Therefore π ∼= πτ2k2,n , πτ331 , πτ431 or πτ531 ,
by Theorem 15.12 and the subsequent remarks. Hopf surfaces with π ∼= Z or π
nonabelian are determined up to diffeomorphism by their fundamental groups,
by Theorem 12 of [Kt75]. Therefore M(K) is homeomorphic to the manifold of
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the corresponding torus knot. If π′ is cyclic there is an unique weight orbit. The
weight orbits of τ431 are realized by τ2k3,4 and τ431 , while the weight orbits of
T ∗1 are realized by τ2k3,5 , τ3k2,5 , τ531 and τ5,231 [PS87]. Therefore K agrees
up to Gluck reconstruction with a branched twist spin of a torus knot.

The Gluck reconstruction of a branched twist spin of a classical knot is another
branched twist spin of that knot, by §6 of [Pl84’].

Elliptic surfaces with β1 = 1 and κ = 0 are Nil3 × E1 -manifolds, and so a
knot manifold M(K) is homeomorphic to such an elliptic surface if and only if
πK is virtually poly-Z and ζπK ∼= Z2 . For minimal properly elliptic surfaces
(those with κ = 1) we must settle for a characterization up to s-cobordism.

Theorem 17.14 Let K be a 2-knot with group π = πK . Then M(K) is
s-cobordant to a minimal properly elliptic surface if and only if ζπ ∼= Z2 and
π′ is not virtually poly-Z .

Proof If M(K) is a minimal properly elliptic surface then it admits a compat-
ible geometry of type S̃L×E1 and π is isomorphic to a discrete cocompact sub-
group of Isomo(S̃L)×R, the maximal connected subgroup of Isomo(S̃L×E1),
for the other components consist of orientation reversing or antiholomorphic
isometries (see Theorem 3.3 of [Wl86]). Since π meets ζ(Isomo(S̃L)×R)) ∼= R2

in a lattice subgroup ζπ ∼= Z2 and projects nontrivially onto the second factor
π′ = π ∩ Isomo(S̃L) and is the fundamental group of a S̃L-manifold. Thus the
conditions are necessary.

Suppose that they hold. Then M(K) is s-cobordant to a S̃L × E1 -manifold
which is the mapping torus M(Θ) of a self homeomorphism of a S̃L-manifold,
by Theorem 16.2. As Θ must be orientation preserving and induce the identity
on ζπ′ ∼= Z the group π is contained in Isomo(S̃L) × R. Hence M(Θ) has a
compatible structure as an elliptic surface, by Theorem 3.3 of [Wl86].

An elliptic surface with Euler characteristic 0 is a Seifert fibred 4-manifold,
and so is determined up to diffeomorphism by its fundamental group if the
base orbifold is euclidean or hyperbolic [Ue90,91]. Using this result (instead of
[Kt75]) together with Theorem 16.6 and Lemma 17.12 it may be shown that if
M(K) is homeomorphic to a minimal properly elliptic surface and some power
of a weight element is central in πK then M(K) is homeomorphic to M(K1),
where K1 is some branched twist spin of a torus knot. However in general
there may be infinitely many algebraically distinct weight classes in πK and
we cannot conclude that K is itself such a branched twist spin.
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Chapter 18

Reflexivity

The most familiar invariants of knots are derived from the knot complements,
and so it is natural to ask whether every knot is determined by its complement.
This has been confirmed for classical knots [GL89]. Given a higher dimensional
knot there is at most one other knot (up to change of orientations) with home-
omorphic exterior. The first examples of non-reflexive 2-knots were given by
Cappell and Shaneson [CS76]; these are fibred with closed fibre R3/Z3 . Gor-
don gave a different family of examples [Go76], and Plotnick extended his work
to show that no fibred 2-knot with monodromy of odd order is reflexive. It is
plausible that this may be so whenever the order is greater than 2, but this is
at present unknown.

We shall consider 2-knots which are fibred with closed fibre a geometric 3-
manifold. A nontrivial cyclic branched cover of S3 , branched over a knot,
admits a geometry if and only if the knot is a prime simple knot. The geometry
is then S̃L, S3 , H3 , E3 or Nil3 . We shall show that no branched r-twist spin of
such a knot is ever reflexive, if r > 2. (Our argument also explains why fibred
knots with monodromy of order 2 are reflexive). If the 3-dimensional Poincaré
conjecture is true then all fibred 2-knots with monodromy of finite order are
branched twist spins, by Plotnick’s theorem (see Chapter 16). The remain-
ing three geometries may be excluded without reference to this conjecture, by
Lemma 15.7.

This chapter is based on joint work with Plotnick and Wilson (in [HP88] and
[HW89], respectively).

18.1 Reflexivity for fibred 2-knots

Let N be a closed oriented 3-manifold and θ an orientation preserving self
diffeomorphism of N which fixes a basepoint P and induces a meridianal au-
tomorphism of ν = π1(N). Let

M = M(θ) = N ×θ S1 = N × [0, 1]/((n, 0) ∼ (θ(n), 1)),

and let t be the weight element of π = π1(M) = ν×θ∗Z represented by the loop
sending [u] = e2πiu to [∗, u] in the mapping torus, for all 0 ≤ u ≤ 1. The image
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C = {P} × S1 of this loop is the canonical cross-section of the mapping torus.
Let Ñ be the universal covering space of N , and let θ̃ be the lift of θ which
fixes some chosen basepoint. Let M̂ = Ñ×θ̃S1 be the (irregular) covering space
corresponding to the subgroup of π generated by t. This covering space shall
serve as a natural model for a regular neighbourhood of C in our geometric
arguments below.

Choose an embedding J : D3 × S1 → M onto a regular neighbourhood R of
C . Let Mo = M − intR and let j = J |∂D3×S1 . Then Σ = Mo ∪j S2 × D2

and Στ = Mo ∪jτ S2 ×D2 are homotopy 4-spheres and the images of S2 ×{0}
represent 2-knots K and K∗ with group π .

If K is reflexive there is a homeomorphism f of X = X(K) which (up to
changes of orientations) restricts to the nontrivial twist τ on ∂X ∼= S2 × S1 .
(See §1 of Chapter 14). This extends to a homeomorphism of (M,C) via the
“radial” extension of τ to D3 × S1 . If f preserves the homology class of
the meridians (i.e., if it induces the identity on π/π′ ) then we may assume this
extension fixes C pointwise. Now ∂X ∼= S2×AS1 , where A is the restriction of
the monodromy to ∂(N − intD3) ∼= S2 . Roughly speaking, the local situation -
the behaviour of f and A on D3×S1 - determines the global situation. Assume
that f is a fibre preserving self homeomorphism of D3 ×A S1 which induces a
linear map B on each fibre D3 . If A has infinite order, the question as to when
f “changes the framing”, i.e., induces τ on ∂D3×A S1 is delicate. (See §2 and
§3 below). But if A has finite order we have the following easy result.

Lemma 18.1 Let A in SO(3) be a rotation of order r ≥ 2 and let B in
O(3) be such that BAB−1 = A±1 , so that B induces a diffeomorphism fB of
D3 ×A S1 . If fB changes the framing then r = 2.

Proof We may choose coordinates for R3 so that A = ρs/r , where ρu is the
matrix of rotation through 2πu radians about the z -axis in R3 , and 0 < s < r .
Let ρ : D3 ×A S1 → D3 × S1 be the diffeomorphism given by ρ([x, u]) =
(ρ−su/r, θ), for all x ∈ D3 and 0 ≤ u ≤ 1.

If BA = AB then fB([x, u])=[Bx, u] and ρfBρ−1(x, u)=(ρ−su/rBρsu/rx, u). If
r ≥ 3 then B = ρv for some v , and so ρfBρ−1(x, u) = (Bx, u) does not change
the framing. But if r = 2 then A = diag[−1,−1, 1] and there is more choice for
B . In particular, B = diag[1,−1, 1] acts dihedrally: ρ−uBρu = ρ−2uB , and so
ρ−ufBρu(x, u) = (ρ−ux, u), i.e. ρ−ufBρu is the twist τ .

If BAB−1 = B−1 then fB([x, u]) = [Bx, 1 − u]. In this case ρfBρ
−1(x, u) =

(ρ−s(1−u)/rBρsu/rx, 1 − u). If r ≥ 3 then B must act as a reflection in the
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first two coordinates, so ρfBρ
−1(x, u) = (ρ−s/rBx, 1 − u) does not change

the framing. But if r = 2 we may take B = I , and then ρfBρ
−1(x, u) =

(ρ(u−1)/2ρu/2x, 1− u) = (ρ(u− 1
2

)x, 1− u), which after reversing the S1 factor is
just τ .

Note this explains why r = 2 is special. If α2 = id the diffeomorphism of
N ×α S1 sending [x, θ] to [x, 1− θ] which “turns the bundle upside down” also
changes the framing. This explains why 2-twist spins (in any dimension) are
reflexive.

Lemma 18.2 Let τ be the nontrivial twist map of S3 × S1 . Then τ is not
homotopic to the identity.

Proof Let p be the projection of S3 × S1 onto S3 . The suspension of pτ ,
restricted to the top cell of Σ(S3×S1) = S2∨S4∨S5 is the nontrivial element of
π5(S4), whereas the corresponding restriction of the suspension of p is trivial.
(See [CS76], [Go76]).

The hypotheses in the next lemma seem very stringent, but are satisfied by
most aspherical geometric 3-manifolds.

Lemma 18.3 Suppose that Ñ ∼= R3 and that every automorphism of ν which
commutes with θ∗ is induced by a diffeomorphism of N which commutes with
θ . Suppose also that for any homeomorphism ω of N which commutes with
θ there is an isotopy γ from id

Ñ
to θ̃ which commutes with the lift ω̃ . Then

no orientation preserving self homeomorphism of M which fixes C pointwise
changes the framing.

Proof Let h be an orientation preserving self homeomorphism of M which
fixes C pointwise. Suppose that h changes the framing. We may assume that
h|R is a bundle automorphism and hence that it agrees with the radial extension
of τ from ∂R = S2 × S1 to R. Since h∗(t) = t we have h∗θ∗ = θ∗h∗ . Let
ω be a basepoint preserving self diffeomorphism of N which induces h∗ and
commutes with θ . Then we may define a self diffeomorphism hω of M by
hω([n, s]) = [ω(n), s] for all [n, s] in M = N ×θ S1 .

Since hω∗ = h∗ and M is aspherical, h and hω are homotopic. Therefore the
lifts ĥ and ĥω to basepoint preserving maps of M̂ are properly homotopic.
Let ω̃ be the lift of ω to a basepoint preserving map of Ñ . Note that ω̃ is
orientation preserving, and so is isotopic to id

Ñ
.
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Given an isotopy γ from γ(0) = id
Ñ

to γ(1) = θ̃ we may define a diffeomor-
phism ργ : Ñ × S1 → M̃ by ργ(x, e2πit) = [γ(t)(x), t]. Now ρ−1

γ ĥωργ(l, [u]) =
(γ(u)−1ω̃γ(u)(l), [u]). Thus if γ(t)ω̃ = ω̃γ(t) for all t then ρ−1

γ ĥωργ = ω̃× idS1 ,
and so ĥ is properly homotopic to id

M̂
.

Since the radial extension of τ and ρ−1
γ ĥργ agree on D3×S1 they are properly

homotopic on R3 × S1 and so τ is properly homotopic to the identity. Now τ
extends uniquely to a self diffeomorphism τ of S3 × S1 , and any such proper
homotopy extends to a homotopy from τ to the identity. But this is impossible,
by Lemma 18.2. Therefore h cannot change the framing.

Note that in general there is no isotopy from idN to θ .

We may use a similar argument to give a sufficient condition for knots con-
structed from mapping tori to be -amphicheiral. As we shall not use this result
below we shall only sketch a proof.

Lemma 18.4 Let N be a closed orientable 3-manifold with universal cover
Ñ ∼= R3 . Suppose now that there is an orientation reversing self diffeomorphism
ψ : N → N which commutes with θ and which fixes P . If there is a path γ
from I to Θ = Dθ(P ) which commutes with Ψ = Dψ(P ) then each of K and
K∗ is -amphicheiral.

Proof The map ψ induces an orientation reversing self diffeomorphism of M
which fixes C pointwise. We may use such a path γ to define a diffeomorphism
ργ : Ñ × S1 → M̃ . We may then verify that ρ−1

γ ĥργ is isotopic to Ψ × idS1 ,
and so ρ−1

γ ĥργ |∂D3×S1 extends across S2 ×D2 .

18.2 Cappell-Shaneson knots

Let A ∈ SL(3,Z) be such that det(A − I) = ±1. Then A determines an
orientation preserving self homeomorphism of R3/Z3 , and the mapping torus
M = (R3/Z3) ×A S1 is a 2-knot manifold. All such knots are -amphicheiral,
since inversion in each fibre gives an involution of M(K) fixing a circle, which
readily passes to orientation reversing fixed point free involutions of (Σ,K) and
(Σ∗,K∗). However such knots are not invertible, for the Alexander polynomial
is det(XI−A), which has odd degree and does not vanish at ±1, and so cannot
be symmetric.

Cappell and Shaneson showed that if none of the eigenvalues of the monodromy
of such a knot are negative then it is not reflexive. In a footnote they observed
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that the two knots obtained from a matrix A in SL(3,Z) such that det(A −
I) = ±1 and with negative eigenvalues are equivalent if and only if there is a
matrix B in GL(3,Z) such that AB = BA and the restriction of B to the
negative eigenspace of A has negative determinant. We shall translate this
matrix criterion into one involving algebraic numbers and settle the issue by
showing that up to change of orientations there is just one reflexive Cappell-
Shaneson 2-knot.

We note first that on replacing A by A−1 if necessary (which corresponds to
changing the orientation of the knot) we may assume that det(A− I) = +1.

Theorem 18.5 Let A ∈ SL(3,Z) satisfy det(A − I) = 1. If A has trace −1
then the corresponding Cappell-Shaneson knot is reflexive, and is determined
up to change of orientations among all 2-knots with metabelian group by its
Alexander polynomial X3 +X2− 2X − 1. If the trace of A is not −1 then the
corresponding Cappell-Shaneson knots are not reflexive.

Proof Let a be the trace of A. Then the characteristic polynomial of A is
fa(X) = X3 − aX2 + (a − 1)X − 1 = X(X − 1)(X − a + 1) − 1. It is easy
to see that fa is irreducible; indeed, it is irreducible modulo (2). Since the
leading coefficient of fa is positive and fa(1) < 0 there is at least one positive
eigenvalue. If a > 5 all three eigenvalues are positive (since fa(0) = −1,
fa(1

2 ) = (2a − 11)/8 > 0 and fa(1) = −1). If 0 ≤ a ≤ 5 there is a pair of
complex eigenvalues.

Thus if a ≥ 0 there are no negative eigenvalues, and so γ(t) = tA + (1 − t)I
(for 0 ≤ t ≤ 1) defines an isotopy from I to A in GL(3,R). Let h be a
self homeomorphism of (M,C) such that h(∗) = ∗. We may assume that h is
orientation preserving and that h∗(t) = t. Since M is aspherical h is homotopic
to a map hB , where B ∈ SL(3,Z) commutes with A. Hence K is not reflexive,
by Lemma 18.3.

We may assume henceforth that a < 0. There are then three real roots λi , for
1 ≤ i ≤ 3, such that a − 1 < λ3 < a < λ2 < 0 < 1 < λ1 < 2. Note that the
products λi(λi − 1) are all positive, for 1 ≤ i ≤ 3.

Since the eigenvalues of A are real and distinct there is a matrix P in GL(3,R)
such that Ã = PAP−1 is the diagonal matrix diag[λ1, λ2, λ3]. If B in GL(3,Z)
commutes with A then B̃ = PBP−1 commutes with Ã and hence is also
diagonal (as the λi are distinct). Suppose that B̃ = diag[β1, β2, β3]. We may
isotope PAP−1 linearly to diag[1,−1,−1]. If β2β3 > 0 for all such B then
PBP−1 is isotopic to I through block diagonal matrices and we may again
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conclude that the knot is not reflexive. On the other hand if there is such a B
with β2β3 < 0 then the knot is reflexive. On replacing B by −B if necessary
we may assume that det(B) = +1 and the criterion for reflexivity then becomes
β1 < 0.

If a = −1 the ring Z[X]/(f−1(X)) is integrally closed. (For the discriminant
D of the integral closure R̃ of R = Z[X]/(f−1(X)) divides 49, the discriminant
of f−1(X), and 49/D = [R̃ : R]2 . As the discriminant must be greater than
1, by a classical result of Minkowski, this index must be 1). As this ring has
class number 1 (see the tables of [AR84]) it is a PID. Hence any two matrices
in SL(3,Z) with this characteristic polynomial are conjugate, by Theorem 1.4.
Therefore the knot group is unique and determines K up to Gluck reconstruc-
tion and change of orientations, by Theorem 17.5. Since B = −A − I has
determinant 1 and β1 = −λ1 − 1 < 0, the corresponding knot is reflexive.

Suppose now that a < −1. Let F be the field Q[X]/(fa(X)) and let λ be
the image of X in F . We may view Q3 as a Q[X]-module and hence as a
1-dimensional F -vector space via the action of A. If B commutes with A
then it induces an automorphism of this vector space which preserves a lattice
and so determines a unit u(B) in OF , the ring of integers in F . Moreover
det(B) = NF/Qu(B). If σ is the embedding of F in R which sends λ to λ1

and P and B are as above we must have σ(u(B)) = β1 .

Let U = O×F be the group of all units in OF , and let Uν , Uσ , U+ and U2

be the subgroups of units of norm 1, units whose image under σ is positive,
totally positive units and squares, respectively. Then U ∼= Z2 × {±1}, since
F is a totally real cubic number field, and so [U : U2] = 8. The unit −1 has
norm −1, and λ is a unit of norm 1 in Uσ which is not totally positive. Hence
[U : Uν ] = [Uν ∩Uσ : U+] = 2. It is now easy to see that there is a unit of norm
1 that is not in Uσ (i.e., Uν 6= Uν ∩ Uσ ) if and only if every totally positive
unit is a square (i.e., U+ = U2 ).

The image of X(X − 1) in F is λ(λ − 1), which is totally positive and is a
unit (since X(X − 1)(X − a+ 1) = 1 + fa(X)). Suppose that it is a square in
F . Then φ = λ − (a − 1) is a square (since λ(λ − 1)(λ − (a − 1)) = 1). The
minimal polynomial of φ is g(Y ) = Y 3 + (2a − 3)Y 2 + (a2 − 3a + 2)Y − 1. If
φ = ψ2 for some ψ in F then ψ is a root of h(Z) = g(Z2) and so the minimal
polynomial of ψ divides h. This polynomial has degree 3 also, since Q(ψ) = F ,
and so h(Z) = p(Z)q(Z) for some polynomials p(Z) = Z3 + rZ2 + sZ + 1 and
q(Z) = Z3 + r′Z2 + s′Z − 1 with integer coefficients. Since the coefficients
of Z and Z5 in h are 0 we must have r′ = −r and s′ = −s. Comparing
the coefficients of Z2 and Z4 then gives the equations 2s − r2 = 2a − 3 and
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s2 − 2r = a2 − 3a + 2. Eliminating s we find that r(r3 + (4a − 6)r − 8) = −1
and so 1/r is an integer. Hence r = ±1 and so a = −1 or 3, contrary to
hypothesis. Thus there is no such matrix B and so the Cappell-Shaneson knots
corresponding to A are not reflexive.

The other fibred 2-knots with closed fibre a flat 3-manifold have group G(+)
or G(−). We shall show below that one of these (τ341 ) is not reflexive. The
question remains open for the other knots with these groups.

18.3 Nil3-fibred knots

The group Nil = Nil3 is a subgroup of SL(3,R) and is diffeomorphic to R3 ,
with multiplication given by [r, s, t][r′, s′, t′] = [r + r′, s + s′, rs′ + t + t′]. (See
Chapter 7). The kernel of the natural homomorphism from AutLie(Nil) to
AutLie(R2) = GL(2,R) induced by abelianization (Nil/Nil′ ∼= R2 ) is isomor-
phic to HomLie(Nil, ζNil) ∼= R2 . The set underlying the group AutLie(Nil)
is the cartesian product GL(2,R)×R2 , with (A,µ) = (( a cb d ) , (m1,m2)) acting
via (A,µ)([r, s, t]) =

[ar + cs, br + ds,m1r +m2s+ (ad− bc)t+ bcrs+ ab

(
r

2

)
+ cd

(
s

2

)
].

The Jacobian of such an automorphism is (ad − bc)2 , and so it is orientation
preserving. Let (B, ν) = (

(
g j
h k

)
, (n1, n2)) be another automorphism, and let

η(A,B) = (abg(1 − g) + cdh(1 − h)− 2bcgh, abj(1 − j) + cdk(1− k)− 2bcjk).

Then (A,µ)◦(B, ν)=(AB,µB+det(A)ν+ 1
2η(A,B)). In particular, AutLie(Nil)

is not a semidirect product of GL(2,R) with R2 . For each q > 0 in Z the
stabilizer of Γq in AutLie(Nil) is the subgroup GL(2,Z)× (q−1Z2), and this is
easily verified to be Aut(Γq). (See §7 of Chapter 8). Thus every automorphism
of Γq extends to an automorphism of Nil . (This is a special case of a theorem of
Malcev on embeddings of torsion free nilpotent groups in 1-connected nilpotent
Lie groups - see [Rg]).

Let the identity element [0, 0, 0] and its images in Nq = Nil/Γq be the base-
points for Nil and for these coset spaces. The extension of each automorphism
of Γq to Nil induces a basepoint and orientation preserving self homeomor-
phism of Nq .

If K is a 2-knot with group π = πK and π′ ∼= Γq then M = M(K) is home-
omorphic to the mapping torus of such a self homeomorphism of Nq . (In fact,

Geometry & Topology Monographs, Volume 5 (2002)



344 Chapter 18: Reflexivity

such mapping tori are determined up to diffeomorphism by their fundamental
groups). Up to conjugacy and involution there are just three classes of merid-
ianal automorphisms of Γ1 and one of Γq , for each odd q > 1. (See Theorem
16.13). Since π′′ ≤ ζπ′ it is easily seen that π has just two strict weight orbits.
Hence K is determined up to Gluck reconstruction and changes of orientation
by π alone, by Theorem 17.5. (Instead of appealing to 4-dimensional surgery to
realize automorphisms of π by basepoint and orientation preserving self home-
omorphisms of M we may use the S1 -action on Nq to construct such a self
homeomorphism which in addition preserves the fibration over S1 ).

We shall show that the knots with π′ ∼= Γ1 and whose characteristic polynomials
are X2 −X + 1 and X2 − 3X + 1 are not reflexive, while for all other groups
the corresponding knots are reflexive.

The polynomial X2 −X + 1 is realized by τ631 and its Gluck reconstruction.
Since the trefoil knot 31 is strongly invertible τ631 is strongly +amphicheiral
[Li85]. The involution of X(τ631) extends to an involution of M(τ631) which
fixes the canonical section C pointwise and does not change the framing of the
normal bundle, and hence (τ631)∗ is also +amphicheiral. (We shall see below
that these knots are distinct).

Lemma 18.6 Let K be a fibred 2-knot with closed fibre N1 and Alexander
polynomial X2 − 3X + 1. Then K is +amphicheiral.

Proof Let Θ = (A, (0, 0)) be the automorphism of Γ1 with A = ( 1 1
1 2 ). Then

Θ induces a basepoint and orientation preserving self diffeomorphism θ of N1 .
Let M = N1 ×θ S1 and let C be the canonical section. A basepoint and
orientation preserving self diffeomorphism ψ of N1 such that ψθψ−1 = θ−1

induces a self diffeomorphism of M which reverses the orientations of M and
C . If moreover it does not twist the normal bundle of C then each of the
2-knots K and K∗ obtained by surgery on C is +amphicheiral. We may check
the normal bundle condition by using an isotopy from Θ to idNil to identify
M̂ with Nil × S1 .

Thus we seek an automorphism Ψ = (B,µ) of Γ1 such that ΨΘtΨ−1 = Θ−1
t ,

or equivalently ΘtΨΘt = Ψ, for some isotopy Θt from Θ0 = idNil to Θ1 = Θ.

Let P =
(

0 −1
1 0

)
. Then PAP−1 = A−1 , or APA = P . It may be checked

that the equation Θ(P, µ)Θ = (P, µ) reduces to a linear equation for µ with
unique solution µ = −(2, 3). Let Ψ = (P,−(2, 3)) and let h be the induced
diffeomorphism of M .
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As the eigenvalues of A are both positive it lies on a 1-parameter subgroup,
determined by L = ln(A) = m

(
1 −2
−2 −1

)
, where m = (ln((3 +

√
5)/2))/

√
5. Now

PLP−1 = −L and so P exp(tL)P−1 = exp(−tL) = (exp(tL)−1 , for all t. We
seek an isotopy Θt = (exp(tL), vt) from idNil to Θ such that ΘtΨΘt = Ψ for
all t. It is easily seen that this imposes a linear condition on vt which has an
unique solution, and moreover v0 = v1 = (0, 0).

Now ρ−1hρ(x, u) = (Θ1−uΨΘu(x), 1 − u) = (ΨΘ1−uΘu, 1− u). Since exp((1−
u)L) exp(uL) = exp(L) the loop u 7→ Θ1−uΘu is freely contractible in the group
AutLie(Nil). It follows easily that h does not change the framing of C .

Instead of using the one-parameter subgroup determined by L = ln(A) we may
use the polynomial isotopy given by At =

(
1 t
t 1+t2

)
, for 0 ≤ t ≤ 1. A similar

argument could be used for the polynomial X2 −X + 1.

On the other hand, the polynomial X2 + X − 1 is not symmetric and so the
corresponding knots are not +amphicheiral. Since every automorphism of Γq
is orientation preserving no such knot is -amphicheiral or invertible.

Theorem 18.7 Let K be a fibred 2-knot with closed fibre Nq .

(1) If the fibre is N1 and the monodromy has characteristic polynomial X2−
X + 1 or X2 − 3X + 1 then K is not reflexive;

(2) If the fibre is Nq (q odd) and the monodromy has characteristic polyno-
mial X2 ±X − 1 then K is reflexive.

Proof As τ631 is shown to be not reflexive in §4 below, we shall concentrate
on the knots with polynomial X2 − 3X + 1, and then comment on how our
argument may be modified to handle the other cases.

Let Θ, θ and M = N1 ×θ S1 be as in Lemma 18.6, and let M̂ = Nil×Θ S
1 be

as in §1. We shall take [0, 0, 0, 0] as the basepoint of M̂ and its image in M as
the basepoint there.

Suppose that Ω = (B, ν) is an automorphism of Γ1 which commutes with Θ.
Since the eigenvalues of A are both positive the matrix A(u) = uA + (1 −
u)I is invertible and A(u)B = BA(u), for all 0 ≤ u ≤ 1. We seek a path
of the form γ(u) = (A(u), µ(u)) with commutes with Ω. On equating the
second elements of the ordered pairs γ(u)Ω and Ωγ(u) we find that µ(u)(B −
det(B)I) is uniquely determined. If det(B) is an eigenvalue of B then there is
a corresponding eigenvector ξ in Z2 . Then BAξ = ABξ = det(B)Aξ , so Aξ
is also an eigenvector of B . Since the eigenvalues of A are irrational we must
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have B = det(B)I and so B = I . But then ΩΘ = (A, νA) and ΘΩ = (A, ν),
so ν(A − I) = 0 and hence ν = 0. Therefore Ω = idNil and there is no
difficulty in finding such a path. Thus we may assume that B − det(B)I is
invertible, and then µ(u) is uniquely determined. Moreover, by the uniqueness,
when A(u) = A or I we must have µ(u) = (0, 0). Thus γ is an isotopy from
γ(0) = idNil to γ(1) = Θ (through diffeomorphisms of Nil) and so determines
a diffeomorphism ργ from R3 × S1 to M̂ via ργ(r, s, t, [u]) = [γ(u)([r, s, t]), u].

A homeomorphism f from Σ to Στ carrying K to Kτ (as unoriented subman-
ifolds) extends to a self homeomorphism h of M which leaves C invariant, but
changes the framing. We may assume that h preserves the orientations of M
and C , by Lemma 18.6. But then h must preserve the framing, by Lemma
18.3. Hence there is no such homeomorphism and such knots are not reflexive.

If π ∼= πτ631 then we may assume that the meridianal automorphism is Θ =
(
(

1 −1
1 0

)
, (0, 0)). As an automorphism of Nil , Θ fixes the centre pointwise, and

it has order 6. Moreover (( 0 1
1 0 ) , (0, 0) is an involution of Nil which conjugates

Θ to its inverse, and so M admits an orientation reversing involution. It can
easily be seen that any automorphism of Γ1 which commutes with Θ is a power
of Θ, and the rest of the argument is similar.

If the monodromy has characteristic polynomial X2 ± X − 1 we may assume
that the meridianal automorphism is Θ = (D, (0, 0)), where D = ( 1 1

1 0 ) or its
inverse. As Ω = (−I, (−1, 1)) commutes with Θ (in either case) it determines
a self homeomorphism hω of M = Nq ×θ S1 which leaves the meridianal circle
{0} × S1 pointwise fixed. The action of hω on the normal bundle may be
detected by the induced action on M̂ . In each case there is an isotopy from
Θ to Υ =

(
1 0
0 −1

)
which commutes with Ω, and so we may replace M̂ by the

mapping torus Nil ×Υ S1 . (Note also that Υ and Ω act linearly under the
standard identification of Nil with R3 ).

Let R(u) ∈ SO(2) be rotation through πu radians, and let v(u) = (0, u),
for 0 ≤ u ≤ 1. Then γ(u) =

(
1 v(u)
0 R(u)

)
defines a path γ in SL(3,R) from

γ(0) = idNil to γ(1) = Υ which we may use to identify the mapping torus of
Υ with R3 × S1 . In the “new coordinates” hω acts by sending (r, s, t, e2πiu)
to (γ(u)−1Ωγ(u)(r, s, t), e2πiu). The loop sending e2πiu in S1 to γ(u)−1Ωγ(u)
in SL(3,R) is freely homotopic to the loop γ1(u)−1Ω1γ1(u), where γ1(u) =(

1 0
0 R(u)

)
and Ω1 = diag[−1,−1, 1]. These loops are essential in SL(3,R),

since on multiplying the latter matrix product on the left by diag[−1, 1,−1] we
obtain

(
1 0
0 R(2u)

)
. Thus hω induces the twist τ on the normal bundle of the

meridian, and so the knot is equivalent to its Gluck reconstruction.
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The other fibred 2-knots with closed fibre a Nil3 -manifold have group π(b, ε),
for some even b and ε = ±1. The 2-twist spins of Montesinos knots are reflexive
(by Lemma 18.1). Are the other knots with these groups also reflexive?

It has been shown that for many of the Cappell-Shaneson knots at least one of
the (possibly two) corresponding smooth homotopy 4-spheres is the standard
S4 [AR84]. Can a similar study be made in the Nil cases?

18.4 Other geometrically fibred knots

We shall assume henceforth throughout this section that k is a prime simple
1-knot, i.e., that k is either a torus knot or a hyperbolic knot.

Lemma 18.8 Let A and B be automorphisms of a group π such that AB =
BA, A(h) = h for all h in ζπ and the images of Ai and B in Aut(π/ζπ) are
equal. Let [A] denote the induced automorphism of π/π′ . If I−[A] is invertible
in End(π/π′) then B = Ai in Aut(π).

Proof There is a homomorphism ε : π → ζπ such that BA−i(x) = xε(x) for
all x in π . Moreover εA = ε, since BA = AB . Equivalently, [ε](I − [A]) = 0,
where [ε] : π/π′ → ζπ is induced by ε. If I − [A] is invertible in End(π/π′)
then [ε] = 0 and so B = Ai .

Let p = ap′ , q = bq′ and r = p′q′c, where (a, qc) = (b, pc) = 1. Let A denote
both the canonical generator of the Z/rZ action on M(p, q, r) = {(u, v,w) ∈
C3 | up + vq + wr = 0} ∩ S5 given by A(u, v,w) = (u, v, e2πi/rw) and its effect
on π1(M(p, q, r)). Then the image of the Seifert fibration of M(p, q, r) under
the projection to the orbit space M(p, q, r)/〈A〉 ∼= S3 is the Seifert fibration
of S3 with one fibre of multiplicity p and one of multiplicity q . The quo-
tient of M(p, q, r) by the subgroup generated by Ap

′q′ may be identified with
M(p, q, p′q′). (Note that S2(p, q, r) ∼= S2(p, q, p′q′)). Sitting above the fibre
in S3 of multiplicity p in both M ’s we find q′ fibres of multiplicity a, and
above the fibre of multiplicity q we find p′ fibres of multiplicity b. But above
the branch set, a principal fibre in S3 , we have one fibre of multiplicity c in
M(p, q, r), but a principal fibre in M(p, q, p′q′).
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We may display the factorization of these actions as follows:

M(p, q, r)
/S1

−−−−→ S2(p, q, r)y y
M(p, q, p′q′)

/S1

−−−−→ S2(p, q, p′q′)y y
(S3, (p, q))

/S1

−−−−→ S2

We have the following characterization of the centralizer of A in Aut(π).

Theorem 18.9 Assume that p−1 + q−1 + r−1 ≤ 1, and let A be the automor-
phism of π = π1(M(p, q, r)) of order r induced by the canonical generator of
the branched covering transformations. If B in Aut(π) commutes with A then
B = Ai for some 0 ≤ i < r .

Proof The 3-manifold M = M(p, q, r) is aspherical, with universal cover R3 ,
and π is a central extension of Q(p, q, r) by an infinite cyclic normal subgroup.
Here Q = Q(p, q, r) is a discrete planar group with signature ((1 − p′)(1 −
q′)/2; a . . . a, b . . . b, c) (where there are q′ entries a and p′ entries b). Note
that Q is Fuchsian except for Q(2, 3, 6) ∼= Z2 . (In general, Q(p, q, pq) is a
PD+

2 -group of genus (1− p)(1− q)/2).

There is a natural homomorphism from Aut(π) to Aut(Q) = Aut(π/ζπ). The
strategy shall be to show first that B = Ai in Aut(Q) and then lift to Aut(π).
The proof in Aut(Q) falls naturally into three cases.

Case 1. r = c. In this case M is a homology 3-sphere, fibred over S2 with three
exceptional fibres of multiplicity p, q and r . Thus Q ∼= ∆(p, q, r) = 〈q1, q2, q3 |
qp1 = qq2 = qr3 = q1q2q3 = 1〉, the group of orientation preserving symmetries of
a tesselation of H2 by triangles with angles π/p, π/q and π/r . Since Zr is
contained in S1 , A is inner. (In fact it is not hard to see that the image of A
in Aut(Q) is conjugation by q−1

3 . See §3 of [Pl83]).

It is well known that the automorphisms of a triangle group correspond to
symmetries of the tessellation (see Chapters V and VI of [ZVC]). Since p, q
and r are pairwise relatively prime there are no self symmetries of the (p, q, r)
triangle. So, fixing a triangle T , all symmetries take T to another triangle.
Those that preserve orientation correspond to elements of Q acting by inner
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automorphisms, and there is one nontrivial outerautomorphism, R say, given
by reflection in one of the sides of T . We can assume R(q3) = q−1

3 .

Let B in Aut(Q) commute with A. If B is conjugation by b in Q then
BA = AB is equivalent to bq3 = q3b, since Q is centreless. If B is R followed
by conjugation by b then bq3 = q−1

3 b. But since 〈q3〉 = Zr in Q is generated
by an elliptic element the normalizer of 〈q3〉 in PSL(2,R) consists of elliptic
elements with the same fixed point as q3 . Hence the normalizer of 〈q3〉 in Q
is just 〈q3〉. Since r > 2 q3 6= q−1

3 and so we must have bq3 = q3b, b = qi3 and
B = Ai . (Note that if r = 2 then R commutes with A in Aut(Q)).

Case 2. r = p′q′ so that Zr ∩ S1 = 1. The map from S2(p, q, p′q′) to S2 is
branched over three points in S2 . Over the point corresponding to the fibre
of multiplicity p in S3 the map is p′ -fold branched; it is q′ -fold branched over
the point corresponding to the fibre of multiplicity q in S3 , and it is p′q′ -fold
branched over the point ∗ corresponding to the branching locus of M over S3 .

Represent S2 as a hyperbolic orbifold H2/∆(p, q, p′q′). (If (p, q, r) = (2, 3, 6)
we use instead the flat orbifold E2/∆(2, 3, 6)). Lift this to an orbifold structure
on S2(p, q, p′q′), thereby representing Q = Q(p, q, p′q′) into PSL(2,R). Lifting
the Zp′q′ -action to H2 gives an action of the semidirect product Q×̃Zp′q′ on
H2 , with Zp′q′ acting as rotations about a point ∗̃ of H2 lying above ∗. Since
the map from H2 to S2(p, q, p′q′) is unbranched at ∗̃ (equivalently, Zr∩S1 = 1),
Q∩Zp′q′ = 1. Thus Q×̃Zp′q′ acts effectively on H2 , with quotient S2 and three
branch points, of orders p, q and p′q′ .

In other words, Q×̃Zp′q′ is isomorphic to ∆(p, q, p′q′). The automorphism A
extends naturally to an automorphism of ∆, namely conjugation by an element
of order p′q′ , and B also extends to Aut(∆), since BA = AB .

We claim B = Ai in Aut(∆). We cannot directly apply the argument in Case
1, since p′q′ is not prime to pq . We argue as follows. In the notation of Case 1,
A is conjugation by q−1

3 . Since BA = AB , B(q3) = q−1
3 B(q3)q3 , which forces

B(q3) = qj3 . Now q−1
3 B(q2)q3 = AB(q2) = B(q−1

3 )B(q2)B(q3) = q−j3 B(q2)qj3 ,
or B(q2) = q1−j

3 B(q3)qj−1
3 . But B(q2) is not a power of q3 , so q1−j

3 = 1, or
j ≡ 1 modulo (r). Thus B(q3) = q3 . This means that the symmetry of the
tessellation that realizes B shares the same fixed point as A, so B is in the
dihedral group fixing that point, and now the proof is as before.

Case 3. r = p′q′c (the general case). We have Zp′q′c contained in Aut(π), but
Zp′q′c ∩ S1 = Zc , so that Zc is the kernel of the composition

Zr → Out(π)→ Out(Q).
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Let Q̄ be the extension corresponding to the abstract kernel Zp′q′ → Out(Q).
(The extension is unique since ζQ = 1). Then Q̄ is a quotient of the semidirect
product Q(p, q, r)×̃(Z/rZ) by a cyclic normal subgroup of order c.

Geometrically, this corresponds to the following. The map from S2(p, q, r) to
S2 is branched as in Case 2, over three points with branching indices p, q and
p′q′ . This time, represent S2 as H2/∆(p, q, p′q′). Lift to an orbifold structure
on S2(p, q, r) with one cone point of order c. Lifting an elliptic element of order
r in ∆(p, q, r) to the universal orbifold cover of S2(p, q, r) gives Zr contained
in Aut(Q(p, q, r)) defining the semidirect product. But Q(p, q, r)∩Zr = Zc , so
the action is ineffective. Projecting to Zp′q′ and taking the extension Q̄ kills
the ineffective part of the action. Note that Q(p, q, r) and Zr inject into Q̄.

As in Case 2, Q̄ ∼= ∆(p, q, r), A extends to conjugation by an element of
order r in Q̄, and B extends to an automorphism of Q(p, q, r)×̃Zr , since
BA = AB . Now (q3, p

′q′) in Q(p, q, r)×̃Zr normally generates the kernel of
Q(p, q, r)×̃Zr → Q̄, where q3 is a rotation of order c with the same fixed point
as the generator of Zr . In other words, A in Aut(Q(p, q, r)) is such that Ap

′q′

is conjugation by q3 . Since BAp
′q′ = Ap

′q′B the argument in Case 2 shows that
B(q3) = q3 . So B also gives an automorphism of Q̄, and now the argument of
Case 2 finishes the proof.

We have shown that B = Ai in Aut(Q). Since A in Aut(π) is the monodromy
of a fibred knot in S4 (or, more directly, since A is induced by a branched cover
of a knot in a homology sphere), I − [A] is invertible. Thus the Theorem now
follows from Lemma 18.8.

Theorem 18.10 Let k be a prime simple knot in S3 . Let 0 < s < r , (r, s) = 1
and r > 2. Then τr,sk is not reflexive.

Proof We shall consider separately the three cases (a) k a torus knot and the
branched cover aspherical; (b) k a torus knot and the branched cover spherical;
and (c) k a hyperbolic knot.

Aspherical branched covers of torus knots Let K = τr,s(kp,q) where
r > 2 and M(p, q, r) is aspherical. Then X(K) = (M(p, q, r)− intD3)×As S1 ,
M = M(K) = M(p, q, r)×As S1 and π = πK ∼= π1(M(p, q, r)) ×As Z .

If K is reflexive there is a homeomorphism f of X which changes the framing
on ∂X . Now kp,q is strongly invertible - there is an involution of (S3, kp,q) fixing
two points of the knot and reversing the meridian. This lifts to an involution of
M(p, q, r) fixing two points of the branch set and conjugating As to A−s , thus
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inducing a diffeomorphism of X(K) which reverses the meridian. By Lemma
18.1 this preserves the framing, so we can assume that f preserves the meridian
of K . Since M(p, q, r) is an aspherical Seifert fibred 3-manifold ˜M(p, q, r) ∼= R3

and all automorphisms of π1(M(p, q, r)) are induced by self-diffeomorphisms
[Hm]. Hence f must be orientation preserving also, as all self homeomorphisms
of S̃L-manifolds are orientation preserving [NR78]. The remaining hypothesis
of Lemma 18.3 is satisfied, by Theorem 18.9. Therefore there is no such self
homeomorphism f , and K is not reflexive.

Spherical branched covers of torus knots We now adapt the previous
argument to the spherical cases. The analogue of Theorem 18.9 is valid, except
for (2, 5, 3). We sketch the proofs.

(2, 3, 3): M(2, 3, 3 = S3/Q(8). The image in Aut(Q(8)/ζQ(8)) ∼= S3 of the
automorphism A induced by the 3-fold cover of the trefoil knot has order 3 and
so generates its own centralizer.

(2, 3, 4): M(2, 3, 4) = S3/T ∗1 . In this case the image of A in Aut(T ∗1 ) ∼= S4

must be a 4-cycle, and generates its own centralizer.

(2, 3, 5): M(2, 3, 5) = S3/I∗ . In this case the image of A in Aut(I∗) ∼= S5 must
be a 5-cycle, and generates its own centralizer.

(2, 5, 3): We again have I∗ , but in this case A3 = I , say A = (123)(4)(5).
Suppose BA = AB . If B fixes 4 and 5 then it is a power of A. But B may
transpose 4 and 5, and then B = AiC , where C = (1)(2)(3)(45) represents the
nontrivial outer automorphism class of I∗ .

Now let K = τr,s(kp,q) as usual, with (p, q, r) one of the above four triples, and
let M = M(p, q, r) ×As S1 . As earlier, if K is reflexive we have a homeomor-
phism f which preserves the meridian t and changes the framing on D3×AsS1 .

Let M̂ be the cover of M corresponding to the meridian subgroup, so M̂ =
S3 ×Âs S1 , where Â is a rotation about an axis. Let f be a basepoint pre-
serving self homotopy equivalence of M such that f∗(t) = t in π . Let B in
Aut(π1(M(p, q, r)) be induced by f∗ , so BAs = AsB . The discussion above
shows that B = Asi except possibly for (2, 5, 3). But if B represented the outer
automorphism of I∗ then after lifting to infinite cyclic covers we would have a
homotopy equivalence of S3/I∗ inducing C , contradicting Lemma 11.5. So we
have an obvious fibre preserving diffeomorphism fB of M .

The proof that f̂B is homotopic to id
M̂

is exactly as in the aspherical case. To
see that f̂B is homotopic to f̂ (the lift of f to a basepoint preserving proper
self homotopy equivalence of M̂ ) we investigate whether fB is homotopic to
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f . Since π2(M) = 0 we can homotope fB to f on the 2-skeleton of M . On
the 3-skeleton we meet an obstruction in H3(M ;π3) ∼= H3(M ;Z) = Z , since
M has the homology of S3 × S1 . But this obstruction is detected on the
top cell of M(p, q, r) and just measures the difference of the degrees of f and
fB on the infinite cyclic covers [Ol53]. Since both f and fB are orientation
preserving homotopy equivalences this obstruction vanishes. On the 4-skeleton
we have an obstruction in H4(M ;π4) = Z/2Z , which may not vanish. But this
obstruction is killed when we lift to M̂ , since the map from M̂ to M has even
degree, proving that f̂B ' f̂ .

We now use radial homotopies on S3 × S1 to finish, as before.

Branched covers of hyperbolic knots Let k be hyperbolic. Excluding
N3(41) (the 3-fold cyclic branched cover of the figure eight knot), N = Nr(k) is
a closed hyperbolic 3-manifold, with 〈α〉 ∼= Z/rZ acting by isometries. As
usual, we assume there is a homeomorphism f of M = M(τr,s(k)) which
changes the framing on D3 ×As S1 . As in the aspherical torus knot case, it
shall suffice to show that the lift f̂ on M̂ is properly homotopic to a map of
(R3 × S1,D3 × S1) that does not change the framing on D3 × S1 .

Letting B = f∗ on ν = π1(N), we have BAsB−1 = A±s , depending on whether
f∗(t) = t±1 in π = ν ×As Z . There is an unique isometry β of N realizing the
class of B in Out(ν), by Mostow rigidity, and βαsβ−1 = α±s . Hence there is
an induced self diffeomorphism fβ of M = N ×αs S1 . Note that f∗ = (fβ)∗ in
Out(π), so f is homotopic to fβ . We cannot claim that β fixes the basepoint
of N , but β preserves the closed geodesic fixed by αs .

Now M̂ = H3 ×α̂s S1 where α̂s is an elliptic rotation about an axis L, and
f̂β is fibrewise an isometry β̂ preserving L. We can write H3 = R2 × L (non-
metrically!) by considering the family of hyperplanes perpendicular to L, and
then β̂ is just an element of O(2)×E(1) and α̂s is an element of SO(2)×{1}.
The proof of Lemma 18.1, with trivial modifications, shows that, after picking
coordinates and ignoring orientations, f̂β is the identity. This completes the
proof of the theorem.

The manifolds M(p, q, r) with p−1 + q−1 + r−1 < 1 are coset spaces of S̃L
[Mi75]. Conversely, let K be a 2-knot obtained by surgery on the canonical
cross-section of N ×θ S1 , where N is such a coset space. If θ is induced by an
automorphism of S̃L which normalizes ν = π1(N) then it has finite order, since
N
S̃L

(ν)/ν ∼= NPSL(2,R)(ν/ζν)/(ν/ζν). Thus if θ has infinite order we cannot
expect to use such geometric arguments to analyze the question of reflexivity.
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Index

Expressions beginning with Greek
characters and non-alphabetic symbols
are listed at the end of this index.

(A, β,C) (isometry of S2 × E2 ),
203

A(m, e) (metacyclic group
of order 2em), 222

A(π) (augmentation ideal
of Z[π]), 36

AQ(π) (augmentation ideal
of Q[π]), 59

admits a geometry, 132
algebraic 2-type

([π, π2(M), k1(M)]), 26
almost coherent, 16
almost complex structure, 148
almost finitely presentable

(FP2 ), 14
amenable group, 8
amphicheiral knot, 267
Artin spin of a knot (σK ), 272
automorphisms of Γq , 167

B1 −B4 (nonorientable flat
3-manifold groups), 154

Bieri’s Theorem
(Theorem 8.8 of [Bi]), 17

Bieri-Strebel Theorem [BS78], 14
boundary link, 282
Bowditch’s Theorem, 20
branched twist spin, 311
Brieskorn manifold

(M(p, q, r)), 307
Brown-Geoghegan Theorem

[BG85], 18

c(ĝ) (Kervaire-Arf invariant
of ĝ : M → G/TOP ), 117

cM : M → K(π1(M), 1)
(classifying map), 26

CP2 (geometry of complex

projective plane), 234
Ch = ∗CP 2 (the fake

complex projective plane), 235
CG(H) (centralizer

of a subgroup), 3
Cl (Waldhausen’s class

of groups), 112
canonical cross-section, 338
Cappell-Shaneson knot, 315
Cartan-Leray spectral sequence,

26
centre of a group G (ζG), 3
characteristic subgroup, 3
classifying map

(cM : M → K(π1(M), 1)), 26
closed fibre, 269
closed manifold, 26
codimension-2 Kervaire invariant,

117
coherent group, 15
coherent ring, 15
commutator subgroup

of a group G (G′ ), 3
companion, 271
complex surface, 146
complex torus, 148
conjugate M̄ of a module M , 13
connecting homomorphism

∂ : π2(B)→ π1(F ), 89
Crisp’s Theorem [Cr00], 34
cusp, 138

D (infinite dihedral group
(Z/2Z) ∗ (Z/2Z)), 16

deficiency (def(P ), def(π)), 28
dimN (π)(M) (von Neumann

dimension of M ), 22
doubly slice knot, 272

e(G) (number of ends of the group
G, = 0, 1, 2 or ∞), 16

En (flat geometry), 134
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E(n) (isometry group of En ), 134
E(X), E0(X) (space of self

homotopy equivalences), 89
EA (class of elementary amenable

groups), 9
ev(2) (evaluation into `2(π)), 49
elliptic surface, 148, 259, 334
ends (and H1(G;Z[G])), 16
equivariant (co)homology, 25
extension of groups, 4
exterior of a knot (X(K), X ),

267

fα (self homotopy equivalence
of a closed 4-manifold), 117

fM : M → P2(M) (second map
of Postnikov tower), 26

FF , FP , FPn (finiteness
conditions), 14

F (r) (free group), 3
F4 (geometry of TH2 ), 133, 256
Farrell’s Theorem [Fa74], 18
fibration theorem, 123
fibred knot, 269
finite PDn -complex, 33
flat manifold, 134
flat n-manifold group, 134
foliation by circles, 262
Følner exhaustion, 8

g.d. (geometric dimension), 28
G1 −G6 (orientable flat

3-manifold groups), 153
G(±) (flat 2-knot groups), 318
geometric decomposition, 138
geometric dimension

of a group (g.d.), 28
geometry, 132
Gluck reconstruction of a knot K

(K∗ ), 269
graph manifold, 114
Gromov’s Theorem

(§8.A of [Gr]), 28

H2 ×H2 (semisimple product
geometry), 188

H4 , H2(C) (rank 1 geometries),
192

H2 × E2 (product geometry), 182
H3 × E1 (product geometry), 185
Hi(X ;R[G/H ]), H i(X ;R[G/H ])

(equivariant (co)homology), 25
h(G) (Hirsch length

of a group G), 10
hZ[π] , 73
Haken 3-manifold, 114
Hantzsche-Wendt flat 3-manifold

group (G6 ), 154
Hendrik’s Theorem [Hn], 34
Hilbert N (π)-module, 22
Hilbert N (π)-complex, 23
Hirsch length of a group

(h(G)), 4, 10
Hirsch-Plotkin radical of a group G

(
√
G), 6

homology 4-sphere, 288
holonomy group, 134
homotopy ribbon knot, 273
Hopf surface, 147, 335
hyperelliptic surface, 148

I(G) = {g ∈ G | ∃n > 0, gn ∈ G′} , 3
I∗ (binary icosahedral group), 222
Iπ (homomorphism

from H1(π;Z) to Ls1(π)), 118
I+
π (homomorphism

from Ker(w) to Ls1(π,w)), 119
indicable group, 3
infinite cyclic covering space

(Eν , X ′(K), M ′(K)), 69, 269
infinite dihedral group

(D = (Z/2Z) ∗ (Z/2Z)), 16
infranilmanifold, 134
infrasolvmanifold, 135, 176
Inoue surface, 147, 245
invertible knot, 267
irreducible knot, 271
Isom(X), 132

J(F ), J+(F ) (automorphisms of F
inducing ±1 on H3(F ;Z)), 220
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Johnson’s trichotomy
(surface bundle groups), 92

k1(M) (first k -invariant), 26
Kaplansky rank (κ(P )), 14
Kb (Klein bottle), 89
kp,q ((p, q)-torus knot), 311
kerv(ĝ) (codimension-2 Kervaire

invariant of ĝ), 117
Kervaire-Arf invariant, 117
knot, 267
knot group (πK ), 268
knot-like group, 280
Kodaira surface, 148

`P (locally P ), 3
`2(π) (L2 -completion of C[π]), 22
L2 -Betti number, 26
lattice, 132
Lexp(f, a) (Laurent expansion), 74
link, 282
link group, 282,286
LHSSS (Lyndon-Hochschild-Serre

spectral sequence), 17
locally P (`P ), 3
Lück’s Theorem [Lü94], 27

Mb (Möbius band), 105
M(K) (closed manifold

arising from a knot K ), 268
M(φ) (mapping torus of a self

homotopy equivalence φ), 69
M(p, q, r) (Brieskorn manifold), 307
mapping torus, 69
Max-c (increasing chains

of centralizers are finite), 43
maximal finite normal subgroup

(of a group with two ends), 16
Mayer-Vietoris sequence

of Waldhausen, 112
Melvin’s Theorem, 99
meridian, 268
meridianal automorphism, 276
minimal complex surface, 147
minimal Seifert hypersurface, 269
monodromy, 269

Mostow orbifold bundle, 142
Mostow rigidity, 193

n-dimensional geometry, 132
Nil3 × E1 (nilpotent Lie geometry),

134, 164
Nil4 (nilpotent Lie geometry),

135, 164
N (π) (von Neumann algebra of π ),

22
n-knot, 267
NG(H) (normalizer

of a subgroup),3
normal closure of S in G

(〈〈S〉〉G ), 3

Out(G) (group of outer
automorphism classes), 3

O∗1 (binary octahedral group), 222
O∗k (extended binary octahedral

group), 222
orbifold bundle, 141
orientable PDn -group

(PD+
n -group), 20

P (= PSL(2,R)), 188
P2(M) (second stage

of Postnikov tower), 26
PD3 -complex (3-dimensional

Poincaré duality complex), 33
PDn -complex

(Poincaré duality complex), 33
PD

(+)
n -group, 20

PD3 -group, 37
PD4 -polarization, 198
piece (of a geometric

decomposition), 138
Plotnick’s Theorem [Pl86], 311
Poincaré duality, 32
poly-, 4
proper geometric decomposition,

138

q(π), qSG(π) (minimal
Euler characteristic), 57

Q(2na, b, c) (generalized
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quaternionic group), 223
Q(2nk) (quaternionic group

of order 2nk), 221
quadratic 2-type

([π, π2(M), k1(M), S(M̃)]), 241
quasifibre, 327
quaternion group (Q(8)), 221

rational surface, 148
reduced L2 -homology, 23
reducible (H2 ×H2 -manifold), 188
reflexive knot, 269
regular coherent ring, 15
regular noetherian ring, 15
restrained (group), 9
ribbon knot, 273
ruled surface, 148

SA (class of groups
of subexponential growth), 9

S1 -actions, 261
S3 -group, 225
SPD4 (P ) (polarized

PD4 -complexes), 198
SsTOP (M) (s-cobordism

structure set), 116
S4 (spherical geometry), 234
S2 × S2 (compact

product geometry), 235
Sol4m,n , Sol3 × E1 , (solvable

Lie geometries), 136, 164
Sol40 (solvable Lie geometry),

137, 164
Sol41 (solvable Lie geometry),

137, 164
S3 × E1 (2-ended spherical-euclidean

product geometry), 224
S2 × E2 (1-ended spherical-euclidean

product geometry), 201, 206
S2 ×H2 (spherical-hyperbolic

product geometry), 201
S̃L× E1 , 182
safe extension, 23
satellite, 271
s-concordant, 273

Seifert fibred (4-manifold), 144
Seifert hypersurface, 269
semidirect product (G×θZ ), 4
slice knot, 272
solvable Lie type, 132, 176
spin (Artin) of a knot (σK ), 272
split link, 282
stably homeomorphic, 121
strict weight orbit, 275
Strebel’s Theorem [St77], 21
sum of knots (K1]K2 ), 270
surface bundles, 89, 252
surgery exact sequence, 116
Swan complex, 219
symplectic structure, 149, 263

T (torus), 89
T ∗1 (binary tetrahedral group), 221
T ∗k (extended binary tetrahedral

group), 221
T (π) (translation subgroup),

134, 136
Tits alternative, 29, 38, 302
translation subgroup (T (π)),

134, 136
triangular (solvable Lie group), 135
trivial knot, 267
trivial link, 282
Turaev’s Theorem [Tu90], 34
twist spin of a knot (τrK ), 272
type I, II, III (Johnson’s trichotomy

for surface bundle groups), 92
type R (solvable Lie group), 136

UCSS (universal coefficient
spectral sequence), 26

unreduced L2 -homology, 23

vP (virtually P ), 4
virtually (qualifying a property

of a group or space), 4
von Neumann dimension of a

Hilbert module (dimN (π)M ), 22

Waldhausen’s Mayer-Vietoris
sequence for K -theory, 112
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Weak Bass Conjecture
(κ(P ) = dimQQ⊗π P ), 14

weakly exact, 23
weakly finite (ring), 15
weight (class, element), 273
weight orbit, 275
Whitehead quadratic functor

(Γ(−)), 241
Whitehead’s question, 279

X -group, 31
X(K) (knot exterior), 267
XH (covering space with

fundamental group H ), 25
X-manifold, 132

Zw (w -twisted integers), 13
Z∗m (group with presentation

〈a, t | tat−1 = am〉), 29
Z×−1Z (fundamental group

of Klein bottle, ∼= Z∗−1 ), 29

Greek characters

β
(2)
i (L2 -Betti number), 26
βu (u-twisted Bockstein), 197
η (cohomology class,

generating Ext1Λ(Z,Λ)), 73
Φ (∼= Z∗2 , 2-knot group, 291
Γ(−) (Whitehead quadratic

functor), 241
Γq (nilpotent group), 7
κ(P ) (Kaplansky rank), 14
Λ = Z[Z] ∼= Z[t, t−1]

(Laurent polynomial ring), 6
πK (knot group), 268
π1 -slice, 273
π(e, η) (group of 2-twist spin

of Montesinos knot), 319
[π,m]f -complex, 32
σK (Artin spin of K ), 272
τ (the twist of S2 × S1 ), 83
τrK (r -twist spin

of a knot K ), 272
τr,sK (branched twist spin

of a knot K ), 311
χ(π) (Euler characteristic

of vFP group π ), 14
ζG (centre of a group), 3
ζ2G (ζ2G/ζG = ζ(G/ζG)), 8

Non-alphabetic symbols

boundary ∂ : π2(B)→ π1(F )
(connecting homomorphism), 89

double angle brackets 〈〈 〉〉: 〈〈S〉〉G
(normal closure of S in G), 3

overbar ¯: anti-involution ḡ = w(g)g−1 ,
conjugate module M , 13

prime ′ : commutator subgroup G′ ,
maximal abelian cover X ′ , 3, 269

semidirect product: G×θZ , 4
sharp ]: sum of knots K1]K2 , 270
surd √ :

√
G

(Hirsch-Plotkin radical of G), 6
tilde ˜: X̃ (universal cover

of X ), 25
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