Geometry \& Topology
Volume 5 (2001) 1 \{6
Published: 14 J anuary 2001

h \{cobordisms between $\mathbf{1}$ \{connected $\mathbf{4}$ \{manifolds

Mat thias Kreck
Mathematisches Institut, Universität Heidelberg 69120 Heidelberg, Federal Republic of Germany and
Mathematisches Forschungsinstitut Oberwolfach 77709 Oberwolfach, Federal Republic of Germany
Email: kreck@rat hi . uni - hei del berg. de

Abstract

In this note we classify the di eomorphism classes rel. boundary of smooth h\{ cobordisms between two xed 1 \{connected 4 \{manifolds in terms of isometries between the intersection forms.

AMS Classi cation numbers Primary: 57R80

Secondary: 57N13, 57Q20, 55N45

Keywords: 4\{manifolds, smooth h \{cobordisms, surgery

Proposed: Robion Kirby
Seconded: Ronald Stern, Tomasz Mrowka
Received: 20 October 2000
Revised: 9J anuary 2001

In this note we prove the following result.
Theorem Let M_{0} and M_{1} be xed closed oriented smooth 1 \{connected 4\{ manifolds. Then the set of di eomorphism classes rel. boundary of smooth h\{ cobordisms between M_{0} and M_{1} is isomorphic to the set of isometries between the intersection forms of M_{0} and M_{1}.
The same result holds in the topological category if M_{0} and M_{1} are topological manifolds with same Kirby\{Siebenmann invariant k (otherwise there is no h \{ cobordism between them at all), if we classify up to homeomorphism.

The motivation for our Theorem comes from the fact that the h \{cobordism the orem does not hold for smooth h \{cobordisms between 4 \{manifolds [2]. During a discussion with S Donaldson and R Stern about 12 years ago about additional invariants whose vanishing implies that such an h \{cobordism is di eomorphic to the cylinder we wondered how many h \{cobordisms exist. The answer above is simpler than in higher dimensions where, due to the existence of exotic spheres, the above Theorem is in general wrong, even if M_{0} and M_{1} are spheres. The result above implies that a smooth h \{cobordism between smooth 1 \{connected 4 \{manifolds is the cylinder if and only if there is a di eomorphism f: M_{0} ! M_{1} inducing $(j)^{-1} i$, where i and j are the inclusions from M_{0} and M_{1} to W resp. This is of course not the answer one is looking for. A good answer would be that W is a cylinder if and only if the Seiberg\{Witten invariants for M_{0} and M_{1} agree. More precisely the Seiberg Witten invariants (assuming for simplicity $b_{2}^{+}\left(M_{i}\right)>1$) are maps from $f 2 H^{2}\left(M_{i}\right) j=w_{2}\left(M_{i}\right) \bmod 2 g$ to the integers. Thus, using the isometry between the intersection forms given by the h \{cobordism to identify the cohomology groups, one can compare the Seiberg\{ Witten invariants of M_{0} and M_{1}. The challenge is to relate the critical values of a Morsefunction on an h \{cobordism to the Seiberg\{Witten invariants and to show that the equality of these invariants implies that there is a Morse function without critical values. A relation between the critical values (which is not yet enough to prove the existence of a Morse function without critical values) was recently found by Morgan and Szabo [8] (in the rst paragraph of this paper they state that the smooth h \{cobordisms are classi ed by the set of homotopy equivalences, which is not correct, since not every homotopy equivalence between M_{0} and M_{1} can be realized by an h \{cobordism, see below).

Proof We will give the proof in the smooth category and discuss the necessary modi cations for the topological result at each point.
It is clear that the composition of the inclusion of M_{0} into an h \{cobordism W between M_{0} and M_{1} and the homotopy inverse of the inclusion from M_{1} is
an orientation preserving homotopy equivalence and thus induces an isometry between the intersection forms. This way one obtains a map from the set of di eomorphism classes rel. boundary of h \{cobordisms between M_{0} and M_{1} to the set of isometries from $H_{2}\left(M_{0}\right)$! $H_{2}\left(M_{1}\right)$. It is known that this map is surjective. Namely, each isometry can berealized by a homotopy equivalence[7]. And each homotopy equivalence can after composition with a self equivalence of M_{1} which operates trivially on $\mathrm{H}_{2}\left(\mathrm{M}_{1}\right)$ be realized by a smooth s \{cobordism ([11, Theorem 16.5] and the correction in [1] | the proof of this result implies that not every homotopy equivalence can be realized by an h \{cobordism). If M_{0} and M_{1} are topological manifolds with $k\left(M_{0}\right)=k\left(M_{1}\right)$, then it is known that each isometry can berealized by a homeomorphism [3, Theorem 10.1]. This implies surjectivity in thetopological case A di erent argument for surjectivity both in the smooth and topological category can be found in the proof of [4, Theorem C]. Thus we only have to show injectivity.
Let W and W^{0} be two smooth $h\left\{\right.$ cobordisms between M_{0} and M_{1} inducing the same isometry between the intersection forms. We will use [6, Theorem 3] to show that W and W^{0} are di eomorphic rel. boundary. For this we rst determine the normal 1 \{type of an h \{cobordism W. By [6, Proposition 2] this is the bration $B=B S O!B O$, if $w_{2}(W)=w_{2}\left(M_{0}\right) \in 0$, the non-spin case, and $B=B$ Spin! $B O$, if $w_{2}(W)=w_{2}\left(M_{0}\right)=0$, the spin case In the topological case we have to take instead $B=B S T$ op or $B=B S T o p S p i n$. If we want to apply [6, Theorem 3] we have as a rst step to chedk that normal 1 \{smoothings of W and W^{0} exist which coincide on the common boundary $M_{0}+M_{1}$. A normal 1 \{smoothing is in the non-spin case equivalent to an orientation and in the spin case to a spin-structure Thus, since M_{i} are simply connected, compatible choices exist.
The next step is to decide if $\mathrm{X}=\mathrm{W}\left[\mathrm{@v}=@ \mathrm{~N}^{\circ} \mathrm{W}^{0}\right.$ is B \{zero-bordant. In the smooth spin case the B \{bordism group is spin-bordism which vanishes in dimension 5. In the smooth non-spin case the B \{bordism group is oriented bordism which is $\mathbb{Z}=2$ detected by $w_{2} w_{3}$. One has the same answer in the topological case. One can arguethat all 5 \{manifolds can be made 1 \{connected by surgery and then they admit a smooth structure since the Kirby\{Sibenmann obstruction for the existence of a PL \{structure in the 4 \{th cohomology with $\mathbb{Z}=2$ coe cients vanishes, and in dimension 5 the $P L$ and thesmooth categories are equivalent. In the rest of the argument there is no di erence between the smooth and topological case
Now and later on we need information about the (co)homology of X. For this we choose a bre homotopy equivalence between X and the mapping torus of the homotopy equivalence on M_{0} given by $f=j_{0}\left(j_{1}\right)^{-1} j_{1}^{0}\left(j_{0}^{0}\right)^{-1}$, where
j_{i} and j_{i}^{0} are the inclusions from M_{i} to W resp. W^{0}. If W and W^{0} induce the same isometry between the intersection forms of M_{0} and M_{1}, then f induces the identity map in second (co)homology. Thus by the Wang sequence for the mapping torus of f we obtain, for arbitrary coe cients, isomorphisms $i ?: H^{2}(X)!H^{2}\left(M_{0}\right)$, where i is the inclusion, and : $H^{0}\left(M_{0}\right)!H^{1}(X)$ and : $\mathrm{H}^{2}\left(\mathrm{M}_{0}\right)!\mathrm{H}^{3}(\mathrm{X})$.

By the Wu-formulas we have $w_{3}(X)=\mathrm{Sq}^{1}\left(w_{2}(X)\right)=0$, since $\mathrm{Sq}^{1}=0$ in $H^{2}(X)=H^{2}\left(M_{0}\right)$. Thus the characteristic number $w_{2} w_{3}(X)$ vanishes and also in the non-spin case X bounds. Choose in both cases a zero bordism Y and use surgery to make the map Y! B 3\{connected [6, Proposition 4].

The next step is to analyze the surgery obstruction (Y) $2 \mathrm{I}_{6}(1)$. Note that in both cases $\mathrm{hw}_{4}(\mathrm{~B}) ;{ }_{4}(\mathrm{~B}) \mathrm{i} \in 0$ implying that the obstruction is contained in $I_{6}(1)$ instead of $I_{6}(1)$ making life easier since we do not have to consider quadratic re nements. The obstruction is given by the equivalence class

$$
\left[H_{3}(Y ; W) \quad \operatorname{im}(d: \quad 4(B ; Y)!\quad 3(Y))!\quad H_{3}(Y ; W 9 ; \quad]\right.
$$

where the maps are induced by inclusion and is the intersection pairing between ($\mathrm{Y} ; \mathrm{W}$) and ($\mathrm{Y} ; \mathrm{W} 9$. We will show that this obstruction is ementary, ie, there is a submodule $U \quad \operatorname{im}\left(\mathrm{~d}:{ }_{4}(\mathrm{~B} ; \mathrm{Y})!\quad 3(\mathrm{Y})\right)$ such that under both maps U maps to a half rank direct summand and vanishes on U. We rst note that since $3(B)=0$, we can replace im $(\mathrm{d}: 4(\mathrm{~B} ; \mathrm{Y})!\quad 3(\mathrm{Y}))$ by $\quad 3(Y)$ and since ${ }_{3}(Y)$! $H_{3}(Y)$ is surjective we can work with $H_{3}(Y)$ instead. The situation is here particularly easy since by our homological information both $H_{3}(Y ; W)$ and $H_{3}\left(Y ; W 9\right.$ are isomorphic to $H_{3}\left(Y ; M_{0}\right)$. Thus we have to nd $U \quad \mathrm{H}_{3}(Y)$ such that, under inclusion, U maps to a half rank direct summand of $\mathrm{H}_{3}\left(\mathrm{Y} ; \mathrm{M}_{0}\right)$ and vanishes on U . Looking at the exact sequence $H_{3}(Y)!H_{3}\left(Y ; M_{0}\right)!H_{2}\left(M_{0}\right)$ and using that the latter group is free we can pass to rational coe cients. Here we make use of the fact that we do not have to take quadratic re nements into account. Thus the obstruction is elementary if there is $U \quad H_{3}(Y ; \mathbb{Q})$ such that, under inclusion, U maps to a half rank summand of $H_{3}\left(Y ; M_{0} ; \mathbb{Q}\right)$ and vanishes on U. Namely, for such a U choose $U^{0} \quad H_{3}(Y)$ such that U^{0} is a direct summand in $H_{3}(Y)$ and $U^{0} \otimes \mathbb{Q}=U$. Since $H_{2}\left(M_{0}\right)$ is torsion fre U^{0} maps to a direct summand in $H_{3}\left(Y ; M_{0}\right)$. If vanishes for U the same holds for U^{0} and thus our obstruction is elementary.

Using that $H_{4}(Y ; X ; \mathbb{Q})=H^{2}(Y ; \mathbb{Q})=H^{2}(B ; \mathbb{Q})=0$ and $H_{2}\left(X ; M_{0} ; \mathbb{Q}\right)=0$ by the homology information above we obtain an exact sequence

$$
0!H_{3}\left(X ; M_{0} ; \mathbb{Q}\right)!H_{3}\left(Y ; M_{0} ; \mathbb{Q}\right)!H_{3}(Y ; X ; \mathbb{Q})!0:
$$

By the homological information above we have isomorphisms

$$
H_{2}\left(M_{0} ; \mathbb{Q}\right)=H_{3}(X ; \mathbb{Q})=H_{3}\left(X ; M_{0} ; \mathbb{Q}\right):
$$

Together with the exact sequence

$$
0!H_{3}(X ; \mathbb{Q})!H_{3}(Y ; \mathbb{Q})!H_{3}(Y ; X ; \mathbb{Q})!H_{2}(X ; \mathbb{Q})=H_{2}\left(M_{0} ; \mathbb{Q}\right)!0
$$

this implies
$\operatorname{rankH} H_{3}\left(Y ; M_{0} ; \mathbb{Q}\right)=2 \operatorname{rankH}_{2}\left(\mathrm{M}_{0} ; \mathbb{Q}\right)+\operatorname{rank}\left(\operatorname{coker}\left(\mathrm{H}_{3}(\mathrm{X} ; \mathbb{Q})!\mathrm{H}_{3}(\mathrm{Y} ; \mathbb{Q})\right)\right)$:
Since the intersection form on coker $\left(\mathrm{H}_{3}(\mathrm{X} ; \mathbb{Q})!\mathrm{H}_{3}(\mathrm{Y} ; \mathbb{Q})\right)$ is unimodular and skew symmetric there is a submodule $U_{1} \quad \mathrm{H}_{3}(\mathrm{Y} ; \mathbb{Q})$ of half rank of this cokernel, on which the intersction pairing vanishes. Finally the intersection form on the image U_{2} of $H_{3}(X ; \mathbb{Q})$ in $H_{3}(Y ; \mathbb{Q})$ is contained in the radical and has rank equal to $\operatorname{rank}\left(\mathrm{H}_{2}\left(\mathrm{M}_{0}\right)\right.$. Thus $\mathrm{U}=\mathrm{U}_{1} \quad \mathrm{U}_{2}$ is the desired submodule in $\mathrm{H}_{3}(\mathrm{Y} ; \mathbb{Q})$ implying that the obstruction (Y) is elementary. Then W and W^{0} are di eomorphic rel. boundary by [6, Theorem 3].

I would liketo nish the paper with two remarks suggested by the referees. Both concern applications of the theorem above to known results. In the paper [1, Theorem 5.2] the authors show that the map associating to a self equivalence of a smooth (or PL) simply connected closed 4 \{manifold X the normal invariant is an injection whose image is the kernd of the map into the L \{group L_{4}. We used the latter fact to argue that each self equivalence is induced from an h \{cobordism. The injectivity can be derived from the theorem above and the surgery exact sequence.
The other remark concerns pseudo-isotopy classes of closed 1 \{connected topological 4 \{manifolds. The theorem above implies that two self homeomorphisms which agree on H_{2} are pseudo-isotopic, a result which previously had been proven by Quinn [10] and the author (for di eomorphisms) [5]. Quinn and independently Perron [9] have shown that pseudo-iosotopy implies isotopy (in the topological category). Thus the group of isotopy classes of homeomorphisms is isomorphic to the isometries of H_{2}.

References

[1] Tim D Cochran, Nathan Habegger, On the homotopy theory of simply connected four manifolds. Topology, 29 (1990) 419\{440
[2] SK Donaldson, Irrationality and the h \{cobordism conjecture. J. Di erential Geom. 26 (1987) 141\{168
[3] Michael H Freedman, Frank S Quinn, Topology of 4 \{manifolds. Princeton Mathematical Series, 39, Princeton University Press, Princeton NJ (1990)
[4] Ian Hambleton, M K reck, Cancellation, elliptic surfaces and the topology of certain four-manifolds, J. Reine Angew. Math. 444 (1993) 79\{100
[5] M Kreck, Isotopy classes of di eomorphisms of $(\mathrm{k}-1)$ \{connected almostparallelizable 2 k \{manifolds, from: \Algebraic topology, Proc. Symp. Aarhus 1978" , Lect. Notes Math. 763, Springer \{Verlag, Berlin (1979) 643\{663
[6] M K reck, Surgery and Duality, Annals of Math. 149 (1999) $707\{754$
[7] J M ilnor, On simply-connected 4\{manifolds. from: \International Symposium on Algebraic Topology, Universidad Nacional Autonoma de Mexico and UNESCO" , (1958) 122\{128
[8] J ohn W M organ, Zoltan Szabo, Complexity of 4\{di mensional h \{cobordisms, Invent. Math. 136 (1999) 273\{286
[9] B Perron, Pseudo-isotopies et isotopies en dimension quatre dans la categorie topologique, (Pseudo-isotopies and isotopies of dimension four in the topological category), Topology, 25 (1986) 381\{397
[10] Frank Quinn, Isotopy of 4 \{manifolds. J. Di erential Geom. 24, (1986) $343\{372$
[11] C T C Wall, Surgery on Compact Manifolds, London Math. Soc. Monographs 1, Academic Press (1970)

