Algebraic and Geometric Topology 2 (2002), paper no. 34, pages 825-842.

3-manifold invariants and periodicity of homology spheres

Patrick M. Gilmer Joanna Kania-Bartoszynska Jozef H. Przytycki


Abstract. We show how the periodicity of a homology sphere is reflected in the Reshetikhin-Turaev-Witten invariants of the manifold. These yield a criterion for the periodicity of a homology sphere.

Keywords. $3$-manifolds, links, group actions, quantum invariants

AMS subject classification. Primary: 57M60, 57M27. Secondary: 57M25, 57R56, 17B37.

DOI: 10.2140/agt.2002.2.825

E-print: arXiv:math.GT/9807011

Submitted: 19 November 2001. (Revised: 3 September 2002.) Accepted: 6 September 2002. Published: 8 October 2002.

Notes on file formats

Patrick M. Gilmer Joanna Kania-Bartoszynska Jozef H. Przytycki

Department of Mathematics, Louisiana State University
Baton Rouge, LA 70803, USA

Department of Mathematics, Boise State University
Boise, ID 83725, USA

Department of Mathematics, George Washington University
Washington, D.C.20052, USA

Email: gilmer@math.lsu.edu, kania@math.boisestate.edu, przytyck@research.circ.gwu.edu

AGT home page

EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 21 Apr 2006. For the current production of this journal, please refer to http://msp.warwick.ac.uk/.