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NOTES ON STRUCTURE OF COMPLETE DISCRETE

VALUATION RINGS

by Tomasz Grysztar

Abstract. This note shows how the structure of a complete discrete val-
uation ring can be derived from some ring of formal Laurent series and its
natural valuation. Later there are introduced infinite coordinate systems
on such ring, and some properties of the operations on those coordinates
are shown. In a special case of p-adic field there is shown how the sum of
two p-adic numbers can be approximated with the elementary operations
on the coordinates only.

1. Discrete valuations. Let K be any field. A discrete valuation on K
is a mapping v : K \ {0} → Z with additional value v(0) = ∞ such that for
any x, y ∈ K:

v(x · y) = v(x) + v(y)

and

v(x + y) ≥ min{v(x), v(y)},

with the rule that a <∞ for any a ∈ Z.
Given a field K with a valuation v, the set Rv = {x ∈ K : v(x) ≥ 0} is

a ring with the unique maximal ideal Mv = {x ∈ K : v(x) > 0}. The Rv is
called the valuation ring of v. The Rv/Mv is a field, which is called the residue
field of the valuation ring Rv.

If we fix any a ∈ (0, 1) ⊂ R, then the valuation v induces a norm on K,
defined as ‖ x ‖= av(x) for an x ∈ K \ {0} (with ‖ 0 ‖ set to be 0). The
metric induced by such norm makes K an ultrametric space and its topology
is independent of the choice of a. Thus we will refer to this topology directly in
the terms of v. For example, the sequence of elements x0, x1, . . . ∈ K converges
to zero if and only if v(xn)→∞.
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We will call a sequence x0, x1, . . . ∈ K a Cauchy sequence iff for any M ∈ Z
there exists N ∈ N such that for all m, n > N :

v(xm − xn) > M.

This is equivalent to the fact that the sequence is a Cauchy sequence in any
metric induced by v. The field K with a discrete valuation v such that every
Cauchy sequence has a limit in the topology induced by v will be called a
complete discrete valuation field.

Theorem 1.1. Let K be a complete discrete valuation field with valuation
v. For any sequence x0, x1, . . . ∈ K, the series:

∞∑
n=0

xn

converges if and only if xn → 0.

The proof of this fact may be found in [1] (chapter II, 1).

2. Structure of a complete discrete valuation field. Let K be a field
complete with respect to a valuation v : K → Z∪{∞}, let Rv and Mv be the
valuation ring and its unique maximal ideal. Choose an m ∈ K such that
v(m) = 1. Then Mv = (m) and m is called a uniformizing element of Rv.

Let A be any subring in the Rv and A((X)) a ring of formal Laurent series
in one variable. Any element of A((X)) can be written in the form:

f =
∞∑

n=0

anXn+ordX(f).

Now for such Laurent series we may define f(m) ∈ K as the sum of the series:

f(m) =
∞∑

n=0

anmn+ordX(f),

which converges, since v(anmn+ordX(f)) → ∞ (as v(an) ≥ 0 for each n). The
mapping

Ψm : A((X)) 3 f 7→ f(m) ∈ K

is a homomorphism of the rings. Our objective is to show that if A has
some additional property, then Ψm is an epimorphism, K is isomorphic to
A((X))/kerΨm, and the valuation v can be derived from ordX .

Let k be the residue field of Rv. A set T ⊂ Rv is a set of representatives for
K if it is mapped bijectively on k under the canonical map Rv → Rv/Mv = k.

Let T be a set of representatives for K and x = x0 be any element of
Rv. There exists exactly one a0 ∈ T such that x0 − a0 ∈ Mv (also note
that if x0 /∈ Mv then a0 /∈ Mv). Inductively, if xn ∈ Rv, then there exists
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exactly one an ∈ T such that xn = an + xn+1m, where xn+1 ∈ Rv, and
x0 = a0 + a1m + . . . + anmn + xn+1m

n+1. From this follows:

x =
∞∑

n=0

anmn.

Now let y be any non-zero element of K. Let x = y ·m−v(y), then v(x) = 0
and x can be written as the sum of series as the one above, with a0 /∈ Mv.
Thus:

y =
∞∑

n=0

anmn+v(y).

Theorem 2.1. Let K be a complete discrete valuation field, with valuation
v and the valuation ring Rv. Let A be a subring in Rv such that A contains a
set of representatives for K, and let m be a uniformizing element of Rv. Then
the mapping

Ψm : A((X)) 3 f 7→ f(m) ∈ K

is an epimorphism such that v(x) = max{ordX(f) : f ∈ Ψ−1
m (x)} for each

x ∈ K.

Proof. We already know that Ψm is a homomorphism. Let T ⊂ A be
a set of representatives for K. Then, as we have already seen, each non-zero
element x ∈ K can be written as:

x =
∞∑

n=0

anmn+v(x),

where a0 is a unit in Rv. Thus x = Ψm(fx), where:

fx(X) =
∞∑

n=0

anXn+v(x),

and so Ψm is an epimorphism. Also, since ordX(fx) = v(x), then

v(x) ≤ max{ordX(f) : f ∈ Ψ−1
m (x)}.

Let g ∈ A((X)) be a series such that ordX(g) > v(x). Then:

(f − g)(X) = a0X
v(x) +

∞∑
n=1

bnXn+v(x)

with some bn ∈ A. From this follows that v((f − g)(m)) = v(x), so f − g /∈
kerΨm, and thus g /∈ Ψ−1

m (x). Therefore, ordX(g) ≤ v(x) for each g ∈ Ψ−1
m (x)

and so:
v(x) ≥ max{ordX(f) : f ∈ Ψ−1

m (x)},
which completes the proof.
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From the formula for valuation v in the theorem above, for x ∈ Rv there
exists f ∈ Ψ−1

m (x) such that v(x) = ordX(f), and so f ∈ A[[X]]. Conversely,
for any f ∈ A[[X]]:

v(Ψm(f)) ≥ ordX(f) ≥ 0.

Therefore, Ψm(A[[X]]) = Rv, and for any x ∈ Rv holds:

v(x) = max{ordX(f) : f ∈ Ψ−1
m (x) ∩A[[X]]}.

We will now apply this theorem to an example. Fix a prime p and let
K = Qp be the field of p-adic numbers and v = ordp, the p-adic valuation
(their detailed description may be found in [1]). The Rv = Zp is called the
ring of p-adic integers. The T = {0, 1, . . . , p − 1} is the set of representatives
for Qp, and so we can take A = Z, a minimal subring of Zp that contains T .
The element p of the ring Zp is an uniformizing element of this ring, so we can
define Ψp that maps Z((X)) onto Qp.

We know that any element x ∈ Qp has a unique representation:

x =
∞∑

n=0

anpn+ordp(x),

with an ∈ T for all n. It means that x is the isomorphic image of the class of
equivalence for the series in Z((X)) with all the coefficients in T . Therefore,
for any f ∈ Z((X)) we may find such fp ∈ Z((X)), that f − fp ∈ kerΨp and
fp has all coefficients in T . We will call such fp a base p reduction of f . For
example, if we take x = (p− 1) + (p− 1)p, y = 1 and sum their corresponding
power series, the result is p + (p− 1)X. The reduction of such power series is
X2, obtained by the substraction p + (p− 1)X −X2 ∈ kerΨp.

3. Coordinate systems on discrete valuation rings. Let K, v, Rv

and Mv be as in the previous section. Let us choose m – an uniformizing
element of Rv and T – a set of representatives for K.

We have seen that each element x ∈ Rv (including zero) may be obtained
as a sum:

x =
∞∑

n=0

anmn,

where each an is an element of T and an ∈Mv for any n < v(x). Thus if 0 ∈ T ,
then an = 0 for n < v(x), and if we represent x as in the proof of theorem 2.1
(with the assumption that x is non-zero):

x =
∞∑

n=0

bnmn+v(x),

then bn = an+v(x), and so those two representations are equivalent.
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The choice of T and m such that m is an uniformizing element of Rv and
T is a set of representatives for K such that 0 ∈ T will be called a coordinate
system on Rv. We will call the set T the set of coefficients for this system.
Each element x ∈ Rv is then uniquely determined by a sequence of elements
of an ∈ T such that:

x =
∞∑

n=0

anmn.

We will call the coefficients an the coordinates of x in the given coordinate
system.

Because each element a ∈ T corresponds to unique element [a] ∈ k (where
k is the residue field of K), the system of coordinates gives us also a bijection
between elements of Rv and kN:

Φ : Rv 3
∞∑

n=0

anmn 7→ ([a0], [a1], . . .) ∈ kN.

On kN we have a natural structure of a ring, with operations defined as:

(x0, x1, . . .) + (y0, y1, . . .) = (x0 + y0, x1 + y1, . . .)

and
(x0, x1, . . .) · (y0, y1, . . .) = (x0 · y0, x1 · y1, . . .),

where (x0, x1, . . .) and (y0, y1, . . .) are any elements of kN. Therefore, through
Φ we may define the additional operations on Rv, for any x, y ∈ Rv defined as:

x⊕ y = Φ−1(Φ(x) + Φ(y))

and
x� y = Φ−1(Φ(x) · Φ(y)).

The set Rv with operations ⊕ and � – induced by the chosen coordinate
system – forms a ring, with a characteristic equal to the characteristic of k.
The unit of this ring is the element 1 = Φ−1(1, 1, 1, . . .). We are going to denote
a = Φ−1(a, a, a, . . .) for any a ∈ k. It follows from the definitions that for any
a, b ∈ k there is a + b = a⊕ b and a · b = a� b.

Since v has a simple interpretation in term of the coordinates, it is a
straightforward conclusion from the definitions, that v(x⊕y) ≥ min(v(x), v(y))
and v(x� y) ≥ max(v(x), v(y)) for any x, y ∈ Rv.

If x =
∑∞

n=0 anmn then it is easy to verify that x � mn = anmn. This
allows to recover the coordinates of a particular element of Rv given the �
operation, and any element x ∈ Rv may be represented in the following form:

x =
∞∑

n=0

x�mn.
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This example shows that operations induced by a coordinate system may
provide some insight into the algebraic structure of Rv itself. Because of their
relatively easy computability, it may be interesting to find out whether it may
be possible to find formulas that would allow to compute the results of standard
operations on Rv using only the elementary operations on the coordinates of
those values. This would not be possible if we exclusively considered ⊕ and
� as such elementary operations, since with those operations the result has
the coefficient at any given position dependent on the coefficients on the same
positions in the operands only. For this reason we are going to use one more
operation as an elementary one – the shift of coefficients.

Shifting the coefficients of any element x ∈ Rv one position to the right is
exactly the same operation as multiplying (in the standard sense) this element
by m. For this reason we will use the mx symbol to represent x shifted one
position to the right, and mnx to represent the result of applying such shift n
times (which results in x shifted right by n positions).

To make some of later formulas simpler, we are going to give the ⊕ and
� operator a priority over + and ·, so x ⊕ y + z = (x ⊕ y) + z. However, we
are going to use shift operator as having priority over ⊕ and �, and to avoid
the resulting ambiguity we will always explicitly state the · operator when it
is used and is not a shift operation. So, for example, mx⊕ y = (mx)⊕ y, but
m · x⊕ y = m · (x⊕ y).

Since both ⊕ and � break down to the operations on the coefficients on
parallel positions, and the shift just moves the coefficients one position to the
right, it is easy to see that mx⊕my = m(x⊕ y) and mx�my = m(x� y) for
any x, y ∈ Rv. Also, for any a ∈ k, there is a�mx = m(a� x).

4. Approximating the sum of p-adic numbers. Let us go back to the
example of the field of p-adic numbers. There is a canonical coordinate system
on Zp given by the set of coefficients T = {0, 1, . . . , p − 1} and uniformizing
element p, and we are going to use this coordinate system throughout this
section. We will also often call the coefficients of this system the p-adic digits.
The residue field of Zp is Fp, the field of numbers modulo p. We are also going
to denote the ring (Zp,⊕,�) with the symbol Z⊕,�

p , as opposed to simple Zp

meaning the ring (Zp, +, ·) with ⊕ and � as additional operations.
In this section our goal is to provide formulas for calculating any given

number of digits of sum of two p-adic numbers, using the three elementary
operations: ⊕, � and the shift (multiplication by p) only.

First we are going to construct C ∈ Fp[X, Y ], such a polynomial that
for any x, y ∈ {0, 1, . . . , p − 1} it has value C([x], [y]) = [1] if x + y ≥ p and
C([x], [y]) = [0] otherwise. We start with defining for any a, b ∈ {0, 1, . . . , p−1}
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the polynomial:

Da,b(X, Y ) =
∏

0≤i≤p−1
i 6=p−a

(X + [i]) ·
∏

0≤i≤p−1
i 6=p−b

(Y + [i]).

Obviously, Da,b([x], [y]) = [0] for any x, y ∈ {0, 1, . . . , p − 1} unless x = a
and y = b. The value of Da,b([a], [b]) is the product of two values, each being
the product of all non-zero values of Fp. Since Fp is a field, such product
has to be the unit, as for any element in the first product, there is exactly
one element in second product being the inverse element of the former. Thus
Da,b([a], [b]) = [1].

Now, in order to construct the required polynomial C it is enough to sum
the polynomials Da,b for any a, b ∈ {0, 1, . . . , p − 1} such that a + b ≥ p.
Therefore, we may define C as:

C(X, Y ) =
p−1∑
i=1

i∑
j=1

Di,p−j(X, Y ).

For example, for p = 2, C(X,Y ) = XY and for p = 3, C(X, Y ) = X(X +
[1])Y (Y + [2]) + X(X + [2])Y (Y + [2]) + X(X + [2])Y (Y + [1]), which upon the
reduction becomes C(X, Y ) = [2]XY (X + Y + [1]).

Consider now the polynomial C ∈ Z⊕,�
p [X, Y ] being the polynomial C

transformed through the mapping which maps each coefficient a of polynomial
from Fp[X, Y ] into the coefficient a of polynomial in Z⊕,�

p [X, Y ]. For instance,
for p = 2, C(X, Y ) = X�Y , and for p = 3, C(X, Y ) = [2]�X�Y�(X⊕Y⊕[1]).

Directly from definitions it follows that for a, b ∈ {0, 1, . . . , p− 1} there is
C(a, b) = 0 when a + b < p and C(a, b) = 1 otherwise. Because polynomial
C has no constant term, and all of its coefficients are of the form [a] for some
a ∈ Fp, we may use the formulas given at the end of previous section to prove
that C(px, py) = pC(x, y) for any x, y ∈ Zp. It is also true for all such x, y

that C(p�x, p�y) = p�C(x, y), since p�p = p and C has no constant term.

Theorem 4.1. Let Zp be the ring of p-adic integers with operations ⊕
and � induced by the canonical coordinate system, and the polynomial C ∈
Z⊕,�

p [X, Y ] defined as above. For any x, y ∈ Zp there holds:

x + y = x⊕ y + pC(x, y).

Proof. For any given n, let us take xn = x � pn = an · pn, yn = y �
pn = bn · pn, where an, bn ∈ {0, 1, . . . , p − 1}. an + bn = (cn · p + dn), with
0 ≤ dn < p and cn being either zero when an + bn < p, or 1 otherwise, which
gives cn = C(an, bn). In Fp, then [an]+ [bn] = [dn]; therefore, xn⊕yn = dn ·pn.
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Finally:

xn + yn = (cn · p + dn) · pn = xn⊕ yn + p · (pn · cn) = xn⊕ yn + p(pnC(an, bn))

= xn ⊕ yn + pC(pnan, pnbn) = xn ⊕ yn + pC(xn, yn).

Now let us go back to the complete values of x and y:

x + y =
∞∑

n=0

x� pn +
∞∑

n=0

y � pn =
∞∑

n=0

(x� pn + y � pn)

=
∞∑

n=0

(xn + yn) =
∞∑

n=0

(xn ⊕ yn + pC(xn, yn))

=
∞∑

n=0

xn ⊕ yn +
∞∑

n=0

pC(xn, yn)

=
∞∑

n=0

(x� pn)⊕ (y � pn) + p
∞∑

n=0

C(x� pn, y � pn)

=
∞∑

n=0

(x⊕ y)� pn + p

∞∑
n=0

C(x, y)� pn

= x⊕ y + pC(x, y).

All the operations on infinite sums performed above are allowed, since all
the series here converge, as in each one the elements are divisible by linearly
progressing powers of p with n rising. This completes the proof of the theorem.

The formula proved above gives us the first approximation of the sum x+y,
as it shows that v(x + y − x⊕ y) = v(pC(x, y)) ≥ 1. This means that x⊕ y is
an approximation of at least one digit of x + y, which is an quite obvious fact.
However, since every term in the polynomial C is a multiple of both X and
Y , it is always true that v(C(x, y)) ≥ v(y) and thus if we have any formula
of the form x + y = An(x, y) + Rn(x, y) with v(Rn(x, y)) ≥ n, then by apply-
ing the formula from the theorem above once more to the right-hand side of
the equation, we get x + y = An(x, y) ⊕ Rn(x, y) + pC(An(x, y), Rn(x, y)),
and v(pC(An(x, y), Rn(x, y))) ≥ n + 1. This allows us to recursively get
the approximation of any required accurateness. We start from A1(x, y) =
x ⊕ y and R1(x, y) = pC(x, y), and continue inductively with An+1(x, y) =
An(x, y) ⊕ Rn(x, y) and Rn+1(x, y) = pC(An(x, y), Rn(x, y)). By induction,
x + y = An(x, y) + Rn(x, y) and v(Rn(x, y)) ≥ n for all n. Because An(x, y)
is obtained solely through combinations of the ⊕ operation, polynomial C and
shift, it fulfils the goal stated for this section.
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An(x, y) approaches x + y as n approaches infinity, and since

An(x, y) = x⊕ y ⊕
n⊕

i=1

Ri(x, y),

we may conclude that:

x + y = x⊕ y ⊕
∞⊕
i=1

Ri(x, y).

We are now going to fix p = 2 and show how it works in this simple case.
As F2 is a boolean ring, so is the Z⊕,�

2 ; thus, x� x = x and x⊕ x = 0 for any
x ∈ Z2.

Theorem 4.2. Let Z2 be the ring of 2-adic integers with operations ⊕ and
� induced by the canonical coordinate system. For any x, y ∈ Z2 there holds:

x + y = x⊕ y ⊕
∞⊕

n=1

Rn(x, y),

where:

Rn(x, y) = 2n(x� y)�
n−1⊙
i=1

2i(x⊕ y).

Proof. Note that v(Rn(x, y)) ≥ n for any x, y ∈ Z2. We are going to
prove that for any N :

(1) x + y = x⊕ y ⊕
N−1⊕
n=1

Rn(x, y) + RN (x, y)

and this will be enough to prove the theorem, as it shows that the difference
between the x + y and the partial sum of the series from the statement of the
theorem has the valuation at least N, and thus approaches zero.

Since in the case p = 2 the polynomial C has form C(X, Y ) = X � Y ,
applying Theorem 4.1, we obtain the formula:

(2) x + y = x⊕ y + 2(x� y)

for any x, y ∈ Z2. This formula is identical to (1) for the case of N = 1,
because R1(x, y) = 2(x� y). We will now prove (1) by induction for all other
values of N . Assume that we have established the formula:

x + y = x⊕ y ⊕
N−2⊕
n=1

Rn(x, y) + RN−1(x, y)
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and let us apply formula (2) to the right-hand side of this equation:

x + y = x⊕ y ⊕
N−2⊕
n=1

Rn(x, y)⊕RN−1(x, y)

+ 2

((
x⊕ y ⊕

N−2⊕
n=1

Rn(x, y)

)
�RN−1(x, y)

)

= x⊕ y ⊕
N−1⊕
n=1

Rn(x, y)

+ 2 ((x⊕ y)�RN−1(x, y))⊕ 2
N−2⊕
n=1

Rn(x, y)�RN−1(x, y).

Now:

2 ((x⊕ y)�RN−1(x, y)) = 2(x⊕ y)� 2
(
2N−1(x� y)

)
�

N−2⊙
i=1

2
(
2i(x⊕ y)

)
= 2N (x� y)�

(
N−2⊙
i=1

2i+1(x⊕ y)

)
� 2(x⊕ y) = RN (x, y),

so in order to finish the proof, it suffices to show that:
N−2⊕
n=1

Rn(x, y)�RN−1(x, y) = 0.

Notice that for any x, y ∈ Z2:

x� y � (x⊕ y) = x� x� y ⊕ x� y � y = x� y ⊕ x� y = 0.

Therefore, for any n and m such that m < n:

2m(x� y)�Rn(x, y) = 2m(x� y)� 2n(x� y)�
n−1⊙
i=1

2i(x⊕ y) = 0,

because 2m(x� y) multiplies to zero with the 2i(x⊕ y) for i = m. And thanks
to this, we obtain:

Rm(x, y)�Rn(x, y) = 0
for any n and m such that m 6= n. This completes the proof.
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