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A NOTE ON ALEXANDER’S THEOREM

by Le Mau Hai, Nguyen Van Khue and Józef Siciak

Abstract. The aim of this note is to extend a result of H. Alexander [1]
from the case of scalar functions to the case of functions with values in
topological vector spaces.

Let B := {z ∈ CN ; ‖z‖ < 1} be the unit ball in CN with respect to a
complex norm ‖ · ‖. Given a subset E of the unit sphere ∂B, let ρ = ρ(E) be
the radius of the maximal ball rB contained in the set Int(

⋂
Ω), where the

intersection is taken over all balanced domains of holomorphy Ω containing E.
It is known [3, 4] that ρ is a Choquet capacity characterizing non-pluripolar
complex cones in CN . Namely, if V is a complex cone in CN with vertex at
0 then V is pluripolar if and only if E := V ∩ ∂B is pluripolar, if and only if
ρ(E) = 0.

Let F be a sequentially complete topological vector space over C. Let Γ
be a set of continuous seminorms determining the topology of F .

In 1974 H. Alexander [1] proved (among others) that if {fn} is a sequence
of holomorphic functions on the unit ball B such that the restriction of {fn}
to each complex line L through the center 0 of B is uniformly convergent in a
neighborhood of 0 in L then {fn} converges uniformly in a neighborhood of 0
in B.

The goal of this note is to extend this result to the case where the target
space C is replaced by any sequentially complete complex topological vector
space F .

The main result of this article is given by the following theorem.
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Theorem A. Let E be a circled non-pluripolar subset of the unit sphere
∂B in CN . Let X be a family of F -valued holomorphic functions in the unit
ball B such that ∀a∈E∃ra>0∀q∈Γ∃Mq>0

(a) q(f(λa)) ≤ Mq, |λ| ≤ ra, f ∈ X .

Then there exists r > 0 such that ∀q∈Γ∃Mq>0 such that

(b) q(f(z)) ≤ Mq, ‖z‖ ≤ r, f ∈ X .

Corollary 1. Let V be a non-pluripolar complex cone in CN with vertex
at 0. Then for every family X of F -valued holomorphic functions on B such
that for every complex line L ⊂ V with 0 ∈ L the family XL := {f|B∩L; f ∈ X}
of holomorphic functions of a complex variable in the disk B ∩ L is uniformly
bounded on a neighborhood (dependent on L) of 0 ∈ C, then there exists r > 0
such that X is uniformly bounded on the ball rB.

This and Vitali’s theorem [2] imply the following Corollary 2 which is the
Alexander theorem in the case of functions with values in sequentially complete
topological vector spaces.

Corollary 2. Let V be a non-pluripolar complex cone in CN . If X =
{fn} is a sequence of F -valued holomorphic functions in the unit ball B ⊂ CN

such that for every complex line L ⊂ V with 0 ∈ L the sequence {fn|L∩B} is
uniformly convergent on a neighborhood (dependent on L) of 0 ∈ C, then there
exists r > 0 such that the sequence X is uniformly convergent on the ball rB.

Proof of Theorem A. We have

f(z) =
∞∑

n=0

Pn(z, f), ‖z‖ < 1, f ∈ X ,

where Pn(z, f) :=
∑
|α|=n

f (α)(0)
α! zα is the nth homogeneous polynomial of the

Taylor series development of f around 0. In particular, f(λa)=
∑∞

0 Pn(a, f)λn,
|λ| < 1, a ∈ E, f ∈ X . Hence, by (a),

(1) q(Pn(a, f)) ≤ Mq

rn
a

, n ≥ 0, a ∈ E, f ∈ X .

The function

ϕn(z) :=
1
n

log sup
f∈X

q(Pn(z, f)), z ∈ CN , n ≥ 1,

is a continuous PSH function of the Lelong class L.
Put Es := {a ∈ E;ϕn(a) ≤ s, n ≥ 1}. By (1) ∪∞1 Es = E and Es ⊂ Es+1

for all s ≥ 1. Therefore lims→∞ ρ(Es) = ρ ≡ ρ(E).



9

Fix 0 < θ < 1 and take s = sq so large that ρ(Es) ≥ θρ. Then by the
Bernstein–Walsh inequality for the homogeneous functions of Lelong class we
get

ϕn(z) ≤ sq + log
‖z‖
θρ

, n ≥ 1, z ∈ CN .

Put ϕ(z) := lim supn→∞ ϕn(z). The sequence {ϕn} is locally uniformly up-
per bounded in CN . Therefore ϕ∗ is a homogeneous function of the Lelong
class. By Bedford–Taylor theorem on negligible sets there exists a circled non-
pluripolar subset E0 of E such that ρ(E0) = ρ(E) and ϕ∗(z) = ϕ(z) for all
z ∈ E0. Put As := {a ∈ E0;ϕ(a) ≤ s}. By (1) there exists s such that
ρ(As) ≥ θρ. Hence, by Bernstein–Walsh inequality, we get

ϕ(z) ≤ ϕ∗(z) ≤ s + log
‖z‖
θρ

, z ∈ CN .

Observe that the number s does not depend on q ∈ Γ. It depends only on θ
and on the function E 3 a → ra ∈ (0, ∞).

By the Hartogs Lemma for every q ∈ Γ there is nq such that

ϕn(z) ≤ s + 1 + log
1
θρ

, ‖z‖ ≤ 1, n > nq.

Hence

(2) ϕn(z) ≤ log
(

es+1‖z‖
θρ

)
, z ∈ CN , n > nq.

Put
Bm := {a ∈ E; q(Pn(a, f)) ≤ m, 0 ≤ n ≤ nq, f ∈ X}.

By (1) there is m = mq > 0 such that ρ(Bm) ≥ θρ. Then

(3) q(Pn(z, f)) ≤ mq

(
‖z‖
θρ

)n

, 0 ≤ n ≤ nq, z ∈ CN , f ∈ X .

From (2) and (3) one gets

q(Pn(z, f)) ≤ mq

(
es+1‖z‖

θρ

)n

, n ≥ 0, f ∈ X , z ∈ CN .

It follows that

q(f(z)) ≤ mq

1− θ
, ‖z‖ ≤ θ2ρe−s−1, f ∈ X .

Hence q(f(z)) ≤ Mq for all f ∈ X and ‖z‖ ≤ r, where Mq := mq/(1− θ),
r := θ2ρe−s−1.

Corollary from the proof. If a family X satisfies (a) with ra = r0 =
const, a ∈ E where 0 < r0 ≤ 1 then the family is locally uniformly bounded in
the ball rB with r := r0ρ, ρ = ρ(E).
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