
A NOTE ON ALEXANDER'S THEOREM

BY LE MAU HAI, NGUYEN VAN KHUE AND JÓZEF SICIAK

Abstract. The aim of this note is to extend a result of H. Alexander [1] from the case of scalar functions to the case of functions with values in topological vector spaces.

Let $\mathbb{B} := \{z \in \mathbb{C}^N ; \|z\| < 1\}$ be the unit ball in \mathbb{C}^N with respect to a complex norm $\|\cdot\|$. Given a subset E of the unit sphere $\partial \mathbb{B}$, let $\rho = \rho(E)$ be the radius of the maximal ball $r\mathbb{B}$ contained in the set $Int(\bigcap \Omega)$, where the intersection is taken over all balanced domains of holomorphy Ω containing E. It is known [3, 4] that ρ is a Choquet capacity characterizing non-pluripolar complex cones in \mathbb{C}^N . Namely, if V is a complex cone in \mathbb{C}^N with vertex at 0 then V is pluripolar if and only if $E := V \cap \partial \mathbb{B}$ is pluripolar, if and only if $\rho(E) = 0$.

Let F be a sequentially complete topological vector space over \mathbb{C} . Let Γ be a set of continuous seminorms determining the topology of F.

In 1974 H. Alexander [1] proved (among others) that if $\{f_n\}$ is a sequence of holomorphic functions on the unit ball \mathbb{B} such that the restriction of $\{f_n\}$ to each complex line L through the center 0 of \mathbb{B} is uniformly convergent in a neighborhood of 0 in L then $\{f_n\}$ converges uniformly in a neighborhood of 0 in \mathbb{B} .

The goal of this note is to extend this result to the case where the target space \mathbb{C} is replaced by any sequentially complete complex topological vector space F.

The main result of this article is given by the following theorem.

¹⁹⁹¹ Mathematics Subject Classification. 32A10, 46G20.

Key words and phrases. Holomorphic functions in topological vector spaces, normal families, plurisubharmonic functions.

The third author was supported by KBN Grant No PO3A 047 42.

THEOREM A. Let E be a circled non-pluripolar subset of the unit sphere $\partial \mathbb{B}$ in \mathbb{C}^N . Let \mathcal{X} be a family of F-valued holomorphic functions in the unit ball \mathbb{B} such that $\forall_{a \in E} \exists_{r_a > 0} \forall_{q \in \Gamma} \exists_{M_q > 0}$

(a)
$$q(f(\lambda a)) \le M_q, \quad |\lambda| \le r_a, \quad f \in \mathcal{X}.$$

Then there exists r > 0 such that $\forall_{q \in \Gamma} \exists_{M_q > 0}$ such that

(b)
$$q(f(z)) \le M_q, \quad ||z|| \le r, \quad f \in \mathcal{X}.$$

COROLLARY 1. Let V be a non-pluripolar complex cone in \mathbb{C}^N with vertex at 0. Then for every family \mathcal{X} of F-valued holomorphic functions on \mathbb{B} such that for every complex line $L \subset V$ with $0 \in L$ the family $\mathcal{X}_L := \{f_{|\mathbb{B}\cap L}; f \in \mathcal{X}\}$ of holomorphic functions of a complex variable in the disk $\mathbb{B} \cap L$ is uniformly bounded on a neighborhood (dependent on L) of $0 \in \mathbb{C}$, then there exists r > 0such that \mathcal{X} is uniformly bounded on the ball rB.

This and Vitali's theorem [2] imply the following Corollary 2 which is the Alexander theorem in the case of functions with values in sequentially complete topological vector spaces.

COROLLARY 2. Let V be a non-pluripolar complex cone in \mathbb{C}^N . If $\mathcal{X} = \{f_n\}$ is a sequence of F-valued holomorphic functions in the unit ball $\mathbb{B} \subset \mathbb{C}^N$ such that for every complex line $L \subset V$ with $0 \in L$ the sequence $\{f_n|_{L \cap \mathbb{B}}\}$ is uniformly convergent on a neighborhood (dependent on L) of $0 \in \mathbb{C}$, then there exists r > 0 such that the sequence \mathcal{X} is uniformly convergent on the ball $r\mathbb{B}$.

PROOF OF THEOREM A. We have

$$f(z) = \sum_{n=0}^{\infty} P_n(z, f), \quad ||z|| < 1, \quad f \in \mathcal{X},$$

where $P_n(z, f) := \sum_{|\alpha|=n} \frac{f^{(\alpha)}(0)}{\alpha!} z^{\alpha}$ is the *nth* homogeneous polynomial of the Taylor series development of f around 0. In particular, $f(\lambda a) = \sum_{0}^{\infty} P_n(a, f) \lambda^n$, $|\lambda| < 1, a \in E, f \in \mathcal{X}$. Hence, by (a),

(1)
$$q(P_n(a,f)) \le \frac{M_q}{r_a^n}, \ n \ge 0, \ a \in E, \ f \in \mathcal{X}.$$

The function

$$\varphi_n(z) := \frac{1}{n} \log \sup_{f \in \mathcal{X}} q(P_n(z, f)), \ z \in \mathbb{C}^N, \ n \ge 1,$$

is a continuous PSH function of the Lelong class \mathcal{L} .

Put $E_s := \{a \in E; \varphi_n(a) \leq s, n \geq 1\}$. By $(1) \cup_1^{\infty} E_s = E$ and $E_s \subset E_{s+1}$ for all $s \geq 1$. Therefore $\lim_{s \to \infty} \rho(E_s) = \rho \equiv \rho(E)$.

Fix $0 < \theta < 1$ and take $s = s_q$ so large that $\rho(E_s) \ge \theta \rho$. Then by the Bernstein–Walsh inequality for the homogeneous functions of Lelong class we get

$$\varphi_n(z) \le s_q + \log \frac{\|z\|}{\theta \rho}, n \ge 1, z \in \mathbb{C}^N.$$

Put $\varphi(z) := \limsup_{n \to \infty} \varphi_n(z)$. The sequence $\{\varphi_n\}$ is locally uniformly upper bounded in \mathbb{C}^N . Therefore φ^* is a homogeneous function of the Lelong class. By Bedford–Taylor theorem on negligible sets there exists a circled non-pluripolar subset E_0 of E such that $\rho(E_0) = \rho(E)$ and $\varphi^*(z) = \varphi(z)$ for all $z \in E_0$. Put $A_s := \{a \in E_0; \varphi(a) \leq s\}$. By (1) there exists s such that $\rho(A_s) \geq \theta \rho$. Hence, by Bernstein–Walsh inequality, we get

$$\varphi(z) \le \varphi^*(z) \le s + \log \frac{\|z\|}{\theta \rho}, \quad z \in \mathbb{C}^N.$$

Observe that the number s does not depend on $q \in \Gamma$. It depends only on θ and on the function $E \ni a \to r_a \in (0, \infty)$.

By the Hartogs Lemma for every $q \in \Gamma$ there is n_q such that

$$\varphi_n(z) \le s+1 + \log \frac{1}{\theta \rho}, \, \|z\| \le 1, \, n > n_q.$$

Hence

(2)
$$\varphi_n(z) \le \log\left(\frac{e^{s+1}\|z\|}{\theta\rho}\right), \ z \in \mathbb{C}^N, \ n > n_q$$

Put

$$B_m := \{ a \in E; q(P_n(a, f)) \le m, \ 0 \le n \le n_q, \ f \in \mathcal{X} \}.$$

By (1) there is $m = m_q > 0$ such that $\rho(B_m) \ge \theta \rho$. Then

(3)
$$q(P_n(z,f)) \le m_q \left(\frac{\|z\|}{\theta\rho}\right)^n, \ 0 \le n \le n_q, z \in \mathbb{C}^N, \ f \in \mathcal{X}.$$

From (2) and (3) one gets

$$q(P_n(z,f)) \le m_q \left(\frac{e^{s+1}||z||}{\theta\rho}\right)^n, n \ge 0, f \in \mathcal{X}, z \in \mathbb{C}^N.$$

It follows that

$$q(f(z)) \le \frac{m_q}{1-\theta}, \quad ||z|| \le \theta^2 \rho e^{-s-1}, \quad f \in \mathcal{X},$$

Hence $q(f(z)) \leq M_q$ for all $f \in \mathcal{X}$ and $||z|| \leq r$, where $M_q := m_q/(1-\theta)$, $r := \theta^2 \rho e^{-s-1}$.

COROLLARY FROM THE PROOF. If a family \mathcal{X} satisfies (a) with $r_a = r_0 = const$, $a \in E$ where $0 < r_0 \leq 1$ then the family is locally uniformly bounded in the ball $r\mathbb{B}$ with $r := r_0\rho$, $\rho = \rho(E)$.

References

- Alexander H., Volume of images of varieties in projective space and in Grassmannians, Trans. Amer. Math. Soc., 189 (1974), 237–249.
- 2. Bochnak J., Siciak J., Analytic functions in t.v.s., Studia Math., 39 (1971), 77-112.
- Siciak J., Extremal plurisubharmonic functions and capacities in Cⁿ, Sophia Kokyuroku in Math., Sophia University, Tokyo, 1982, 1–97.
- Siciak J., On series of homogeneous polynomials and their partial sums, Ann. Polon. Math., 60 (1990), 289–302.

Received July 28, 2005

Department of Mathematics Hanoi University of Education Tuliem-Hanoi-Vietnam *e-mail*: mauhai@fpt.vn

Jagiellonian University Institute of Mathematics ul. Reymonta 4 30-059 Kraków Poland *e-mail*: siciak@im.uj.edu.pl

10