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ON THE DENSE TRAJECTORY OF LASOTA EQUATION

by Antoni Leon Dawidowicz and Najemedin Haribash

Abstract. In presented paper the dense trajectory of dynamical system
given by Lasota equation is constructed.

1. Introduction. The equation

∂u

∂t
+

∂u

∂x
= F (u)

was first introduced by McKendrick in 1926 [8] and von Foerster in 1959 [2].
It described the dynamics of population age structure. A classical system of
equations with a non-local boundary condition has always been the subject of
interest of the whole world of mathematics. The next stage of research work on
similar type equations was the work of Lasota, Ważewska and Mackey [5, 6].
They used a similar type of equation, to be precise, equation

∂u

∂t
+ c(x)

∂u

∂x
= F (x, u)

to describe blood cell population. Appearance of interpretation for this equa-
tion inspired professor Lasota and his partners to study chaos and stability
in dynamical systems given by this equation. The first impulse was given by
professor Lasota [3] proving the existence of invariant measure, therefore call-
ing this “Lasota equation” would be good and legitimate. Apart from Lasota
and one of the authors, also Rudnicki [9] and Szarek [4] worked on invariant
measures.Then  Loskot [7] analyzed them in the turbulence aspect in the Bass
sense. The subject of this work is to prove the existence of a dense trajectory
for Lasota equation. In the construction of a dense trajectory, a generalization
of Avez method was used. Till this time this method has been used as a tool
for invariant measure construction in the works of Lasota and his students.
Construction of this trajectory may also be called an Avez construction, as
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right inverses are the basic tool here. However, this variant of Avez method is
more interesting as it does not require discretisation of this system.

2. Formulation of the theorem. In paper [1], the existence of an in-
variant measure for the dynamical system generated on the space V of all
Lipschitz functions on [0, 1] by the equation

(1)
∂u

∂t
+ x

∂u

∂x
= λu

is proved, where λ > 1. The following theorem ensures the existence of a dense
trajectory for the same system.

Theorem 1. Let us consider equation (1) in the domain

x ∈ [0; 1] t ≥ 0

with the initial condition
u(0, x) = v(x).

Let {Tt}t≥0 be the semidynamical system generated by this problem, i.e.,

(2) (Ttv)(x) = eλtv(xe−t).

If λ > 1, then there exists a dense trajectory of system {Tt} at the space V of
all Lipschitz functions on [0; 1] vanishing in 0.

3. Auxiliary elementary lemma. To prove the theorem, the following
elementary technical lemma is necessary

Lemma 1. Let {sn}, {bn}, {cn} be arbitrary sequences of positive numbers.
Then, there exists the sequence {an} such that for every positive integer n

(3) 0 < an < cn

and

(4)
∞∑

k=n

aksk ≤ bn.

Proof. To prove the lemma, first for any positive integer p we construct
the sequence {ap

n} satisfying (3) for any n and (4) for all n ≥ p. The sequence
{a1

n} is defined by the formula

a1
n = min

{
cn,

b1

2n+1sn

}
.

It is obvious that a1
n ≤ cn. Moreover,

∞∑
k=1

a1
ksk ≤ b1

∞∑
k=1

1
2k+1

=
1
2
b1 < b1.
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Now assume the existence of sequences {ar
n} for all r = 1, . . . , p. Assume also,

that these sequences satisfy the following inequalities

ar
n ≤ ar−1

n for r = 2, . . . , p

and
∞∑

k=n

ar
ksr < br

for all n ≥ r. From the convergence of the last series, there follows that there
exists such k(p), that

(5)
∞∑

k=n(p)

ar
ksr <

1
2
bp+1.

Define

(6) ap+1
n =

{
min

{
bp+1

2ϕ(n,p) , a
p
n

}
for p ≤ n ≤ n(p),

ap
n otherwise,

where

ϕ(n, p) =
∞∑

k=n+1

ap
ksn.

Now, having defined the sequence {ap
n} for all p the sequence {an} defined by

the classical diagonal formula
an = an

n

satisfies the condition of thesis.

4. Proof of the theorem. The space V with the topology of uniform
convergence is a separable metric space. Therefore, the topology has a count-
able basis. Let {σn} ⊂ V and {εn} ⊂ R∗+ be such sequences, that the set
{Un}∞n=1, where

(7) Un = U(σn, εn) = {v ∈ V : |σn(x)− v(x)| < εn∀x ∈ [0; 1]}

is a basis of uniform topology in V . Since σn ∈ V , for every n, there exists the
optimal Lipschitz constant of σn i.e.

sn = sup
x,y∈[0,1],x 6=y

∣∣∣∣σn(x)− σn(y)
x− y

∣∣∣∣ .
Obviously,

sup
x,y∈[0;1]

|σn(x)− σn(y)| ≤ sn|x− y| ≤ sn.
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Since σn is continuous and vanishes at 0, one can define the sequence {κn} by
the following recurrence formula

κ0 = 1,

κn = sup{x ∈ [0; 1] : ∀ξ ∈ [0; x]|σn(x)| ≤ εn}.
Let

cn =
(

κn

κn−1

) 1
λ

,

bn = εn−1.

By Lemma 1 there exists such sequence {an}, that(
n∏

k=1

ak

)λ

≤ κn,

∞∑
k=n

aksk ≤ εn.

Define
θj = max{−λ ln aj , 0}

and

tn =
n∑

j=1

θj .

By the last four formulae there is

e−tn =
n∏

k=1

e−θk =
n∏

k=1

eλ ln ak =

(
n∏

k=1

ak

)λ

≤ κn

and

∞∑
n=k

e−λtnsn ≤
∞∑

n=k

exp

− n∑
j=1

λθj

 sn

≤ exp

− k−1∑
j=1

λθj

 ∞∑
n=k

e−λθnsn

≤ exp

− k−1∑
j=1

λθj

 ∞∑
n=k

ansn ≤ e−λtk−1εk−1.
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Continuing the proof, we have to construct a family of right inverses of Tt i.e.,
the family of the maps S : V → V satisfying the condition TtSv = v for every
v ∈ V . Let σ ∈ V Define St

σ : V → V as

(St
σv)(x) =

{
e−λtx(xet) for x ≤ e−t,

σ(x)− σ(e−t) + e−λtv(1) for x > e−t.

From this definition we conclude that for every t > 0 and for every σ ∈ V

TtS
t
σ = idV .

Let now σn and θn be defined as above and let

v ∈
∞⋂

n=1

Sθ1
σ1

. . . Sθn
σn

(V ).

We claim, that such v exists and is unique. The uniqueness of v follows from
the continuity of v, v/s vanishing at zero and a natural condition that for every
interval [exp(−tn); exp(−tn−1)]

(8) v(x) = e−λ
∑n

k=1 θkσn

(
xe

∑n
k=1 θk

)
= e−λtnσn

(
xe−tn

)
up to additive constant.

Let
vn = Sθ1

σ1
. . . Sθn

σn
(0).

The function vn is equal to every function belonging to Sθ1
σ1

. . . Sθn
σn

(V ) up to
an additive constant on the interval [exp(−tn); 1]. Moreover,

|vn(x)− vn+1(x)| ≤ e−λtn+1sn+1.

From the last inequality there follows that the sequence {vn} converges uni-
formly to some function v̄. To complete the claim, it is sufficient to show that v̄
satisfies the Lipschitz condition. From (8) there follows that on every interval
of the form

[exp(−tn); exp(−tn−1)] ,
the function v̄ satisfies the Lipschitz condition with the constant

e−λtnsnetn .

Moreover,

e−λtnsnetn = sn

n∏
k=1

e(1−λ)θk ≤ 1.

Whence there follows, that the function v̄ satisfies the Lipschitz condition with
constant 1, and in consequence v̄ = v. To complete the proof of the theorem, it
is sufficient to prove that {Ttv}t≥0 is dense in V . From the definition of cn and
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tn there follows that on the interval [0, exp (−
∑∞

n=k θn)] the absolute value of
function v is less than

∑∞
n=k e−λtnsn ≤ exp (−λtk−1) εk−1 and on the interval[

exp

(
−

∞∑
n=k

θn

)
; exp

(
−

∞∑
n=k−1

θn

)]
,

the function v is equal to the function e−λtk−1σk−1

(
xetk−1

)
.

In consequence,
Ttk−1

v

is less than εk−1 on the interval [0, e−tk ] and equal to σk−1 up to an additive
constant on the interval [e−tk , 1]. Thus

Ttk−1
v ∈ Uk−1.

Since {Un} is a basis of uniform topology in V , the last formula completes the
proof.
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