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CONVERGENCE IN CAPACITY OF THE PLURICOMPLEX

GREEN FUNCTION

by Rafa l Czyż

Abstract. In this paper we prove that if Ω is a bounded hyperconvex
domain in Cn and if Ω 3 zj → ∂Ω, j → ∞, then the pluricomplex Green
function gΩ(zj , ·) tends to 0 in capacity, as j →∞.

A bounded open connected set Ω ⊂ Cn is called hyperconvex if there exists
negative plurisubharmonic function ψ ∈ PSH(Ω) such that {z ∈ Ω : ψ(z) <
c} ⊂⊂ Ω for all c < 0. Such ψ is called an exhaustion function for Ω. It was
proved in [6] that for every hyperconvex domain there exists smooth exhaustion
function ψ such that limz→ζ ψ(z) = 0, for all ζ ∈ ∂Ω.

Let Ω be a bounded hyperconvex domain in Cn. Let z ∈ Ω. Recall that
the pluricomplex Green function with the pole at z is defined as follows

gΩ(z, w) = sup{u(w) : u ∈ PSH(Ω), u ≤ 0, |u(ξ)− log |ξ − z|| ≤ C near z}.
It is well known that gΩ(z, ·) ∈ PSH(Ω)∩C(Ω \ {z}), gΩ(z, w) = 0 for w ∈ ∂Ω
and (ddcgΩ(z, ·))n = (2π)nδz, where δz is the Dirac measure at z (see [7]).
Carlehed, Cegrell and Wikstöm proved in [4] that for every z0 ∈ ∂Ω there
exists a pluripolar set E ⊂ Ω such that

lim sup
z→z0

gΩ(z, w) = 0,

for every w ∈ Ω \ E. B locki and Pflug proved in [3] that if Ω 3 zj → ∂Ω
then gΩ(zj , ·) → 0 in Lp for every 1 ≤ p < +∞, as j → ∞. By zj → ∂Ω
we mean that dist(zj , ∂Ω) → 0. This result was used in [3] to show Bergman
completeness of the hyperconvex domain. Herbort proved in [5] that if a
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bounded hyperconvex domain Ω ⊂ Cn admits a Hoelder continuous exhaustion
function then the pluricomplex Green function gΩ(zj , ·) tends to zero uniformly
on compact subsets of Ω if the pole zj → z0 ∈ ∂Ω. We prove the following
theorem.

Theorem 1. Let Ω be a bounded hyperconvex domain in Cn and let Ω 3
zj → ∂Ω, j →∞. Then gΩ(zj , ·) → 0 in capacity as j →∞.

First let us recall the definition of the relative capacity and of convergence
in capacity.

Definition 2. The relative capacity of the Borel set E ⊂ Ω ⊂ Cn with
respect Ω is defined in [1]

cap(E,Ω) = sup
{ ∫

E
(ddcu)n : u ∈ PSH(Ω),−1 ≤ u ≤ 0

}
.

Definition 3. Let uj , u ∈ PSH(Ω). We say that a sequence uj converges
to u in capacity if for any ε > 0 and K ⊂⊂ Ω

lim
j→∞

cap(K ∩ {|uj − u| > ε}) = 0.

Remark. Convergence in capacity is stronger then convergence in Lp since
the Lebesgue measure (dλ) is dominated by the relative capacity, i.e. there
exists constant C(n,Ω) > 0 depends only on n and Ω such that

cap(E) ≥ C(n,Ω)λ(E).

To prove the last inequality observe that there exist constants C1, C2 > 0
depending only on Ω such that −1 ≤ C1|z|2 − C2 ≤ 0 on Ω and (ddc(C1|z|2 −
C2))n = 4nn!Cn

1 dλ. Therefore the above inequality holds with C(n,Ω) =
4nn!Cn

1 . Observe also that uniform convergence on compact sets is stronger
then convergence in capacity, since the following inequality holds

cap(K ∩ {|uj − u| > ε}) ≤ ε−1cap(K) sup
K
|uj − u|.

To prove Theorem 1 we will need the following lemma proved in [2].

Lemma 4. Let Ω be a bounded domain Cn. Assume that u, v are bounded
negative plurisubharmonic functions such that limz→ζ v(z) = 0, for all ζ ∈ ∂Ω.
Then ∫

Ω
(−v)n(ddcu)n ≤ n!(sup

Ω
|u|)n−1

∫
Ω

(−u)(ddcv)n.

Proof of Theorem 1. Let us denote uj = gΩ(zj , ·). Suppose that uj

does not converge in capacity to 0, j →∞. Then for some ε > 0 and K ⊂⊂ Ω
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there exist a subsequence ujk
, and constants c > 0 and N > 0 such that for

jk ≥ N we have

(1) cap(K ∩ {−ujk
> ε}) ≥ c.

From the definition of capacity there exists v ∈ PSH(Ω) such that −1 ≤ v ≤ 0
and

(2)
∫

K∩{−ujk
>ε}

(ddcv)n ≥ c

2
.

Now we will show that uj → 0 on K in Ln((ddcv)n). Since Ω is hyperconvex
then there exist ψ a continuous exhaustion function for Ω and a constant A > 0
such that Aψ < v on K. Define the following bounded plurisubharmonic
function ϕ = max(Aψ, v). Then limz→ζ ϕ(z) = 0, for all ζ ∈ ∂Ω and

(ddcϕ)n ≥ χK(ddcv)n,

where χK is the characteristic function of the set K. Observe that ϕ is an
exhaustion function for Ω, which implies that ϕ(zj) → 0 if dist(zj , ∂Ω) → 0.

Using the monotone convergence theorem and Lemma 4 we get∫
K

(−uj)n(ddcv)n =
∫

Ω
(−uj)n(ddcϕ)n = lim

k→+∞

∫
Ω

(−max(uj ,−k))n(ddcϕ)n

≤ n!(sup
Ω
|ϕ|)n−1 lim

k→+∞

∫
Ω
|ϕ|(ddc max(uj ,−k))n = n!(2π)n(sup

Ω
|ϕ|)n−1|ϕ(zj)|,

which means that uj → 0 on K in Ln((ddcv)n), since ϕ(zj) → 0, as j →∞.
Observe that inequality (2) implies that

c

2
≤

∫
K∩{−ujk

>ε}
(ddcv)n ≤ ε−n

∫
K

(−ujk
)n(ddcv)n,

which is impossible since ujk
→ 0 on K in Ln((ddcv)n). This means that

uj → 0 in capacity as j →∞. The proof is finished.

Now we recall the definition of the multipolar Green function introduced by
Lelong [8]. Let A = {(z(1), ν(1)), . . . , (z(m), ν(m))} be a finite subset of Ω×R+.
Let

gΩ(A,w) = sup{u(w) : u ∈ LA, u ≤ 0},
where LA denotes the family of plurisubharmonic functions on Ω having a
logarithmic pole with weight ν(k) at w(k), for k = 1, . . . ,m, i.e.

LA = {u ∈ PSH(Ω) : |u(ξ)− ν(j) log |ξ − z(j)|| ≤ Cj near z(j), 1 ≤ j ≤ m}.

We show that it is possible to generalize Theorem 1 for the multipolar
Green function.
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Corollary 5. Let Ω be a bounded hyperconvex domain in Cn and let
Aj = {(z(1)

j , ν(1)), . . . , (z(m)
j , ν(m))} be a subset of Ω × R+, for j = 1, 2, . . . ,

such that Ω 3 z(k)
j → ∂Ω, j →∞ for all k = 1, . . . ,m. Then gΩ(Aj , ·) → 0 in

capacity as j →∞.

Proof. Directly from the definition of the multipolar Green function we
have

m∑
k=1

ν(k)gΩ(z(k)
j , ·) ≤ gΩ(Aj , ·) ≤ 0.

By Theorem 1 we have that gΩ(z(k)
j , ·) → 0 in capacity as j → ∞ for all

k = 1, . . . ,m, so also gΩ(Aj , ·) → 0 in capacity as j → ∞. This ends the
proof.
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