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THE MULTIPLE REGRESSION MODEL WHERE

INDEPENDENT VARIABLES ARE MEASURED

UNPRECISELY

by Anna Czapkiewicz and Antoni L. Dawidowicz

Abstract. We present a multiple regression model where all independent
variables are subject to error. We suggest a method to the estimation
of unknown parameter. The estimators constructed by this method are
unbiased and its covariance matrix is minimal in the class of linear unbiased
estimators.

Introduction. In the classical Gauss–Markov linear regression model it
is assumed, that independent variables are measured precisely. The error of
measurement is connected with the dependent variable only. The unknown
parameters in this model are estimated by the ordinary least squares method,
which gives unbiased estimators. In this paper we discuss the situation where
the dependent variable as well as the independent variables are perturbed by
errors of measure.

We discuss the model

Xt = St + εt t = 1, . . . , p,

Y = Sβ + δ,

where Xt = [xt
1, . . . , x

t
n]T , Y = [y1, . . . , yn]T are vectors of observables, the

matrix S has the form

S =
[
S1, S2, . . . , Sp, 1n

]
,

St = [st
1, . . . s

t
n]T t = 1, . . . , p,

st
i is unknown deterministic variable,

β = [β1, . . . , βp, βp+1]T is a vector of unknown parameters.



34

Furthermore

εt = [εt
1, . . . , ε

t
n]T εt

i ∼ N(0, σ2
εt

) E(εt
iε

t
j) = 0 i 6= j,

δ = [δ1, . . . , δn]T δi ∼ N(0, σ2
δ ) E(δiδj) = 0 i 6= j,

E(εt
iδi) = 0, t = 1, . . . , p.

It is easy to show that this model, with errors having normal distributions with
unknown variances, is nonidentifiable. This fact may be proved by a method
analogous to that described in the Reiersol’s paper [11]. To overcome this
difficulty it is assumed that either one error variance is known or the ratio of
the variances is known. Such situations are described, for example, in Kendall
and Stuart [8] or Fuller [6].

In this paper we present another approach to the construction of consistent
estimators of regression slopes. This method enables us to create estimator of
β which is unbiased with minimal covariance matrix in the class of linear
unbiased estimators, i.e. for another linear unbiased estimator its covariance
matrix is greater in the sense of order defined by positive definity. In the case
when parameters of normal distribution are unknown, such defined models are
identifiable.

We discuss a model

Xt
i = st

i + εt
i, εi ∼ N(0, σ2

εt
),

Yij = Siβ + δij , δij ∼ N(0, σ2
δ ),

Si = [s1
i , . . . , s

p
i , 1]T , i = 1 . . . n, j = 1, . . . m.

(1)

In the case of the simple regression model, the literature presents models
where both independent and dependent variables are repeated m times (Cox
[2], Dolby [5], Bunke and Bunke [1]). In this model the maximum likeli-
hood method gives desired properties of estimators. Applying the maximum
likelihood method to model (1) poses technical problems. We construct the
estimators based on the variance components theory.

The matter of paper is presented in the following phases. The method
of variance components is used to the multiple regression model, where only
one independent variable is measured unprecisely. Finally the same procedure
is used for the model where all independent variables are perturbed. Un-
fortunately, in this model it is impossible to estimate the variance of each
independent variable separately.

1. Variance components estimation method. Let Y = Xβ +U1Φ1 +
U2Φ2 be the general linear model with two variance components, where Y is
a vector of observables, the matrix X is known, β is an unknown vector of
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parameters and Φ1, Φ2 are random vectors such that

E(Φ1) = 0, E(Φ2) = 0, E(Φ1ΦT
2 ) = 0.

Furthermore
UT

1 U1 = V, UT
2 U2 = I.

Let us define the matrix W as

W = BV BT ,

where
BBT = I, BT B = M,

M = I −XX+,

where X+ denotes the Moore–Penrose inverse matrix. We recall one of general
theorem (Gnot [7])

Theorem 1. In the model with two components where the matrix W has
two different eigenvalues and W is singular, the best unbiased and invariant
estimator of linear combination of variance components f1σ1 + f2σ2 has the
form

[f1/α2
1ν1 − (α1f2 − f1)/α2

1ν2]Y T MV MY + [(α1f2 − f1)/α1ν2]Y T MY,

where α1 is the unique nonzero eigenvalue of W with multiplicity ν1 and ν2 is
the multiplicity of the zero eigenvalue of W .

We use the result of this theorem to the following model.
Let have

Zi = si + εi εi ∼ N(0, σ2
ε),

Yij = βosi + XT
i β∗ + δij δij ∼ N(0, σ2

δ ).
Zi is an perturbed observable, the vector

Xi = [x1
i , . . . , x

p−1
i , 1], i = 1, . . . , n

is a deterministic vector of observables.
If we substitute si in the last formula we obtain

Yij = βoZi + XT
i β∗ + γi + δij ,

where γi = −βoεi.
Replacement of the distribution of (Zi, Yij) with the conditional distribution
of Yij with respect to Zi enables us to use a different model (treating Zi as a
nonrandom value) to estimate the same parameters β. We obtain the model

(2) Y = Xβ + U1Φ1 + U2Φ2,

where β = [βo, β
∗]T is a vector of unknown parameters,

Y = [yT
1 . . . , yT

n ]T yi = [Yi1, . . . Yim]T ,
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X =


Z11m x1

11m . . . xp−2
1 1m

Z21m x1
21m . . . xp−2

2 1m
...

...
...

...
...

Zn1m x1
n1m . . . xp−2

n 1m

 ,

where 1m = [1, . . . , 1]T .
The matrices U1 , U2 have the forms

(3) U1 = In ⊗ 1m, U2 = Imn,

where A ⊗ B denotes the Kronecker product of the matrices A and B. The
vectors Φ1, Φ2 are given as follows

Φ1 = [γ1, . . . , γn]T ,

Φ2 = [φT
1 , . . . , φT

n ]T where φi = [δi1, . . . δim]T .

Furthermore, we may notice that

E(Φi) = 0, E(ΦiΦT
j ) = 0, E(ΦiΦT

j ) = σ2
i I, i, j = 1, 2.

The variance components are

(4) σ2
1 = a2σ2

ε and σ2
2 = σ2

δ .

Theorem 2. The uniformly best invariant unbiased estimators of σ2
1 and

σ2
2 in this model are

σ̃2
1 =

nm− (p + 1)
m2(n− p− 1)(m− 1)n

Y T MV MY − 1
mn(m− 1)

Y T MY,

σ̃2
2 =

1
n(m− 1)

Y T MY − 1
mn(m− 1)

Y T MV MY,

where
M = I −X(XT X)−1XT .

Proof. Let B be (nm− p− 1)× nm-dimensional matrix defined so that

BBT = Inm−p−1 BT B = I −XX+ = M

and
W = BV BT where V = U1U

T
1 .

Because V V = mV and XT V = mXT we may notice that

W 2 = BV BT BV BT = BV MV BT = BV (I −X(XT X)−1XT )V BT

= mBV MBT = mBV BT BBT = mBV BT .

Thence and because W is a symmetric matrix, W has the unique nonzero
eigenvalue −m.
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The calculation of the trace of the matrix MV gives us the multiplicity of
this eigenvalue. The matrix X has a decomposition

X = CΛDT ,

where Λ is a diagonal matrix, and C and D are such matrices that CT C = I
and DT D=I. Let α1, . . . αp+1 be eigenvalues of XXT . From the definition of
the Moore–Penrose inverse matrix, we infer that XX+ = CCT , where C is
formed by normalized eigenvectors corresponding to α1, . . . αp+1.

Applying those remarks, we can calculate the trace of MV . It equals
m(n− p− 1).

Matrix W is singular with two eigenvalues: 0 with multiplicity n(m − 1)
and m with multiplicity (n−p−1). The conditions of Theorem 2 are satisfied,
so we have the desired formulas for the estimators of the variance components
σ2

1 i σ2
2. The expression for M follows from the fact that X has full rank. So

M = I −X(XT X)−1XT .

Having calculated formulas for σ̃2
1 and σ̃2

2, we may construct an estimator
for β. It is natural to take

(5) β̃ = [XT Z̃−1X]−1XT Z̃−1Y,

where Z̃ = σ̃2
1V + σ̃2

2Inm.

Theorem 3. The estimators of unknown parameters β based on variance
components theory have the following properties:
(i) The estimator of β̃ in (5) does not depend on values of σ̃1 and σ̃2 and has
the form

β̃ = (XT X)−1XT Y.

(ii) The estimator β̃ has the normal distribution with expectation β and with
covariance matrix

(6) (mσ1 + σ2)(XT X)−1 = (ma2σ2
ε + σ2

δ )(XT X)−1.

(iii) The estimator β̃ is unbiased with minimal covariance matrix in the class
of linear unbiased estimators, the estimator σ̃δ is the uniformly best unbiased
estimator of σδ and the estimator

σ̃ε =

√
σ̃2

2

β̃o
2

is weakly consistent.
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Proof. We can notice, after simple calculation, that for every p and q
there is

(7) XT (pV + qImn) = (mp + q)XT .

(i) From (7) there follows that

XT Z̃ = XT (σ̃1
2V + σ̃2

2Imn) = (mσ̃2
1 + σ̃2

2)XT ,

thus
XT = (mσ̃2

1 + σ̃2
2)XT (Z̃)−1

and
β̃ = (mσ̃2

1 + σ̃2
2)(XT X)−1 1

mσ̃2
1 + σ̃2

2

XT Y = (XT X)−1XT Y.

(ii) As we have assumed that Y has a normal distribution, then the estimator
β̃, as a linear function of Y , also has a normal distribution. The expectation
of β̃ is

E
(
(XT X)−1XT Y

)
= (XT X)−1XT E(Y ) = (XT X)−1XT Xβ = β.

The covariance matrix of β̃ , var(β̃) is:

V ar
(
β̃
)

= E
(
(XT X)−1XT Y Y T X(XT X)−1

)
− ββT

= (XT X)−1XT E(Y Y T )X(XT X)−1 − ββT .

Because
E(Y Y T ) = σ2

1V + σ2
2I + (Xβ)(Xβ)T ,

from (7), we receive that

V ar(β̃) = (mσ2
1 + σ2

2)(XT X)−1.

Let us consider another linear unbiased estimator LT Y of β. We can prove
that covariance matrix of estimator LT Y is not smaller than the covariance
matrix of estimator (XT X)−1XT Y (i.e., the difference between these matrices
is non-negative defined). Let us put AT as

AT = LT − (XT X)−1XT .

We can notice that E(AT Y ) = 0. It implies that also AT X = 0. Due to this
fact (7) there is

E
(
AT Y ((XT X)−1XT Y )T

)
= AT E(Y Y T )X(XT X)−1

= AT (σ2
1V + σ2

2Imn)X(XT X)−1 = (mσ2
1 + σ2

2)AT X(XT X)−1 = 0.
(8)

Now we shall present V ar(LT Y ) as

V ar
(
LT Y

)
= V ar

(
LT Y − (XT X)−1XT Y + (XT X)−1XT Y

)
.
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By equation (8), we may write V ar(LT Y ) as

V ar(LT Y ) = V ar(LT Y − (XT X)−1XT Y ) + V ar((XT X)−1XT Y ).

The first component is a non-negative defined matrix, so

V ar
(
LT Y

)
≥ V ar

(
(XT X)−1XT Y

)
.

The properties of σ̃δ follow from Theorem 2, while the properties of σ̃ε follow
from the S lucki Theorem.

Remark 1. For a simple regression model we can notice that variances of
estimators β̃o and β̃p using variance components theory have the forms

var(β̃o) =
mβ2

oσ2
ε + σ2

δ

m
∑n

i=1(Zi − Z̄)2
,

var(β̃p) =
mβ2

oσ2
ε + σ2

δ

mn

∑n
i=1 Z2

i∑n
i=1(Zi − Z̄)2

.

For simple regression variances of βo and βp, the maximum likelihood method
and the theory of variance components are comparable.

2. The model where all independent variables are perturbed.
This last method allow us to generalize our results to a multiple regression
model where independent variables are subject to error. The model has the
following form

xt
i = st

i + εt
i εi ∼ N(0, σ2

εt
),

Yij = Siβ + δij δij ∼ N(0, σ2
δ ),

Si = [s1
i , . . . , s

p
i , 1]T , i = 1 . . . n, j = 1, . . . m.

If we substitute si in the last formula, we obtain

Yij = XT
i β + γi + δij ,

where γi = −εT
i β.

Xi = [x1
i , . . . , x

p
i ], εi = [ε1

i , . . . , ε
p
i ].

We received two components σ2
1 =

∑p
t=1 βtσ

2
εt

and σ2
2 = σ2

δ . We can use
the results of previous section to model thus defined. In the case when all
independent variable are subject to error, repeating the dependent variable
allows us to estimate unknown parameters β and unknown variance σ2

δ and the
sum of unknown variances σ2

εt
. It is impossible to estimate each σ2

εt
separately.
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