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IMPLICIT DIFFERENCE METHODS FOR NONLINEAR FIRST

ORDER PARTIAL DIFFERENTIAL EQUATIONS

by Anna Kępczyńska

Abstract. Classical solutions of initial boundary value problems for non-
linear equations are approximated with solutions of quasilinear systems of
implicit difference equations. The proof of the convergence of the method
is based on a comparison technique with nonlinear estimates of the Perron
type for given functions.
This new approach to implicit difference methods for nonlinear equa-

tions is based on a quasilinearization method and theory of bicharacte-
ristics.
In our considerations it is important that the Courant–Friedrichs–

Levy condition is not need in convergence theorems for implicit difference
methods.
Numerical examples are presented.

1. Introduction. For any metric spaces X and Y , by C(X,Y ) we denote
the class of all continuous functions from X into Y . We will use vectorial
inequalities meant component-wise
For x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), we put

x � y = (x1y1, . . . , xnyn) and ‖ x ‖=
n∑

i=1

|xi|.

Let E = [0, a]× [−b, b], where a > 0, b = (b1, . . . , bn) and bi > 0 for 1 ≤ i ≤ n.
Suppose that κ, 0 ≤ κ ≤ n is a fixed integer. We define the sets

∂+Ei = {(t, x) ∈ E : xi = bi}, 1 ≤ i ≤ κ,

∂−Ei = {(t, x) ∈ E : xi = −bi}, κ+ 1 ≤ i ≤ n
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and

∂0E =
κ⋃

i=1

∂+Ei ∪
n⋃

i=κ+1

∂−Ei, E0 = {0} × [−b, b], Ω = E ×R×Rn.

Suppose that F : Ω → R, ϕ : E0 ∪ ∂0E → R are given functions. We consider
the problem consisting of the differential equation

(1) ∂tz(t, x) = F (t, x, z(t, x), ∂xz(t, x))

and the initial boundary condition

(2) z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E,

where ∂xz = (∂x1z, . . . , ∂xnz). We are interested in the construction of a
method for the approximation of classical solutions to problem (1), (2) with
solutions of associated implicit difference schemes and in the estimation of the
difference between these solutions.
We define a mesh on the set E in the following way. Let N and Z be

the sets of natural numbers and integers, respectively. Let (h0, h
′), h′ =

(h1, . . . , hn), stand for steps of the mesh. For h = (h0, h
′) and (r,m) ∈ Z1+n,

m = (m1, . . . ,mn), we define nodal points as follows

t(r) = rh0, x(m) = m � h′, x(m) = (x(m1)
1 , . . . , x(mn)

n ).

By H we will denote the set of all h = (h0, h
′) such that there is N =

(N1, . . . , Nn), N ∈ Nn with N � h′ = b. Let K ∈ N be defined by the re-
lations Kh0 ≤ a < (K + 1)h0. We define the sets

R1+n
h = {(t(r), x(m)) : (r,m) ∈ Z1+n},

Eh = E ∩R1+n
h , E0.h = E0 ×R1+n

h , ∂0Eh = ∂0E ∩R1+n
h

and
Ih = {t(r) : 0 ≤ r ≤ K}.

For functions w : Ih → R and z : Eh → R, u : Eh → Rn, u = (u1, . . . , un), we
write

w(r) = w(t(r)), z(r,m) = z(t(r), x(m)), u(r,m) = u(t(r), x(m)).

For h ∈ H we put ‖ h ‖= h0+h1+· · ·+hn. Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn,
1 standing in the i-th place, 1 ≤ i ≤ n. By δ0 and δ = (δ1, . . . , δn), we will
denote the difference operators defined by

(3) δ0z
(r,m) =

1
h0

(
z(r+1,m) − z(r,m)

)
,

(4) δiz
(r,m) =

1
hi

(
z(r,m+ei) − z(r,m)

)
for 1 ≤ i ≤ κ,
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(5) δiz
(r,m) =

1
hi

(
z(r,m) − z(r,m−ei)

)
for κ+ 1 ≤ i ≤ n.

If κ = 0, then δ is given by (5); for κ = n, δ is defined by (4).
Write

θ = (θ1, . . . , θn) ∈ Rn where θi = 1 for 1 ≤ i ≤ κ

and θi = −1 for κ+ 1 ≤ i ≤ n.
(6)

Suppose that we approximate solutions of (1), (2) by means of solutions of the
difference equation

(7) δ0z
(r,m) = F (t(r), x(m), z(r,m), δz(r,m))

with the initial boundary condition

(8) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh,

where ϕh : E0.h ∪ ∂0Eh → R is a given function. Problem (7), (8) is called the
Euler method for (1), (2). We formulate sufficient conditions for the conver-
gence of method (7), (8). We need the following assumption on F .
Assumption H0[F ]. Suppose that the function F : Ω → R in the variables
(t, x, p, q), q = (q1, . . . , qn), is continuous and
1) the partial derivatives (∂q1F, . . . , ∂qnF )=∂qF exist on Ω, ∂qF ∈C(Ω, Rn)
and

(9) ∂qF (t, x, p, q) � θ ≥ 0 on Ω,

2) there is σ : [0, a]×R+ → R+, R+ = [0,+∞) such that
(i) σ is continuous and it is nondecreasing with respect to both vari-
ables,

(ii) σ(t, 0) = 0 for t ∈ [0, a] and the maximal solution of the Cauchy
problem

w′(t) = σ(t, w(t)), w(0) = 0,

is w(t) = 0 for t ∈ [0, a],
(iii) the estimate

|F (t, x, p, q)− F (t, x, p, q)| ≤ σ(t, |p− p)|)
is satisfied on Ω.

Theorem 1.1. Suppose that Assumption H0[F ] is satisfied and
1) h ∈ H and for P = (t, x, p, q) ∈ Ω, there is

(10) 1− h0

n∑
i=1

1
hi
|∂qiF (P )| ≥ 0,

2) v : E → R is a solution of (1), (2) and v is of class C1,
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3) z̃h : Eh → R is a solution of (7), (8) and there is α0 : H → R+ such
that

|ϕ(r,m) − ϕ
(r,m)
h | ≤ α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0.

Then there exist ε̃ > 0 and α : H → R+ such that for ‖ h ‖< ε̃ there is

|z̃(r,m)
h − v

(r,m)
h | ≤ α(h) on Eh and lim

h→0
α(h) = 0,

where vh is the restriction of v to the set Eh.

The above theorem may be proved by a method used in [6]–[9]; see also [5]
Chapter 5.
In this paper we consider the following modifications of the classical Euler

method.
We first approximate solutions of (1), (2) by means of solutions of the

difference equation

(11) δ0z
(r,m) = F (t(r), x(m), z(r,m), δz(r+1,m))

with the initial boundary condition (8). The numerical method consisting of
(8) and (11) is called the implicit Euler method for (1), (2). In Section 2, we
prove that under natural assumptions on the given functions and on the mesh,
there exists exactly one solution of (11), (8). We also give sufficient conditions
for the convergence of the implicit Euler method.
Note that Theorem 1.1 does not apply to quasilinear equations. Neither

does a general result on implicit method (8), (11), presented in Section 2,
apply to quasilinear problems. But in a separate theorem in Section 3, we
give sufficient conditions for the convergence of implicit difference methods
generated by quasilinear problems.
We wish to emphasize that the main difficulty in carrying out the implicit

Euler method for nonlinear equations is the problem of solving equation (11)
numerically. For this reason, we separate a new class of difference problems
corresponding to (1), (2). We transform nonlinear equation (1) into a quasi-
linear system of difference equations. The method thus obtained is implicit
and it is linear with respect to the difference operator δ for spatial variables.
A convergence theorem and an error estimate for the method are presented in
Section 4. It is the main part of the paper. Numerical examples are given in
the last section.

2. Convergence of implicit Euler methods. Write

E′h = {(t(r), x(m)) ∈ Eh \ ∂0Eh : 0 ≤ r ≤ K − 1}.
We formulate the main result on method (8), (11).

Theorem 2.1. Suppose that Assumption H0[F ] is satisfied and
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1) v : E → R is a solution of (1), (2) and v is of class C1,
2) there is α0 : H → R+ such that

|ϕ(r,m) − ϕ
(r,m)
h | ≤ α0(h) on E0.h ∪ ∂0Eh

and
lim
h→0

α0(h) = 0.

Then there exists exactly one solution zh : Eh → R, h ∈ H, of problem (8),
(11) and there exist α : H → R+ and ε̃ > 0 such that for ‖ h ‖< ε̃ there holds

(12) |v(r,m)
h − z

(r,m)
h | ≤ α(h) on Eh

and

(13) lim
h→0

α(h) = 0,

where vh is the restriction of v to the set Eh.

Proof. We first prove that there exists exactly one solution zh : Eh → R
of problem (8), (11). The proof will be divided into three steps.

(I) Suppose that 0 ≤ r ≤ K − 1 and m ∈ Zn are fixed and

−Ni ≤ mi ≤ Ni − 1 for 1 ≤ i ≤ κ,

−Ni + 1 ≤ mi ≤ Ni for κ+ 1 ≤ i ≤ n.

Assume also that the numbers z(r,m)
h , z(r+1,m+ei)

h for 1 ≤ i ≤ κ and z(r+1,m−ei)
h

for κ+ 1 ≤ i ≤ n are known. Write

Q(r+1,m)(y) =
( 1
h1

(
z
(r+1,m+e1)
h − y

)
, . . . ,

1
hκ

(
z
(r+1,m+eκ)
h − y

)
,

1
hκ+1

(
y − z

(r+1,m−eκ+1)
h

)
, . . . ,

1
hn

(
y − z

(r+1,m−en)
h

))
and

(14) Ψ(y) = z
(r,m)
h + h0F (t(r), x(m), z

(r,m)
h , Q(r+1,m)(y)),

where y ∈ R. Then Ψ : R → R is of class C1. It follows from assumption (9)
that

Ψ′(y) = −h0

n∑
j=1

1
hj

∣∣∣∂qjF (t(r), x(m), z
(r,m)
h , Q(r+1,m)(y))

∣∣∣ ≤ 0.

for y ∈ R. Therefore, the equation
(15) y = Ψ(y)

has exactly one solution ỹ ∈ R.
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(II) Suppose that 0 ≤ r ≤ K − 1 is fixed and that the numbers z(r,m)
h ,

−N ≤ m ≤ N , are known. Consider equation (15) with Ψ given by (14) and

(16) m = (N1 − 1, N2 − 1, . . . , Nκ − 1,−Nκ+1 + 1, . . . ,−Nn + 1).

It follows from (8) that the numbers

z
(r+1,m+ei)
h for 1 ≤ i ≤ κ and z

(r+1,m−ei)
h for κ+ 1 ≤ i ≤ n

are known. We conclude from (I) that there exists exactly one number z(r+1,m)
h

form given by (16). In the same manner, we can prove that there exists exactly
one number z(r+1,m)

h for

m = (j,N2 − 1, . . . , Nκ − 1,−Nκ+1 + 1, . . . ,−Nn + 1)

and j = N1 − 2, N1 − 3, . . . ,−N1. Suppose now that −N1 ≤ m1 ≤ N1 − 1 is
fixed and

(17) m = (m1, j,N3 − 1, . . . , Nκ − 1,−Nκ+1 + 1, . . . ,−Nn + 1).

Repeated applications of (I) enable us to calculate the numbers z(r+1,m)
h for m

given by (17) and for j = N2 − 1, N2 − 2 . . . ,−N2.
Now suppose that we have calculated the numbers

z
(r+1,m1,...,mκ,−Nκ+1+1,...,−Nn+1)
h ,

where −Ni ≤ mi ≤ Ni − 1 for i = 1, . . . , κ. Put

m = (m1, . . . ,mκ, j,−Nκ+2 + 1, . . . ,−Nn + 1).

We again apply (I) for j = −Nκ+1 + 1,−Nκ+1 + 2, . . . , Nκ+1.
In the same manner we can see that the numbers z(r+1,m)

h exit and they
are unique for −Ni + 1 ≤ mi ≤ Ni, i = κ+ 1, . . . , N .

(III) It follows from initial boundary condition (8) and from (II) that the
proof of the existence and uniqueness of a solution of (8), (11) may be com-
pleted by induction with respect to r.
We next show (12), (13). Let the function Γh : E′h → R be defined by

δ0v
(r,m)
h = F (t(r), x(m), v

(r,m)
h , δv

(r+1,m)
h ) + Γ(r,m)

h .

It follows that there exists γ : H → R+ such that

|Γ(r,m)
h | ≤ γ(h) on E′h and lim

h→0
γ(h) = 0.
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Write wh = zh − vh. An easy computation shows that

w
(r+1,m)
h

[
1 + h0

n∑
i=1

1
hi
θi∂qiF (Q)

]
(18)

= h0

κ∑
i=1

1
hi
∂qiF (Q) w(r+1,m+ei)

h − h0

n∑
i=κ+1

1
hi
∂qiF (Q) w(r+1,m−ei)

h + w
(r,m)
h

+h0

[
F (t(r), x(m), z

(r,m)
h , δv

(r+1,m)
h )−F (t(r), x(m), v

(r,m)
h , δv

(r+1,m)
h )

]
−h0Γ

(r,m)
h ,

(t(r), x(m)) ∈ E′h, where Q ∈ Ω is an intermediate point and (θ1, . . . , θn) is
given by (6).
Let

ε
(r)
h = max {|w(r,m)

h | : −N ≤ m ≤ N}, 0 ≤ r ≤ K.

It follows from condition 2) of Assumption H0[F ] and from (9), (18) that εh
satisfies the recurrent inequality

(19) ε
(r+1)
h ≤ max {ε(r)h + h0σ(t(r), ε(r)h ) + h0γ(h), α0(h)}, 0 ≤ r ≤ K − 1,

and ε(0)
h ≤ α0(h). Consider the Cauchy problem

(20) w′(t) = σ(t, w(t)) + γ(h), w(0) = α0(h).

It follows from condition 2) of Assumption H0[F ] that there is ε̃ > 0 such that,
for ‖ h ‖< ε̃, there exists the maximal solution w̃h of (20) and w̃h is defined
on [0, a]. Moreover, there is

lim
h→0

w̃h(t) = 0 uniformly on [0, a].

The function w̃h is convex and then it satisfies the recurrent inequality

w̃
(r+1)
h ≥ w̃

(r)
h + h0σ(t(r), w̃(r)

h ) + h0γ(h), 0 ≤ r ≤ K − 1.

From the above inequality and (19) we derive ε(r)h ≤ w̃
(r)
h for 0 ≤ r ≤ K. Then

we get (12) with α(h) = w̃h(a). This proves the theorem.

Remark 2.1. Note that condition (10) is omitted in the theorem on the
convergence of the implicit difference method for nonlinear equations. Thus the
class of implicit difference method is larger than the set of classical difference
schemes for (1), (2).
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3. Implicit Euler method for quasilinear equations. Suppose that

f : E ×R→ Rn, f = (f1, . . . , fn), g : E ×R→ R, ϕ : E0 ∪ ∂0E → R

are given functions. We consider the quasilinear differential equation

(21) ∂tz(t, x) =
n∑

i=1

fi(t, x, z(t, x))∂xiz(t, x) + g(t, x, z(t, x))

and initial boundary condition (2).
Suppose that we approximate solutions of (2), (21) by means of solutions

of the classical difference equation

(22) δ0z
(r,m) =

n∑
i=1

fi(t(r), x(m), z(r,m))δiz(r,m) + g(t(r), x(m), z(r,m))

with initial boundary condition (8), where ϕh : E0.h ∪ ∂0Eh → R is a given
function. We formulate sufficient conditions for the convergence of method (8),
(22).
Assumption H[f, g]. Suppose that the functions f and g are such that
1) f ∈ C(E ×R,Rn), g ∈ C(E ×R,R) and

(23) f(t, x, p) � θ ≥ 0 on E ×R,

2) there is σ : [0, a]×R+ → R+ such that
(i) σ is continuous, nondecreasing with respect to both variables,

σ(t, 0) = 0 for t ∈ [0, a] and for each d ≥ 1 the maximal solu-
tion of the Cauchy problem

w′(t) = dσ(t, w(t)), w(0) = 0,

is w(t) = 0 for t ∈ [0, a],
(ii) the estimates

‖ f(t, x, p)− f(t, x, p) ‖≤ σ(t, |p− p|),

|g(t, x, p)− g(t, x, p)| ≤ σ(t, |p− p|)
are satisfied on E ×R.

Lemma 3.1. Suppose that Assumption H[f, g] is satisfied and
1) v : E → R is a solution of (2), (21) and v is of class C1 on E,
2) h ∈ H and

1− h0

n∑
i=1

1
hi

∣∣∣fi(t, x, p)
∣∣∣ ≥ 0 on E ×R,
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3) z̃h : Eh → R is a solution of (8), (22) and there is α0 : H → R+ such
that

|ϕ(r,m) − ϕ
(r,m)
h | ≤ α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0.

Then there exists α : H → R+ such that

|v(r,m)
h − z̃

(r,m)
h | ≤ α(h) on Eh and lim

h→0
α(h) = 0,

where vh is the restriction of v to the set Eh.

The above Lemma may be proved by the method used in [6]–[8]; see also [5],
Chapter 5.
In this paper we will approximate classical solution of problem (2), (21)

with solutions of the implicit difference equation

(24) δ0z
(r,m) =

n∑
i=1

fi(t(r), x(m), z(r,m)) δiz(r+1,m) + g(t(r), x(m), z(r,m)),

with initial boundary condition (8).

Theorem 3.1. Suppose that Assumption H[f, g] is satisfied and

1) v : E → R is a solution of (2), (21) and v is of class C1 on E,
2) h ∈ H and there exists α0 : H → R+ such that

|ϕ(r,m) − ϕ
(r,m)
h | ≤ α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0.

Then

1) there exists exactly one solution zh : Eh → R of problem (8), (24),
2) there exist ε̃ > 0 and α : H → R+ such that for ‖ h ‖< ε̃ there is

(25) |v(r,m)
h − z

(r,m)
h | ≤ α(h) on Eh and lim

h→0
α(h) = 0,

where vh is the restriction of v to the set Eh.

Proof. We first prove that there exists exactly one solution zh : Eh → R
of (8), (24). Suppose that 0 ≤ r ≤ K − 1 is fixed and that zh is defined on
Eh ∩ ([0, t(r)] × Rn). From (23) we conclude that equations for z(r+1,m)

h have
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the form

z(r+1,m)

[
1 + h0

n∑
i=1

1
hi
|fi(t(r), x(m), z

(r,m)
h )|

]

= z
(r,m)
h + h0

κ∑
i=1

1
hi
fi(t(r), x(m), z

(r,m)
h )z(r+1,m+ei)

− h0

n∑
i=κ+1

1
hi
fi(t(r), x(m), z

(r,m)
h )z(r+1,m−ei) + h0g(t(r), x(m), z

(r,m)
h ).

(26)

From (26) we deduce that the numbers z(r+1,m)
h may be computed for

m = (j,N2 − 1, . . . , Nκ − 1,−Nκ+1 + 1, . . . ,−Nn + 1),

where j = N1−1, N1−2, . . . ,−N1. Our next goal is to determine the numbers
z
(r+1,m)
h , where

m = (m1, j,N3 − 1, . . . , Nκ − 1,−Nκ+1 + 1, . . . ,−Nn + 1)

and −N1 ≤ m1 ≤ N1 − 1 is fixed and j = N2 − 1, N2 − 2, . . . ,−N2. From (26)
we conclude that, for the above m, the numbers z(r+1,m)

h exist and are unique.

Suppose that the numbers z(r+1,m)
h are computed for −Ni ≤ mi ≤ Ni − 1,

i = 1, . . . , κ. Then we consider formula (26) for

m = (m1, . . . ,mκ, j,−Nκ+2 + 1, . . . ,−Nn + 1),

where (m1, . . . ,mκ) is fixed and we put j = −Nκ+1 + 1,−Nκ+1 + 2, . . . , Nκ+1.
Repeated applications of (26) enable us to compute z

(r+1,m)
h for

(t(r+1), x(m)) ∈ Eh \ ∂0Eh. It follows from (8) and from the above consid-
erations that the proof may be completed by induction with respect to r.
We next show (25). Let Γh,Λh : E′h → R be the functions defined by

Γ(r,m)
h = δ0v

(r,m)
h − ∂tv

(r,m)

+
n∑

j=1

fj(t(r), x(m), v
(r,m)
h )(∂xjv

(r,m) − δjv
(r+1,m)
h )

and
Λ(r,m)

h = g(t(r), x(m), v
(r,m)
h )− g(t(r), x(m), z

(r,m)
h )

+
n∑

j=1

[
fj(t(r), x(m), v

(r,m)
h )− fj(t(r), x(m), z

(r,m)
h )

]
δjv

(r+1,m)
h .

Write wh = vh − zh and

P (r,m)[zh] = (t(r), x(m), z
(r,m)
h ).
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Then wh satisfies the difference equation

δ0w
(r,m)
h =

n∑
j=1

fj(P (r,m)[zh])δjw
(r+1,m)
h + Γ(r,m)

h + Λ(r,m)
h , (t(r), x(m)) ∈ E′h,

and, consequently,

(27) w
(r+1,m)
h + h0

n∑
j=1

1
hj
θjfj(P (r,m)[zh])w(r+1,m)

h

= w
(r,m)
h + h0

n∑
j=1

1
hj
θjfj(P (r,m)[zh])w(r+1,m+θjej)

h + h0

[
Γ(r,m)

h + Λ(r,m)
h

]
,

where θ = (θ1, . . . , θn) is given by (6). Write

ε
(r)
h = max {|w(r,m)

h | : −N ≤ m ≤ N}, 0 ≤ r ≤ K.

Let us denote by c0 ∈ R+ such a constant that

|∂xjv(t, x)| ≤ c0 for (t, x) ∈ E, 1 ≤ j ≤ n.

It follows from Assumption H[f, g] that

(28) |Λ(r,m)
h | ≤ (1 + c0)σ(t(r), ε(r)h ) for (t(r), x(m)) ∈ E′h.

There exists γ : H → R+ such that

(29) |Γ(r,m)
h | ≤ γ(h) on E′h and lim

h→0
γ(h) = 0.

From (23), (27)–(29) and condition 2) of Assumption H[f, g] we conclude that
εh satisfies the recurrent inequality

(30) ε
(r+1)
h ≤ max {ε(r)h + h0(1 + c0)σ(t(r), ε(r)h ) + h0γ(h), α0(h)},

where 0 ≤ r ≤ K − 1 and ε(0)
h ≤ α0(h). Let w̃h be the maximal solution of the

Cauchy problem

w′(t) = (1 + c0)σ(t, w(t)) + γ(h), w(0) = α0(h).

It follows that there is ε̃ > 0 such that for ‖ h ‖< ε̃ the solution w̃h is defined
on [0, a]. Moreover, there is

lim
h→0

w̃h(t) = 0 uniformly on [0, a].

The function w̃h is convex; whence, recurrently

w̃
(r+1)
h ≥ w̃

(r)
h + h0(1 + c0)σ(t(r), w̃(r)

h ) + h0γ(h), 0 ≤ r ≤ K − 1.

The above relation and (30) imply ε(r)h ≤ w̃
(r)
h for 0 ≤ r ≤ K. Then we get

(25) for α(h) = w̃h(a). This completes the proof.
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Remark 3.1. Note that condition (10) is omitted in the theorem on the
convergence of the implicit difference method for quasilinear equations. Thus
the class of implicit difference method is larger than the set of classical differ-
ence schemes for (2), (21).

4. Generalized implicit Euler method for nonlinear equations.
Now we define a new class of difference problems corresponding to (1), (2).
We transform the nonlinear differential equation into a quasilinear system of
difference equations. We consider implicit difference methods of the Euler
type. In our considerations, it is important that condition (10) is omitted in
a theorem on the convergence of an implicit difference method for nonlinear
equation (1).
By Mn×n we will denote the class of all n× n matrices with real elements.

For X ∈Mn×n we put

‖ X ‖= max {
n∑

j=1

|xij | : 1 ≤ i ≤ n},

where
X = [xij ]i,j=1,...n.

The product of two matrices is denoted by ” ? ”. If X ∈ Mn×n, then XT is
the transposed matrix. We use the symbol ” ◦ ” to denote the scalar product
in Rn.
We need the following assumption on F .
Assumption H[F ]. Suppose that the function F : Ω → R is such that
1) F ∈ C(Ω, R) and there exist the partial derivatives

∂xF = (∂x1F, . . . , ∂xnF ), ∂pF, ∂qF = (∂q1F, . . . , ∂qnF ),

and ∂xF, ∂qF ∈ C(Ω, Rn), ∂pF ∈ C(Ω, R),

2) for P = (t, x, p, q) ∈ Ω there is

(31) ∂qF (P ) � θ ≥ 0.

Now we formulate a difference problem corresponding to (1), (2). For u =
(u1, . . . , un), let us denote by (z, u) the unknown functions of the variables
(t(r), x(m)). Write

P (r,m)[z, u] = (t(r), x(m), z(r,m), u(r,m))

and
δ0u

(r,m) = (δ0u
(r,m)
1 , . . . , δ0u

(r,m)
n ),

δu(r,m) =
[
δju

(r,m)
i

]
i,j=1,...,n

.
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We consider the system of difference equations

(32) δ0z
(r,m) = F (P (r,m)[z, u]) + ∂qF (P (r,m)[z, u]) ◦

(
δz(r+1,m) − u(r,m)

)
,

δ0u
(r,m) = ∂xF (P (r,m)[z, u]) + ∂pF (P (r,m)[z, u])u(r,m)

+ ∂qF (P (r,m)[z, u]) ∗
[
δu(r+1,m)

]T(33)

with the initial condition

(34) z(r,m) = ϕ
(r,m)
h , u(r,m) = ψ

(r,m)
h on E0.h ∪ ∂0Eh,

where ϕh : E0.h ∪ ∂0Eh → R, ψh : E0.h ∪ ∂0Eh → Rn are given functions.
The numerical method consisting of (32)–(34) is called the generalized

implicit Euler method for (1), (2).
Difference problem (32), (34) is obtained in the following way. Suppose that

Assumption H[F ] is satisfied and that the derivatives (∂x1ϕ, . . . , ∂xnϕ) = ∂xϕ
exist on E0 ∪ ∂0E. The method of quasilinearization for nonlinear equations
consists in replacing problem (1), (2) with the following one. Let (z, u) be
unknown functions in the variable (t, x) ∈ E. First we introduce an additional
unknown function u = ∂xz in (1). Then we consider the following linearization
of (1) with respect to u:

∂tz(t, x) =F (t, x, z(t, x), u(t, x))

+∂qF (t, x, z(t, x),u(t, x)) ◦ (∂xz(t, x)− u(t, x)).
(35)

We get differential equations for u by differentiating equation (1), resulting in
the following:

(36) ∂tu(t, x) = ∂xF (t, x, z(t, x), u(t, x))

+∂pF (t, x, z(t, x), u(t, x))u(t, x) + ∂qF (t, x, z(t, x), u(t, x)) ∗
[
∂xu(t, x)

]T
.

It is natural to consider the following initial boundary condition for (35), (36):

(37) z(t, x) = ϕ(t, x), u(t, x) = ∂xϕ(t, x) on E0 ∪ ∂0E.

Difference problem (32)–(34) is a discretization of (35)–(37).
The above method of quasilinearization and the theory of bicharacteristics

were first considered by S. Cinquini [2] and M. Cinquini Cibrario [3]. Existence
results for generalized or classical solutions for nonlinear systems with initial
or initial boundary conditions are based on this process.
The method of quasilinearization is used in [1] for numerical solving of an

initial problem on the Haar pyramid.
We formulate next assumptions on given functions.

Assumption H[σ]. Suppose that the function σ : [0, a] × R+ → R+ is con-
tinuous and
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1) σ is nondecreasing with respect to both variables and σ(t, 0) = 0 for
t ∈ [0, a],

2) for each c ∈ R+ and d ≥ 1, the maximal solution of the Cauchy problem

w′(t) = cw(t) + dσ(t, w(t)), w(0) = 0,

is w(t) = 0 for t ∈ [0, a].

Assumption H[F,ϕ]. Suppose that Assumption H[F ] is satisfied and

1) there is L ∈ R+ such that

|∂pF (t, x, p, q)|, ‖ ∂qF (t, x, p, q) ‖≤ L on Ω,

2) there is σ : [0, a] × R+ → R+ such that Assumption H[σ] is satisfied
and the terms

‖ ∂xF (t, x, p, q)− ∂xF (t, x, p, q) ‖, |∂pF (t, x, p, q)− ∂pF (t, x, p, q)|,

‖ ∂qF (t, x, p, q)− ∂qF (t, x, p, q) ‖

are bounded from above by σ(t, |p− p|+ ‖ q − q ‖),
3) ϕ : E0 ∪ ∂0E → R is of class C1.

We formulate the main result on the implicit difference method for nonlinear
equations.

Theorem 4.1. Suppose that Assumption H[F,ϕ] is satisfied and

1) v : E → R is a solution of (1), (2) and v is of class C2 on E,
2) there exists α0 : H → R+ such that

|ϕ(r,m) − ϕ
(r,m)
h |+ ‖ ∂xϕ

(r,m) − ψ
(r,m)
h ‖≤ α0(h) on E0.h ∪ ∂0Eh

and

lim
h→0

α0(h) = 0.

Then there exists exactly one solution (zh, uh) :Eh →R1+n, uh =(uh.1, . . . , uh.n),
of difference problem (32)–(34) and there exist a number ε̃ > 0 and a function
α : H → R+ such that, for ‖ h ‖< ε̃, there hold

(38) |v(r,m) − z
(r,m)
h |+ ‖ ∂xv

(r,m) − u
(r,m)
h ‖≤ α(h) on Eh

and

lim
h→0

α(h) = 0.
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Proof. We first show that there exists exactly one solution (zh, uh) : Eh →
R1+n of (32)–(34). We deduce from assumption (31) that system (32), (33) is
equivalent to the following one:

z(r+1,m)

[
1 + h0

n∑
i=1

1
hi

∣∣∣∂qiF (P (r,m)[z, u])
∣∣∣]

= z(r,m) + h0

κ∑
i=1

1
hi
∂qiF (P (r,m)[z, u])z(r+1,m+ei)

− h0

n∑
i=κ+1

1
hi
∂qiF (P (r,m)[z, u])z(r+1,m−ei)

+ h0F (P (r,m)[z, u])− h0∂qF (P (r,m)[z, u]) ◦ u(r,m)

and

u
(r+1,m)
j

[
1 + h0

n∑
i=1

1
hi

∣∣∣∂qiF (P (r,m)[z, u])
∣∣∣]

= u
(r,m)
j + h0

κ∑
i=1

1
hi
∂qiF (P (r,m)[z, u])u(r+1,m+ei)

j

− h0

n∑
j=κ+1

1
hi
∂qiF (P (r,m)[z, u])u(r+1,m−ei)

j + h0∂xjF (P (r,m)[z, u])

+ h0∂pF (P (r,m)[z, u])u(r,m)
j , j = 1, . . . , n.

It is clear that the existence and uniqueness of a solution of the above system
may be deduced by the method used in the proof of Theorem 3.1. Details are
omitted.
We next show (38). Write w = ∂xv, w = (w1, . . . , wn), and

vh = v|Eh
, wh = w|Eh

, wh = (w1.h, . . . , wn.h).

Let us consider the errors

λ
(r)
h.0 = max {|(zh − vh)(r,m)| : −N ≤ m ≤ N},

λ
(r)
h.1 = max {‖ (uh − wh)(r,m) ‖: −N ≤ m ≤ N},

where 0 ≤ r ≤ K, and λ(r)
h = λ

(r)
h.0 + λ

(r)
h.1 for 0 ≤ r ≤ K. We will write a

difference inequality for the function λh.
We first examine λh.0. Let the functions Γh.0,Λh.0 : E′h → R be defined by

Γ(r,m)
h.0 = δ0v

(r,m)
h − ∂tv

(r,m)

+∂qF
(
P (r,m)[vh, wh]

)
◦

[
∂xv

(r,m) − δv
(r+1,m)
h

]
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and
Λ(r,m)

h.0 = F
(
P (r,m)[vh, wh]

)
− F

(
P (r,m)[zh, uh]

)
−∂qF

(
P (r,m)[vh, wh]

)
◦ w(r,m)

h + ∂qF
(
P (r,m)[zh, uh]

)
◦ u(r,m)

h

+
[
∂qF

(
P (r,m)[vh, wh]

)
− ∂qF

(
P (r,m)[zh, uh]

)]
◦ δv(r+1,m)

h .

It follows easily that the function (v, w) satisfies (35), (36). We thus get

δ0(vh − zh)(r,m) = ∂qF
(
P (r,m)[zh, uh]

)
◦ δ(vh − zh)(r+1,m)

+ Λ(r,m)
h.0 + Γ(r,m)

h.0 , (t(r), x(m)) ∈ E′h
(39)

and, consequently,

(40) (vh − zh)(r+1,m)

[
1 + h0

n∑
j=1

1
hj
θj∂qjF

(
P (r,m)[zh, uh]

)]

= (vh − zh)(r,m) + h0

κ∑
j=1

1
hj
∂qjF

(
P (r,m)[zh, uh]

)
(vh − zh)(r+1,m+ej)

−h0

n∑
j=κ+1

1
hj
∂qjF

(
P (r,m)[zh, uh]

)
(vh − zh)(r+1,m−ej)

+h0

[
Λ(r,m)

h.0 + Γ(r,m)
h.0

]
, (t(r), x(m)) ∈ E′h.

It follows easily that there is γ0 : H → R+ such that

(41) |Γ(r,m)
h.0 | ≤ γ0(h) on E′h and lim

h→0
γ0(h) = 0.

Let c0 ∈ R+ be such a constant that

‖ ∂xv(t, x) ‖≤ c0 and ‖ ∂xxv(t, x) ‖≤ c0 on E.

It follows from Assumption H[f, ϕ] that

(42) |Λ(r,m)
h.0 | ≤ 2

[
Lλ

(r)
h + c0σ(t(r), λ(r)

h )
]
, (t(r), x(m)) ∈ E′h.

According to the above estimates and (40), (41), there is

(43) |(zh − vh)(r+1,m)| ≤ λ
(r)
h.0 + 2h0

[
Lλ

(r)
h + c0σ(t(r), λ(r)

h )
]

+ h0γ0(h),

where (t(r), x(m)) ∈ E′h. Now we write a difference inequality for λh.1. Let the
functions

Λh = (Λh.1, . . . ,Λh.n) : E′h → Rn, Γh = (Γh.1, . . . ,Γh.n) : E′h → Rn,
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be defined by

Γ(r,m)
h = δ0w

(r,m)
h − ∂tw

(r,m) + ∂qF
(
P (r,m)[vh, wh]

)
?

[
∂xw

(r,m) − δw
(r+1,m)
h

]T

and
Λ(r,m)

h = ∂xF
(
P (r,m)[vh, wh]

)
− ∂xF

(
P (r,m)[zh, uh]

)
+∂pF

(
P (r,m)[vh, wh]

)
w

(r,m)
h − ∂pF

(
P (r,m)[zh, uh]

)
u

(r,m)
h

+
[
∂qF

(
P (r,m)[vh, wh]

)
− ∂qF

(
P (r,m)[zh, uh]

)]
?

[
δw

(r+1,m)
h

]T
.

Then the function wh − uh satisfies the difference equation

(44) δ0(wh − uh)(r,m) = ∂qF
(
P (r,m)[zh, uh]

)
?

[
δ(wh − uh)(r+1,m)

]T

+Λ(r,m)
h + Γ(r,m)

h , (t(r), x(m)) ∈ E′h.
This gives

(wh.i − uh.i)(r+1,m)

[
1 + h0

n∑
j=1

1
hj
θj∂qjF

(
P (r,m)[zh, uh]

)]

= (wh.i − uh.i)(r,m) + h0

κ∑
j=1

1
hj
∂qjF

(
P (r,m)[zh, uh]

)
(wh.i − uh.i)(r+1,m+ej)

−h0

n∑
j=κ+1

1
hj
∂qjF

(
P (r,m)[zh, uh]

)
(wh.i − uh.i)(r+1,m−ej)

+h0

[
Λ(r,m)

h.i + Γ(r,m)
h.i

]
, 1 ≤ i ≤ n, (t(r), x(m)) ∈ E′h.

According to assumption (31),

(45) ‖ (wh − uh)(r+1,m) ‖
[
1 + h0

n∑
j=1

1
hj
θj∂qjF

(
P (r,m)[zh, uh]

)]

≤‖ (wh − uh)(r,m) ‖ +h0

κ∑
j=1

1
hj
∂qjF

(
P (r,m)[zh, uh]

)
‖ (wh − uh)(r+1,m+ej) ‖

−h0

n∑
j=κ+1

1
hj
∂qjF

(
P (r,m)[zh, uh]

)
‖ (wh − uh)(r+1,m−ej) ‖

+h0

[
‖ Λ(r,m)

h ‖ + ‖ Γ(r,m)
h ‖

]
, (t(r), x(r,m)) ∈ E′h.

It follows from Assumption H[F,ϕ] that

(46) ‖ Λ(r,m)
h ‖≤ (1 + 2c0)σ(t(r), λ(r)

h ) + Lλ
(r)
h , (t(r), x(m)) ∈ E′h,
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and there is γ : H → R+ such that

(47) ‖ Γ(r,m)
h ‖≤ γ(h) on E′h and lim

h→0
γ(h) = 0.

From (45)–(47) we conclude that

(48) ‖ (uh −wh)(r+1,m) ‖≤ λ
(r)
h.1 + h0(1 + 2c0)σ(t(r), λ(r)

h ) +Lh0λ
(r)
h + h0γ(h),

where (t(r), x(m)) ∈ E′h. Adding inequalities (43) and (48) we get

(49) λ
(r+1)
h ≤ max {α0(h), U

(r)
h [λh]}, 0 ≤ r ≤ K − 1,

where

U
(r)
h [λh] = λ

(r)
h + h0(1 + 4c0)σ(t(r), λ(r)

h ) + 3Lh0λ
(r)
h + h0(γ0(h) + γ(h)).

Consider the Cauchy problem

(50) w′(t) = (1 + 4c0)σ(t, w(t)) + 3Lw(t) + γ0(h) + γ(h),

w(0) = α0(h).

It follows from condition 2) of Assumption H[σ] that there is ε̃ > 0 such that
for ‖ h ‖< ε̃ there exists the maximal solution w̃h of (50) and w̃h is defined on
[0, a]. Moreover,

lim
h→0

w̃h(t) = 0 uniformly on [0, a].

It is easily seen that w̃h satisfies the recurrent inequality

w̃
(r+1)
h ≥ w̃

(r)
h + h0(1 + 4c0)σ(t(r), w̃(r)

h )

+3h0Lw̃
(r)
h + h0(γ0(h) + γ(h)), 0 ≤ r ≤ K − 1.

By the above relation and (49), there is

λ
(r)
h ≤ w̃

(r)
h for 0 ≤ r ≤ K.

Thus we get (38) for α(h) = w̃h(a). This proves the theorem.

Remark 4.1. Suppose that all the assumptions of Theorem 4.1 are satisfied
with
σ(t, p) = L0p for (t, p) ∈ [0, a]×R+, where L0 ∈ R+ and

1) the solution v : E → R of (1), (2) is of class C3,
2) there is C̃ > 0 such that for h ∈ H there is

hi ≤ C̃hj , i, j = 0, 1, . . . , n.
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Then there exist C0, C1 ∈ R+ such that we have the following error estimate
holds:

|v(r,m) − z
(r,m)
h |+ ‖ ∂xv

(r,m) − u
(r,m)
h ‖≤ C0α0(h) + C1 ‖ h ‖ on Eh.

We obtain the above inequality by solving problem (50) and using the estimate

γ0(h) + γ(h) ≤ C ‖ h ‖
with some C ∈ R+.

In the above result the error estimate we need estimates for the derivatives
of the solution of problem (1), (2). One may obtain them by the method of
differential inequalities. Comparison results for initial problem presented in
[10], Chapter 7, can be extended on the initial boundary value problem.

Remark 4.2. The stability of difference equations generated by quasilinear
first order partial differential equations or systems is strictly connected with
Courant–Friedrichs–Levy (CFL) condition ([4], Chapter III). Assumption (10)
can be considered as the (CFL) condition for nonlinear equations. In our
considerations, it is important that we have omitted the (CFL) condition for
implicit difference methods generated by quasilinear equations. Note also that
we do not need the (CFL) condition for nonlinear problems and generalized
implicit Euler method.

5. Numerical examples.

Example 1. For n = 1 we put

(51) E = [0, 1]× [−1, 1], E0 = {0} × [−1, 1], ∂0E = [0, 1]× {−1}.
Consider the quasilinear differential equation

(52) ∂tz(t, x) =
[
− 1 + x sin (z(t, x))

]
∂xz(t, x) + f(t, x),

where
f(t, x) = 2e2t

[
x2 − 1 + x− x2 sin

(
e2t(x2 − 1)

)]
,

with the initial boundary condition

(53)
z(0, x) = x2 − 1, x ∈ [−1, 1],

z(t,−1) = 0, t ∈ [0, 1].

The solution of the above problem is given by v(t, x) = e2t(x2 − 1). Write
t(r) = rh0, 0 ≤ r ≤ K, and x(m) = mh1, −N ≤ m ≤ N, where Kh0 = 1 and
Nh1 = 1. Let us denote by zh : Eh → R the solution of the implicit difference
problem corresponding to (52), (53). We also consider the function z̃h : Eh →
R which is the solution of a classical difference equation corresponding to (52),
(53). It follows from Lemma 3.1 that the classical difference method is stable
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for 2h0 ≤ h1. We consider the implicit difference method and the classical
difference scheme with 2h0 > h1. Below we give information on errors of the
methods. Write

η
(r)
h =

1
2N

N∑
m=−N+1

|z(r,m)
h − v(r,m)|,(54)

η̃
(r)
h =

1
2N

N∑
m=−N+1

|z̃(r,m)
h − v(r,m)|.(55)

The numbers η(r)
h and η̃

(r)
h are the arithmetical means of the errors with fixed

t(r). The values of the functions ηh and η̃h are listed in the table. We write
”× ” for η̃(r)

h > 100.

h0 = 0.01, h1 = 0.01 h0 = 0.001, h1 = 0.001

t = 0.20 0.021965 0.000374 × 0.000036

t = 0.40 0.084962 0.001622 × 0.000164

t = 0.60 × 0.003584 × 0.000364

t = 0.80 × 0.005868 × 0.000587

t = 1.00 × 0.009583 × 0.000929

Table 1. Table of errors (η̃h, ηh)

h0 = 0.002, h1 = 0.001

t = 0.20 × 0.000044

t = 0.40 × 0.000211

t = 0.60 × 0.000516

t = 0.80 × 0.000948

t = 1.00 × 0.001512

Table 2. Table of errors (η̃h, ηh)

Note that η(r) < η̃(r) for all values t(r). Thus the class of implicit difference
method is larger than the set of classical difference schemes.
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Example 2. Suppose that E,E0, ∂0E are given by (51). Consider the
nonlinear differential equation

(56) ∂tz(t, x) = −∂xz(t, x) + x sin
(
∂xz(t, x)

)
+ z(t, x) + f(t, x),

where
f(t, x) = xet − x sin (etx),

with the initial boundary condition

(57)
z(0, x) = 1

2x
2, x ∈ [−1, 1],

z(t,−1) = 1
2e

t, t ∈ [0, 1].

The solution of the above problem is given by v(t, x) = 0.5etx2. Let us denote
by zh : Eh → R the solution obtained by the generalized implicit Euler method
corresponding to (56), (57). We also consider the solution z̃h : Eh → R of a
classical difference scheme for the above problem. The numbers η(r)

h and η̃
(r)
h

are the arithmetical mean of the errors defined by (54) and (55), respectively.
It follows from Theorem 1.1 that the classical difference method is stable for
2h0 ≤ h1. We consider the generalized Euler method and the classical differ-
ence scheme for 2h0 > h1. The values of the functions ηh and η̃h are listed in
the table. We write ”× ” for η̃(r)

h > 100.

h0 = 0.01, h1 = 0.01 h0 = 0.002, h1 = 0.002

t = 0.20 0.027676 0.001760 × 0.000725

t = 0.40 1.237993 0.003941 × 0.001667

t = 0.60 1.551493 0.006564 × 0.002847

t = 0.80 2.635383 0.009701 × 0.004288

t = 1.00 3.435612 0.013681 × 0.006064

Table 3. Table of errors (η̃h, ηh)

Thus we see that the implicit difference method is stable with arbitrary
steps.
Methods described in Theorems 3.1 and 4.1 have the potential for applica-

tions to solving of mixed problems for first order partial differential equations
numerically. In our method we approximate the spatial derivatives of the un-
known function in (1) by solutions of difference equations which are generated
by the original problem. In the classical schemes we use previous values of an
approximate solution to calculate the difference expressions corresponding to
∂xz in (1).
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