ON TORSION POINTS ON AN ELLIPTIC CURVES VIA DIVISION POLYNOMIALS

by Maciej Ulas

Abstract. In this note we propose a new way to prove Nagel's classical theorem [3] about torsion points on an elliptic curve over \mathbb{Q} . In order to prove it, we use basic properties of division polynomials only

1. Introduction. Let $a, b \in \mathbb{Z}$ and let us consider the plane curve E given by

(1)
$$E: y^2 = x^3 + ax + b.$$

Such a curve is called elliptic if $4a^3 + 27b^2 \neq 0$. This condition states that the polynomial $x^3 + ax + b$ has simple roots only, or equivalently, that curve (1) is non-singular.

A point (x, y) on E is called a *rational* (*integral*) point if its coordinates x and y are in \mathbb{Q} (in \mathbb{Z}).

As we know, the set $E(\mathbb{Q})$ of all rational points on E plus the so-called *point* at infinity $\{\mathcal{O}\}$ may be considered as an abelian group with neutral element \mathcal{O} . Points of finite order in this group form the subgroup Tors $E(\mathbb{Q})$ called the torsion part of the curve E.

The famous Mordell Theorem states that the group $E(\mathbb{Q})$ is finitely generated. Therefore, there exists an $r \in \mathbb{N}$ such that

(2)
$$E(\mathbb{Q}) \cong \mathbb{Z}^r \times \operatorname{Tors} E(\mathbb{Q}).$$

Nagell in 1935 and Lutz two years later proved that torsion points on curve (1) have integer coordinates. Nagell's argument is based on the observation that if the denominator p of the x-coordinate of an elliptic curve's point P is

²⁰⁰⁰ Mathematics Subject Classification. Primary 11G05, 14H52.

Key words and phrases. Elliptic curves, torsion points, division polynomials.

greater then 1, then the denominator q of the x-coordinate of 2P is greater then p. Our proof is based on a different idea.

Now let us inductively define the so-called *division polynomials* $\psi_m \in \mathbb{Z}[x, y]$, which are used to express coordinates of the point mP in terms of coordinates of a point P:

$$\begin{split} \psi_1 &= 1, \ \psi_2 = 2y, \\ \psi_3 &= 3x^4 + 6ax^2 + 12bx - a^2, \\ \psi_4 &= 4y(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b^2 - a^3), \\ \psi_{2m+1} &= \psi_{m+2}\psi_m - \psi_{m-1}\psi_{m+1}^3, \quad m \ge 2, \\ 2y\psi_{2m} &= \psi_m(\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2), \quad m \ge 3. \end{split}$$

It is easy to observe that ψ_{2m} are polynomials indeed. Now we define polynomials ϕ_m and ω_m in the following way

$$\phi_m = x\psi_m^2 - \psi_{m-1}\psi_{m+1},$$

$$4y\omega_m = \psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2$$

Most useful properties of division polynomials are summarized in the following theorem.

THEOREM 1.1. Let $m \in \mathbb{N}_+$. Then

- 1. ψ_m , ϕ_m , $y^{-1}\omega_m$ for m odd and $(2y)^{-1}\psi_m$, ϕ_m , ω_m for m even are polynomials in $\mathbb{Z}[x, y^2]$. Substituting $y^2 = x^3 + ax + b$, we may consider them as polynomials in $\mathbb{Z}[x]$.
- 2. Considering ψ_m and ϕ_m as polynomials in x there is

$$\phi_m(x) = x^{m^2} + lower \ degree \ terms,$$

 $\psi_m^2(x) = m^2 x^{m^2 - 1} + lower \ degree \ terms.$

3. If $P \in E(\mathbb{Q})$, then

$$mP = \left(\frac{\phi_m(P)}{\psi_m^2(P)}, \ \frac{\omega_m(P)}{\psi_m^3(P)}\right).$$

We here omit a proof of this theorem. Assertions 1 and 2 are easy to prove by induction, but involve rather long calculations. It is possible to prove assertion 3 in an elementary way; however, it involves extensive computer calculations. Other proofs, using more advanced methods, can be found in [1] and [2].

104

2. Points of finite order are integral. Before proving that points of finite and positive orders on an elliptic curve are integral, we will prove two useful lemmas. If p is a prime, we write $p^a || s$ if $p^a | s$ and $p^{a+1} \nmid s$.

LEMMA 2.1. If (x_0, y_0) is a rational point on an elliptic curve $E: y^2 = x^3 + ax + b$, then $x_0 = u/t^2$ i $y_0 = v/t^3$ for some integers u, v, t with GCD(uv, t) = 1.

PROOF. We write $x_0 = u/s$ and $y_0 = v/r$ with GCD(u, s) = 1 and GCD(v, r) = 1. Inserting this into $y^2 = x^3 + ax + b$ we get

$$s^3v^2 = r^2(u^3 + aus^2 + bs^3).$$

If $p^e \parallel s$ then $p^{3e} \mid s^3v^2$. Since $p \nmid u$ and $p \mid aus^2 + bs^3$, it follows that $p^{3e} \mid r^2$. No higher power of p can divide r^2 ; otherwise $p \mid v$, contrary to the assumption that GCD(v, r) = 1. Hence, $p^{3e} \parallel r^2$. If $p^f \parallel r$, then it follows that 3e = 2f, so f = 3g and e = 2g for some integer g. Thus, $p^{3g} \parallel r$ and $p^{2g} \parallel s$. Since this holds for each prime p, we conclude that $s = t^2$ and $r = t^3$ for some integer t.

LEMMA 2.2. Let E be an elliptic curve. If $P = (x, y) \in E(\mathbb{Q})$ and mP is an integral point for some $m \in \mathbb{Z}$ then the point P is integral.

PROOF. By Theorem 1.1 there is

$$mP = (X, Y) = \left(\frac{\phi_m(P)}{\psi_m(P)^2}, \frac{\omega_m(P)}{\psi_m(P)^3}\right).$$

Hence,

(3)

 $X\psi_m(x)^2 = \phi_m(x).$

Now let $x = u/t^2$, where GCD(u, t) = 1, and define

$$\Phi_m(u, t) := u^{m^2} + t^{2m^2 - 2}(\phi_m(x) - x^{m^2}),$$
$$\Psi_m(u, t) := t^{2m^2 - 2}\psi_m(x)^2.$$

Since

(4)

 $\phi_m(z) = z^{m^2}$ + lower order terms, $\psi_m^2(z) = m^2 z^{m^2 - 1}$ + lower order terms,

the functions $\Phi_m(u, t)$, $\Psi_m(u, t)$ are polynomials in $\mathbb{Z}[u, t]$. Combining (3) and (4), we obtain

(5)
$$t^{2}(X\Psi_{m}(u, t) - \Phi_{m}(u, t) + u^{m^{2}}) = u^{m^{2}}$$

and therefore, $t^2 \mid u^{m^2}$. But GCD(u, t) = 1, hence $t = \pm 1$, so the point P is integral.

Let us remind the formula for doubling a point P = (x, y) on the curve (1) which says that

(6)
$$2P = \left(\left(\frac{3x^2 + a}{2y} \right)^2 - 2x, -y + \left(\frac{3x^2 + a}{2y} \right) \left(3x - \left(\frac{3x^2 + a}{2y} \right)^2 \right) \right).$$

Our aim is to give a proof of the following theorem.

THEOREM 2.3. Let $a, b \in \mathbb{Z}$ and $E: y^2 = x^3 + ax + b$ be an elliptic curve. If $P = (x, y) \in E(\mathbb{Q})$ is a non-zero torsion point, then P is integral.

PROOF. Note that we may restrict ourselves to torsion points of prime order.

Indeed, let us assume that the theorem is true for such points. Now if Q is a point of a finite order n where n is not prime, then n = qr where q is prime and r is an integer > 1. Therefore, q(rQ) = nQ = O. From the assumption we conclude that the point rQ is integral. Thus the point Q is integral due to Lemma 2.2.

Let us suppose that the point P is of prime order q.

(*i*) If q = 2, then $2P = \mathcal{O}$, i.e., P = -P. Hence $x^3 + ax + b = 0$. We know from Lemma 2.1 that $x = u/t^2$ for some $u, t \in \mathbb{Z}$ and GCD(u, t) = 1, so we obtain

$$u^3 = -t^4(au + bt^2).$$

Therefore, $t^4 \mid u^3$ and GCD(u, t) = 1, hence $t = \pm 1$ and P is integral.

(*ii*) Now let q > 2. Again, from Lemma 2.1 follows that $x = u/t^2$ for some $u, t \in \mathbb{Z}$ and GCD(u, t) = 1. Since $qP = \mathcal{O}$, then (q-1)P = -P. Therefore,

(7)
$$t^2 \phi_{q-1}(x) = u \psi_{q-1}(x)^2,$$

where polynomials ϕ_{q-1} , ψ_{q-1}^2 are as in Theorem 1.1. For a prime q > 2 let us define polynomials

$$\Psi_{q-1}(u, t) := t^{2(q-1)^2 - 4} (\psi_{q-1}(x)^2 - (q-1)^2 x^{(q-1)^2 - 1}),$$

(8)
$$\Phi_{q-1}(u, t) := t^{2(q-1)^2 - 2} (\phi_{q-1}(x) - x^{(q-1)^2}).$$

Note that, due to Theorem 1.1, polynomials (8) have integer coefficients and thus are in $\mathbb{Z}[u, t]$.

106

Inserting $t^2x = u$ into (8), we obtain:

$$t^{2(q-1)^2-2}\psi_{q-1}^2(x) = t^2\Psi_{q-1}(u, t) + (q-1)^2u^{(q-1)^2-1},$$

(9)
$$t^{2(q-1)^2}\phi_{q-1}(x) = t^2\Phi_{q-1}(u, t) + u^{(q-1)^2}$$

Now combining (7) and (9) we get

(10)
$$u^{(q-1)^2} + t^2 \Phi_{q-1}(u, t) = ((q-1)^2 u^{(q-1)^2 - 1} + t^2 \Psi_{q-1}(u, t))u,$$

or

(11)
$$t^{2}(\Phi_{q-1}(u, t) - u\Psi_{q-1}(u, t)) = ((q-1)^{2} - 1)u^{(q-1)^{2}}.$$

Since GCD(u, t) = 1, we conclude that

$$(*) t^2 \mid q(q-2).$$

Note that for q = 3 there is $t^2 \mid 3$, which implies that $t = \pm 1$ and the point P is integral. Therefore, we may assume that q > 3.

Since $qP = \mathcal{O}$, so (q-2)P = -2P. From (6) and Theorem 1.1:

$$\frac{\phi_{q-2}(x)}{\psi_{q-2}(x)^2} = \frac{(3x^2+a)^2}{4(x^3+ax+b)} - 2x,$$

or, equivalently,

(12)
$$4\phi_{q-2}(x)(x^3 + ax + b) = (x^4 - 2ax^2 - 8bx + a^2)\psi_{q-2}(x)^2.$$

Inserting $x = u/t^2$ and using (8) we get

$$4(u^{(q-2)^2} + t^2 \Phi_{q-2}(u, t))(u^3 + aut^4 + bt^6) = (u^4 - 2au^2t^4 - 8but^6 + at^8)((q-2)^2u^{(q-2)^2 - 1} + t^2\Psi_{q-2}(u, t)),$$

or

(13)
$$t^{2}H(u, t) = ((q-2)^{2} - 4)u^{(q-2)^{2} + 3},$$

where $H(u, t) \in \mathbb{Z}[u, t]$. Since GCD(u, t) = 1, it means that

$$(**) t^2 \mid q(q-4).$$

We have shown that $t^2 | q(q-2)$ and $t^2 | q(q-4)$, where t is an integer and q is a prime > 3. Hence, $t^2 | 2$, so $t = \pm 1$. Therefore, the point P is integral as we claimed.

Acknowledgments. I would like to thank the referee for his valuable comments and Professor K. Rusek for helping me in preparing this paper.

References

- 1. Enge A., *Elliptic Curves and Their Applications to Cryptography, An Introduction*, Kluwer Academic Publishers, 1998.
- 2. Lang S., Elliptic curves: Diophantine Analysis, Springer-Verlag, 1978.
- 3. Nagell T., Solution de quelque problemes dans la theorie arithmetique des cubiques planes du premier genre, Wid. Akad. Skrifter Oslo I, Nr. 1 (1935).

Received November 18, 2004

Jagiellonian University Institute of Mathematics ul. Reymonta 4 30-059 Kraków Poland *e-mail*: Maciej.Ulas@im.uj.edu.pl

108