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ITERATED FUNCTION SYSTEMS WITH CONTINUOUS

PLACE DEPENDENT PROBABILITIES

by Joanna Jaroszewska

Abstract. We study the asymptotic behaviour of iterated function sys-
tems built of a finite number of contractions and positive, continuous, place
dependent probabilities. We prove that these systems have some special
property which is called quasistability. We also establish the existence of
an invariant distribution for such systems.

1. Introduction. We study asymptotic properties of iterated function
systems (IFSs) defined by a finite number of contractions and positive, con-
tinuous, place dependent probabilities. A question concerning the asymptotic
behaviour of these systems arose from attempts at completing a gap in Karlin’s
proof of Theorem 36 in [6], where Karlin postulated the asymptotic stability
of IFSs built of two affine contractions and positive, continuous probabilities.
The problem of the asymptotic stability of IFSs was treated by a number of
authors and solved under some additional assumptions (in comparison with
the Karlin’s theorem) see e.g. [2], [10]. Recently Ö. Stenflo showed incorrect-
ness of Karlin’s theorem by constructing an example of an IFS, which is built
from two affine contractions and positive probabilities and has two stationary
distributions. In particular, this system is not asymptotically stable. Now new
questions appear. What are the limiting properties of an IFS consisting of
contractions and positive continuous probabilities? Are we able to associate
with such an IFS any invariant distributions? Is an invariant distribution cor-
responding to a given IFS unique? The purpose of this paper is to answer
these questions.

The organization of the paper is as follows. Section 2 contains basic defini-
tions and facts concerning Barnsley operators and attractors defined for finite
families of continuous transformations of X into itself. In Section 3 we recall
some notation and definitions from the theory of Markov operators. In Section
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4 we introduce iterated function systems and prove the main stability result,
Theorem 1, which assures the quasistability of iterated function systems with
contractive transformations and positive continuous probabilities. Section 5,
which concludes the paper, is devoted to the problem of the existence and
non-uniqueness of an invariant distribution.

2. Barnsley operators. Let (X, ρ) be a complete metric space. By P(X)
we denote the space of all nonempty subsets of X. For r > 0, B(x, r) stands
for the open ball with center at x and radius r and B(K, r) stands for the
union of all open balls with radii r and with centers in K. By N we denote the
set of positive integers.

Let I be a nonempty finite set. Given a family {Si : i ∈ I} of continu-
ous transformations from X into itself, we define the corresponding Barnsley
operator F : P(X) → P(X) by the formula

F (A) =
⋃
i∈I

Si(A) for A ∈ P(X).

For A,B ∈ P(X), let

(1) h (A,B) = max
{

sup
a∈A

ρ (a,B) , sup
b∈B

ρ (b, A)
}

.

Obviously, if A,B ∈ P(X) are bounded then h (A,B) < ∞ and h (A,B) equals
the Hausdorff distance between A and B. Furthermore, for A,B ∈ P(X) we
have

(2) h (A,B) = h (cl A,B) .

In the proof of Theorem 1, we will use the following well-known fact (for a
proof see [1, page 82] or [5, page 30]):

Lemma 1. If {Si : i ∈ I} is a finite family of contractions with respective
contractivity constants Li and F is the corresponding Barnsley operator, then

(3) h (F (A), F (B)) ≤
(

max
i∈I

Li

)
h (A,B) for A,B ∈ P(X).

Moreover, there exists the unique nonempty compact set K ⊂ X which is
invariant with respect to the family {Si : i ∈ I}, i.e.

(4) K =
⋃
i∈I

Si(K).

The set K mentioned in the statement of the above theorem is called the
attractor of the family {Si : i ∈ I}.

We finish this section with a simple lemma, which we provide with the
detailed proof for the reader’s convenience.
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Lemma 2. If a family {Si : i ∈ I} consists of contractions and K is the
attractor corresponding to that family, then for each {in} ∈ IN the limit

(5) lim
n→∞

Si1 ◦ ... ◦ Sin(x)

exists, is independent of x ∈ X and belongs to K. Moreover, for every ε > 0
the convergence in (5) is uniform over x ∈ B (K, ε). Furthermore, the function
ϕ : IN → K defined by the formula

ϕ ({in}) = lim
n→∞

Si1 ◦ ... ◦ Sin(x)

is onto.

Proof. Fix {in} ∈ IN. To see that limit (5) exists, choose x ∈ X and
k, l ∈ N, k < l. Let ε > 0 be such a number that x ∈ B (K, ε). Find c ∈ K
such that ρ (x, c) < ε and set y = Sik+1

◦ ... ◦ Sil (c). Observe that y ∈ K and

ρ (Si1 ◦ ... ◦ Sik(x), Si1 ◦ ... ◦ Sil(x))
≤ ρ (Si1 ◦ ... ◦ Sik(x), Si1 ◦ ... ◦ Sik(c))
+ ρ (Si1 ◦ ... ◦ Sik(c), Si1 ◦ ... ◦ Sil(c))
+ ρ (Si1 ◦ ... ◦ Sil(c), Si1 ◦ ... ◦ Sil(x))(6)

≤ Lkρ (x, c) + Lkρ (c, y) + Llρ (c, x)

≤ Lk (2ε + diam(K)) .

Thus {Si1 ◦ ... ◦ Sin(x)} is a Cauchy sequence. Additionally, since the estimate
in (6) is uniform for x ∈ B (K, ε), the convergence in (5) is also uniform. Next,
from the contractivity of transformations Si (i ∈ I) we obtain that the limit
(5) does not depend on x ∈ X, that is the function ϕ is well defined. From
the invariance of the attractor it follows that the limit (5) belongs to K. We
are left with the task of proving that ϕ is a surjection. Fix c ∈ K. Observe
that (4) implies the existence of i1 ∈ I such that c ∈ Si1(K). Proceeding by
induction we choose a sequence {in} ∈ IN such that c ∈ Si1 ◦ ... ◦ Sin(K) for
all n ∈ N. Since K is compact and {Si1 ◦ ... ◦ Sin(K)} is a decreasing sequence
of sets containing c and diameters of these sets decrease to 0, we obtain {c} =⋂∞

n=1 Si1 ◦ ... ◦Sin(K). Thus, if x ∈ K, then c = limn→∞ Si1 ◦ ... ◦Sin(x). This
completes the proof.

3. Markov operators and their asymptotic behaviour. In what fol-
lows we assume that (X, ρ) is a Polish space. By BX we denote the σ-algebra
of Borel subsets of X, by M(X) the family of all finite Borel measures on X
and by M1(X) the family of all µ ∈M(X) such that µ(X) = 1. The elements
of M1(X) are called distributions.
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We say that µ ∈ M(X) is concentrated on a set A ∈ BX if µ (X \A) = 0.
By MA

1 (X) we denote the set of all distributions concentrated on A. The
support of µ ∈M(X), which is defined by the formula

suppµ = {x ∈ X : µ (B(x, r)) > 0 for r > 0} ,

turns out to be the smallest closed set on which a measure µ is concentrated.
As usually, by B(X) we denote the space of all bounded Borel measurable

functions f : X → R and by C(X) the subspace of all bounded continuous
functions. For f ∈ B(X) and µ ∈M(X) we write

〈f, µ〉 =
∫

X
f(x)µ(dx).

Let Ms(X) = {µ1 − µ2 : µ1, µ2 ∈M(X)} be the space of finite signed
measures. In Ms(X) we introduce the Fortet-Mourier norm given by

‖µ‖ = sup {|〈f, µ〉| : f ∈ L(X)} ,

where

L(X) = {f ∈ C(X) : ‖f‖ ≤ 1, |f(x)− f(y)| ≤ ρ (x, y) for x, y ∈ X} .

An operator P : M(X) →M(X) is called a Markov operator if it satisfies
the following two conditions:

(i) positive linearity :

P (λ1µ1 + λ2µ2) = λ1P (µ1) + λ2P (µ2)

for λ1, λ2 ≥ 0 and µ1, µ2 ∈M(X);
(ii) preservation of the norm:

Pµ(X) = µ(X) for µ ∈M(X).

It is easy to show that a Markov operator on M(X) can be uniquely extended
to a linear operator on Ms(X), which transforms M(X) into itself.

We say that a Markov operator P is a Feller operator if there is a linear
operator U : C(X) → C(X) dual to P , that is

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ C(X) and µ ∈M(X).

A measure µ∗ ∈M(X) is called stationary (or invariant) with respect to a
Markov operator P if Pµ∗ = µ∗. A Markov operator P is called asymptotically
stable if there exists a stationary distribution µ∗ such that

(7) lim
n→∞

‖Pnµ− µ∗‖ = 0 for µ ∈M1(X).

Clearly the distribution µ∗ satisfying (7) is unique.



141

We say that a Markov operator P is quasistable on a set K, if K is
nonempty closed subset of X and if

(i) for every c ∈ K and for every ε > 0 there exists a number α > 0 such
that

(8) lim inf
n→∞

Pnµ (B(c, ε)) ≥ α for µ ∈M1(X);

(ii) for every c /∈ K there exists a number ε > 0 such that

(9) lim
n→∞

Pnµ (B(c, ε)) = 0 for µ ∈M1(X).

The operator P is called quasistable if there exists a set K such that P
is quasistable on K. The definition of quasistability of Markov operators is
quite close to the notion of the asymptotic positivity, defined in [8, page 193].
Observe, that an asymptotically stable Markov operator P with the stationary
distribution µ∗ is quasistable on the set supp µ∗, which is a consequence of the
Alexandrov theorem (see [3, page 11]). The converse implication is not true
(which follows from Theorem 1 and Theorem 4).

4. Quasistability of iterated function systems. Assume that I is a
nonempty finite set (this assumption will not be repeated). By an iterated
function system (shortly IFS) {(Si, pi) : i ∈ I} we mean a family of pairs con-
sisting of continuous maps Si : X → X and pi : X → [0, 1], defined for each
i ∈ I and such that

∑
i∈I pi(x) = 1 for all x ∈ X.

Given an IFS {(Si, pi) : i ∈ I} we define the corresponding Markov operator
P : M(X) →M(X) by the formula

(10) Pµ(A) =
∑
i∈I

∫
X

1A (Si(x)) pi(x)µ(dx) for A ∈ BX , µ ∈M(X).

Observe that P is a Feller operator and the dual operator U is given by

Uf =
∑
i∈I

pi (f ◦ Si) for f ∈ C(X).

To simplify the language we will say that an IFS {(Si, pi) : i ∈ I} is asymptot-
ically stable, quasistable or has invariant distribution if the Markov operator
(10) has the corresponding property.

In order to prove the main result of this section we need two simple lemmas.
The first easily follows from [9, Lemma 6.2] (compare also with [7, Proposition
12.8.2]) and allows us to construct supports of iterations of a given measure.

Lemma 3. Consider an IFS {(Si, pi) : i ∈ I} with pi > 0 for i ∈ I. Let P
be the corresponding Markov operator and let F be the corresponding Barnsley
operator. Then

suppPnµ = clFn (supp µ) for µ ∈M(X), n ∈ N.
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Lemma 4. If f : X → (0,∞) is a continuous function and a set K ⊂ X is
compact, then there exist numbers β > 0 and δ > 0 such that f(x) > β for all
x ∈ B(K, δ).

Proof. The above statement is an obvious conclusion of the compactness
of K. For every x ∈ K define numbers βx, δx > 0 such that f(y) > βx for
y ∈ B (x, 2δx). Let

{
B
(
xj , δxj

)}q

j=1
be a finite subcover of K chosen from

the cover {B (x, δx)}x∈K of K. Set β = minj=1,...,q βxj and δ = minj=1,...,q δxj .
From the triangle inequality it follows that B(K, δ) ⊂

⋃q
j=1 B

(
xj , 2δxj

)
, so if

x ∈ B (K, δ) then f(x) > β, which completes the proof.

Theorem 1. Consider an IFS {(Si, pi) : i ∈ I} such that for each i ∈ I
the transformation Si is a contraction and the function pi is positive. Then
{(Si, pi) : i ∈ I} is quasistable.

Proof. Let P and U denote the Markov operator and the dual operator
corresponding to a given IFS {(Si, pi) : i ∈ I}, respectively. Let Li be a Lips-
chitz constant for Si, i ∈ I. Since L = maxi∈I Li < 1, we can apply Lemma 1,
by virtue of which there exists a nonempty compact set K ⊂ X, invariant with
respect to the family {Si : i ∈ I}. We will prove that the IFS {(Si, pi) : i ∈ I}
is quasistable with respect to K. The proof falls naturally into two parts, due
to the form of the definition of the quasistability.

To begin with the first part, fix c ∈ K and ε > 0. According to the
properties of ϕ defined in the statement of Lemma 2, there exists {in} ∈ IN

such that c = limn→∞ Si1 ◦ ... ◦ Sin(x) for all x ∈ B(K, ε). The convergence to
the limit is uniform over x ∈ B(K, ε), so we can choose a number m ∈ N such
that

(11) Si1 ◦ ... ◦ Sim(B(K, ε)) ⊂ B(c, ε).

Further, since K is compact, we can apply Lemma 4 to the set K and to each
of the functions pik ◦Sik+1

◦ ...◦Sim in turn (k = 1, ...,m). We obtain constants
βk > 0 and δk > 0 such that pik ◦ Sik+1

◦ ... ◦ Sim(x) > βk for x ∈ B(K, δk),
k ∈ {1, ...,m}. Now let

δ = min {ε, δ1, ..., δm} and α = β1 · ... · βm/2.

Next, fix a distribution µ ∈M1 concentrated on a bounded subset of X, that
is with the bounded suppµ. The inequality (3) gives

h (Fn (supp µ) ,K) ≤ Lnh (supp µ,K) for n ∈ N.

Therefore, from the finiteness of h (suppµ,K), Lemma 3 and property (2) we
conclude that there exists n0 ∈ N such that

h (supp Pnµ,K) ≤ δ for n ≥ n0.
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According to formula (1) we then have

(12) suppPnµ ⊂ B (K, δ) for n ≥ n0.

We are now in a position to show (8). Let n ≥ m + n0. We have

Pnµ (B (c, ε)) =
〈
Um1B(c,ε), P

n−mµ
〉

=
∑

k1,...,km∈I

∫
X

(pkm) ... (pk1 ◦ Sk2 ◦ ... ◦ Skm)
(
1B(c,ε) ◦ Sk1 ◦ ... ◦ Skm

)
dPn−mµ

≥
∫
X

(pim) ... (pi1 ◦ Si2 ◦ ... ◦ Sim)
(
1B(c,ε) ◦ Si1 ◦ ... ◦ Sim

)
dPn−mµ.

The definition of δ and inclusion (11) yield

B(K, δ) ⊂ (Si1 ◦ ... ◦ Sim)−1 (B(c, ε)) ,

and consequently

Pnµ (B(c, ε)) ≥
∫

B(K,δ)
(pim) ... (pi1 ◦ Si2 ◦ ... ◦ Sim) dPn−mµ.

From the definition of α and (12) it follows that

(13) Pnµ (B(c, ε)) ≥ 2α,

where n ≥ m + n0. Letting n →∞ we obtain

lim inf
n→∞

Pnµ (B(c, ε)) ≥ 2α > α,

so (8) is proved for distributions with bounded supports. Now consider a
distribution µ ∈ M1 with an arbitrary support. Choose a bounded Borel set
S ⊂ X such that µ(S) ≥ 1/2. We have then µ ≥ µS/2, where µS ∈ MS

1 is of
the form

µS(A) =
µ (A ∩ S)

µ (S)
for A ∈ B(X).

Applying (13) to µS leads to inequalities

Pnµ (B(c, ε)) ≥ PnµS (B(c, ε)) /2 ≥ α,

which are true for n large enough. This completes the first part of the proof.
In order to deal with the second, fix c /∈ K and choose ε > 0 such that

(14) B (K, ε) ∩B (c, ε) = ∅.

Consider a distribution µ ∈ M1 with a bounded support and proceeding as
before find a number n0 ∈ N such that

suppPnµ ⊂ B (K, ε) for n ≥ n0.
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Combining this with (14) we can assert that

lim
n→∞

Pnµ (B (c, ε)) = 0,

which implies (9) for measures with bounded supports. Passing to the case of
a distribution with unbounded support, fix such a distribution µ ∈ M1 and a
number η > 0. Next, choose such a bounded Borel set S ⊂ X that µ (S) ≥ 1−η
and define two distributions, µS ∈MS

1 and γ ∈M1, by the formulae

µS(A) =
µ (A ∩ S)

µ (S)
for A ∈ B(X);

γ(A) =
1
η

(
µ(A)− (1− η) µS(A)

)
for A ∈ B(X).

Obviously
µ = (1− η) µS + ηγ

and consequently

lim sup
n→∞

Pnµ (B (c, ε))

≤ (1− η) lim
n→∞

PnµS (B (c, ε)) + η lim sup
n→∞

Pnγ (B (c, ε)) ≤ η.

Since the number η is arbitrary, the last inequality completes the proof.

5. The existence and non-uniqueness of stationary distribution.
In this section we will discuss the problem of the existence and non-uniqueness
of an invariant distribution. We start from quoting a result proved by A.
Lasota and J. A. Yorke (see [10], Theorem 3.1).

Theorem 2. [Lasota–Yorke Theorem] Let (K, ρ) be a metric space in which
closed balls are compact and let PK : M(K) → M(K) be a Feller operator.
Assume that there is a compact set Y ⊂ K and a distribution υ0 ∈ M1(K)
such that

(15) lim sup
n→∞

(
1
n

n∑
m=1

Pm
K υ0 (Y )

)
> 0.

Then PK has a stationary distribution.

Using the above theorem we may prove the following sufficient condition
for the existence of a stationary distribution for iterated function systems.

Theorem 3. Consider an IFS {(Si, pi) : i ∈ I} such that for every i ∈ I
the transformation Si is a contraction and pi is positive. Then {(Si, pi) : i ∈ I}
has an invariant distribution.
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Proof. Let P denote the Markov operator corresponding to {(Si, pi) : i ∈ I}.
Let K be the attractor of the family {Si : i ∈I}, existing by virtue of Lemma
1. Consider transformations M(K) 3 υ 7−→ υX ∈ M(X) and M(X) 3 µ 7−→
µK ∈M(K) defined by the following formulae

υX (A) = υ (A ∩K) for υ ∈M(K) and A ∈ BX ;

µK = µ|BK
for µ ∈M(X).

Next, examine an operator PK : M(K) →M(K) given by

PKυ =
(
P
(
υX
))K

for υ ∈M(K).

Lemma 3 and the compactness of K yield that

(16) suppPµ ⊂ K for µ ∈M(X) such that suppµ ⊂ K.

This implies that PK is a Markov operator and a Feller operator. Fix an
arbitrary x0 ∈ K. Since K is compact, from (16) it also follows that an
operator PK , a set Y = K and a distribution υ0 = δx0 satisfy condition (15).
Thus the assumptions of Theorem 2 are fulfilled. According to this theorem
there exists a distribution υ∗ ∈M1(K) which is invariant for PK . The measure
(υ∗)

X ∈M(X) is a stationary distribution for P .

Observe that if an IFS consists of contractions and positive probabilities
then it is globally and locally concentrating (for definitions see [12]), which
is a consequence of the Chebyshev inequality and can be proved following the
main idea of the proof of Theorem 3.2 from [8]. If a given IFS is addition-
ally nonexpansive, then it is also asymptotically stable, which follows from
Theorem 3.1 from [12]. This implies the existence and uniqueness of an in-
variant distribution. However, in general, the assumptions of the contractivity
of transformations and the positivity and continuity of probabilities of a given
IFS imply neither asymptotic stability of this IFS nor the uniqueness of an
invariant distribution. The counter-example illustrating the above statement
is contained in Theorem 1 from [11] and is an application of the results from
[4]. We quote this theorem below.

Theorem 4. Let S1 and S2 be maps from [0, 1] into itself defined by the
formulae

S1(x) =
x

3
, S2(x) =

x

3
+

2
3

for x ∈ [0, 1];

Then there exists a continuous function p : [0, 1] → (0, 1) such that the IFS
{(S1, p), (S2, 1− p)} admits two different invariant distributions.
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