DELAYED VON FOERSTER EQUATION

By Najemedin Haribash

Abstract

In the paper the existence and uniqueness of a solution of an integro-differential with delayed argument in integral part is proved.

1. Introduction. The theory of first order partial integro-differential equations is interesting because of its applications of mathematics to biology. The most interesting problem is that, of the chaotic behaviour considered by Dawidowicz [1], 2], [3], Lasota [7], Rudnicki [9] and Łoskot [8]. To study this problem it is necessary to prove the existence and uniqueness of solutions. This problem has been studied in a lot of papers [6] In the present paper, the results of the paper 4] are generalized on the case of delayed argument for z.
2. Formulation of theorems. Let us consider the system of equations

$$
\begin{gather*}
\frac{\partial u}{\partial t}+c\left(x, z_{t}\right) \frac{\partial u}{\partial x}=\lambda\left(x, u, z_{t}\right) \tag{1}\\
z(t)=\int_{0}^{\infty} u(t, x) d x
\end{gather*}
$$

where

$$
\begin{equation*}
z_{t}:[-r, 0] \rightarrow \mathbb{R}_{+} \tag{3}
\end{equation*}
$$

is defined by the formula

$$
\begin{equation*}
z_{t}(s)=z(t-s) \tag{4}
\end{equation*}
$$

for $t \geq 0$ and $x \geq 0$.

The equation (11) is considered with the initial condition

$$
\begin{equation*}
u(0, x)=u_{0}(x) \tag{5}
\end{equation*}
$$

Throughout the paper, the coefficients c and λ are assuming to satisfy the following assumptions
$\left(C_{1}\right)$

$$
c: \mathbb{R}_{+} \times C([-r ; 0] ; \mathbb{R}) \rightarrow \mathbb{R}_{+}
$$

$\left(C_{2}\right)$ The coefficient c is of class C^{1} for $x \geq 0$
$\left(C_{3}\right)$

$$
c(0, Z)=0
$$

$\left(C_{4}\right)$

$$
\left|\frac{\partial c}{\partial x}\right| \leq \alpha
$$

$\left(C_{5}\right)$

$$
|c(x, Z)-c(x, \bar{Z})| \leq \gamma\|Z-\bar{Z}\|
$$

where

$$
\|Z\|=\sup _{-r \leq s \leq 0}|Z(s)|
$$

$\left(C_{6}\right)$

$$
\left|\frac{\partial c}{\partial x}(x, z)\right| \leq \mu(z)
$$

where μ is continuous
$\left(\Lambda_{1}\right)$ The function λ is of class C^{1} for $x \geq 0, u \geq 0$
$\left(\Lambda_{2}\right)$

$$
\lambda(x, 0, \varphi)=0
$$

$\left(\Lambda_{3}\right)$

$$
\frac{\partial \lambda}{\partial u} \leq \beta
$$

$\left(\Lambda_{4}\right)$

$$
\left|\frac{\partial \lambda}{\partial u}\right| \leq \beta(u, z)
$$

where β is continuous
($\left.\Lambda_{5}\right) \exists \gamma^{\prime}$

$$
|\lambda(x, u, Z)-\lambda(x, u, \bar{Z})| \leq \gamma^{\prime}\|Z-\bar{z}\| u
$$

$\left(\Lambda_{6}\right)$

$$
\left|\frac{\partial \lambda}{\partial x}\right| \leq \nu(z, u) u
$$

Theorem 1. Let u_{0} be bounded and continuous on $(0, \infty), u_{0} \geq 0$ and let
(6)

$$
A=\int_{0}^{\infty} u_{0}(x) d x<\infty
$$

Let

$$
z_{0} \in C([-r, 0]), z_{0}(0)=A
$$

Define

$$
z_{t}:[0, T] \rightarrow C([-r, 0])
$$

by the formula

$$
\begin{array}{ll}
z_{t}(s)=z(t-s) & \text { for } t \geq s \\
z_{t}(s)=z_{0}(t-s) & \text { for } t<s
\end{array}
$$

Then there exists exactly one non negative function u which is a solution of (1), (4), (5)
3. The method of characteristics and construction of operator Θ. Let $C^{+}([0, T])$ be the set of all continuous and non-negative function on the interval $[0, T]$
First we consider problem (1], (5) where $z \in C([-r, T])$ is a given function
Denote by $\psi(t, x, y)=\psi\left(t, x, y, z_{t}\right)$ and $\varphi(t, x)=\varphi\left(t, x, z_{t}\right)$
he characteristics of (1)
i.e. the solution of

$$
\begin{equation*}
\xi^{\prime}=c\left(\xi, z_{t}\right), \xi(0)=x \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta^{\prime}=\lambda\left(\xi, \eta, z_{t}\right), \eta(0)=y \tag{8}
\end{equation*}
$$

respectively, for $t \in[0, T]$
Definition 1. The function $u:[0, T] \times[0, \infty)$ is a solution of (1), (5) if for every $t \in[0, T], x \geq 0$,

$$
\begin{equation*}
u(t, \varphi(t, x))=\psi(t, x, v(x)) \tag{9}
\end{equation*}
$$

Proposition 1. Under assumptions ($\overline{C_{1}}-\overline{C_{3}}$ and $\left(\overline{\Lambda_{1}}-\left(\overline{\Lambda_{3}}\right)\right.$ if $z \in C_{+}([0, T])$, v satisfies (4) and u is the solution of (11), (3), then for $t \geq 0$

$$
\begin{equation*}
\int_{0}^{\infty} u(t, x) d x<\infty \tag{10}
\end{equation*}
$$

and the function $[0, T] \ni t \mapsto \int_{0}^{\infty} u(t, x) d x$ is continuous.

In fact, u depends on z (this dependence is omitted). For fixed $v \geq 0$ define Θz by the formula

$$
\begin{equation*}
\Theta z(t)=\int_{0}^{\infty} u(t, x) d x \tag{11}
\end{equation*}
$$

From proposition 1 there follows that $\Theta: C_{+}([0, T]) \rightarrow C_{+}([0, T])$

Definition 2. The function $u:[0, T] \times[0, \infty)$ is solution of (1), (22), (5) if u is the solution of (1), (5) for z satisfying the condition

$$
\begin{equation*}
\Theta z=z \tag{12}
\end{equation*}
$$

REmark 1. To prove the existence or uniquencess of the solution of (11), (2), (5) it is sufficient to prove the existence or uniqueness of the fixed point of operator Θ.
4. Proof of the Theorem. We start with recalling the following lemmas proved in [4]

Lemma 1. The C^{1}-function φ is defined on $\Delta \times \mathbb{R}_{+}$, and C^{1}-function ψ is defined on $\Delta \times \mathbb{R}_{+} \times \mathbb{R}_{+}$. Moreover, for fixed t the function $x \rightarrow \varphi(t, x)$ is a bijection of \mathbb{R}_{+}onto \mathbb{R}_{+}.

The Lemma is a simple consequence of our assumption. Let

$$
\begin{equation*}
s(t, x, z)=s(t, x)=\frac{\partial}{\partial x} \varphi(t, x) \tag{13}
\end{equation*}
$$

It is obvious that s satisfies the condition

$$
\begin{equation*}
\frac{\partial S}{\partial t}=\frac{\partial c}{\partial x}\left(\varphi(t, x), z_{t}\right) S, S(0, x)=1 \tag{14}
\end{equation*}
$$

Lemma 2. The following inequalities hold

$$
\begin{equation*}
0 \leq S(t, x) \leq e^{\alpha t}, 0 \leq \varphi(t, x, y) \leq e^{\beta t} y \tag{15}
\end{equation*}
$$

As in [4], from these Lemmas it follows that for u defined by (9)

$$
\begin{equation*}
\int_{0}^{\infty} u(t, x) d x \leq A e^{(\alpha+\beta) t}<\infty \tag{16}
\end{equation*}
$$

Moreover, $\Theta z(t)=\int_{0}^{\infty} u(t, x) d x$ is a continuous function. This follows from [4] and the Lebesgue dominated convergence theorem.

Corollary 1. From [4] it follows that

$$
\Theta z(t)=e^{(\alpha+\beta) t} A
$$

Assume that z satisfies the Lipschitz condition
Let us consider

$$
H:[0, T] \times \mathbb{R}_{+} \times C_{+}[0, T] \rightarrow \mathbb{R}, T>0
$$

defined by the formula

$$
\begin{equation*}
H(t, x, z)=\psi(t, x, v(x), z) S(t, x, z) . \tag{17}
\end{equation*}
$$

Since v is bounded, from lemma 2 it follows that u also is bounded for $t \leq T$. Since z is continuous, the set $\left\{z_{t} \mid t \in[0, T]\right\}$ is compact and in consequence there exists

$$
\begin{equation*}
B_{T}=\sup _{t \in[0, T]} \beta\left(u, z_{t}\right) \tag{18}
\end{equation*}
$$

Hence, from $\left(\Lambda_{4}\right)$ it follows, that

$$
\begin{equation*}
\left|\frac{\partial \lambda}{\partial u}\right| \leq B_{T} \tag{19}
\end{equation*}
$$

for $z \in X$ and u satisfying (1), (5). Hence

$$
\begin{gathered}
\left|\frac{\partial H}{\partial t}\right| \leq\left|\frac{\partial}{\partial t} \psi\left(t, x, v(x), z_{t}\right)\right| S\left(t, x, z_{t}\right)+\psi\left(t, x, v(x), z_{t}\right)\left|\frac{\partial}{\partial t} S\left(t, x, z_{t}\right)\right| \\
\left|\frac{\partial H}{\partial t}\right| \leq\left(B_{T}+\alpha\right) e^{(\alpha+\beta) T} \cdot v(x)
\end{gathered}
$$

Thus

$$
\begin{equation*}
|\Theta z(t+h)-\Theta z(t)| \leq A\left(B_{T}+\alpha\right) e^{(\alpha+\beta) T} h \tag{21}
\end{equation*}
$$

for $t, t+h \in[0, T]$.
In consequence, if $\Delta=[0, \infty]$ then the set

$$
K \subset C(\Delta)
$$

This set is relatively compact if and only if, for every $T>0$, the set of restrictions

$$
\left\{z_{[0, T]}: z \in K\right\}
$$

is relatively compact.
We notice that the set \bar{K} of all functions from $C_{+}(\Delta)$ bounded by $A e^{(\alpha+\beta) t}$ and satisfying the Lipschitz condition with the constant

$$
N(T)=A\left(B_{T}+\alpha\right) e^{(\alpha+\beta) T}
$$

satisfies

$$
\begin{equation*}
\Theta(\bar{K}) \subset \bar{K} \tag{22}
\end{equation*}
$$

To prove Theorem 1 we use the following

Proposition 2. Under the assumptions of Theorem 1, for $z, \bar{z} \in \bar{K}$, the following inequality holds

$$
\begin{equation*}
\|\Theta z-\Theta \bar{z}\|_{T} \leq M(T)\|z-\bar{z}\|_{T} \tag{23}
\end{equation*}
$$

where \bar{K} is defined in the previous section, $\|\cdot\|_{T}$ denotes the norm in $C([0, T])$ and

$$
\begin{equation*}
\lim _{T \rightarrow 0} M(T)=0 \tag{24}
\end{equation*}
$$

To prove this proposition we shall prove some Lemmas.

Lemma 3. Under the assumptions of Theorem 1, ψ satisfies the inequality

$$
\begin{equation*}
\int|\psi(t, x, v(x), z)-\psi(t, x, v(x), \bar{z})|_{T} d x \leq M_{1}(T)\|z-\bar{z}\|_{T} \tag{25}
\end{equation*}
$$

or $\quad t \in[0, T]$ and $z, \bar{z} \in K$. Moreover,

$$
\lim _{T \rightarrow 0} M_{1}(T)=0
$$

Proof. Let $W(t, x)=\psi(t, x, v(x), z)-\psi(t, x, v(x), \bar{z})$.
Obviously, $W(0, x)=0$.
We shall estimate $\frac{\partial W}{\partial t}(t, x)$.
We notice that, for $z, \bar{z} \in \bar{K}$, we have

$$
\begin{gather*}
z(t) \leq A e^{(\alpha+\beta) T}, \quad \bar{z}(t) \leq A e^{(\alpha+\beta) T} \tag{26}\\
\psi(t, x, v(x), z) \leq \sup _{\xi \geq 0} v(\xi) e^{\beta T} \tag{27}
\end{gather*}
$$

and, consequently, there exists a compact set F such that

$$
\begin{aligned}
& (z, \psi(t, x, v(x), z)) \in F \\
& (\bar{z}, \psi(t, x, v(x), \bar{z})) \in F .
\end{aligned}
$$

There exists a finite number

$$
\begin{equation*}
\nu_{0}=\sup \{\nu(z, u):(z, u) \in F\} \tag{28}
\end{equation*}
$$

We estimate $\frac{\partial}{\partial t}(W(t, x))$,

$$
\begin{equation*}
\frac{\partial}{\partial t}(W(t, x))=I_{1}+I_{2}+I_{3} \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}=\lambda(\varphi(z), \psi(z), z)-\lambda(\varphi(\bar{z}), \psi(z), z), \\
& I_{2}=\lambda(\varphi(\bar{z}), \psi(z), z)-\lambda(\varphi(\bar{z}), \psi(\bar{z}), z), \\
& I_{3}=\lambda(\varphi(\bar{z}), \psi(\bar{z}), z)-\lambda(\varphi(\bar{z}), \psi(\bar{z}), \bar{z}) .
\end{aligned}
$$

In the last formula

$$
\begin{gathered}
\varphi(z)=\varphi(t, x, z), \varphi(\bar{z})=\varphi(t, x, \bar{z}) \text { and } \\
\psi(z)=\psi(t, x, v(x), z), \psi(\bar{z})=\psi(t, x, v(x), \bar{z})
\end{gathered}
$$

From assumption Λ_{5} and 29 it follows, that

$$
\left|I_{1}\right| \leq \nu_{0}|\varphi(t, x, z)-\varphi(t, x, \bar{z})| \psi(t, x, v(x), \bar{z})
$$

But

$$
\frac{\partial}{\partial t}[\varphi(t, x, z)-\varphi(t, x, \bar{z})]=c(\varphi(t, x, z), z)-c(\varphi(t, x, \bar{z}), \bar{z})
$$

From assumption C_{3}, C_{4} and the Gronwall inequality [10] it follows, that

$$
\begin{equation*}
|\varphi(t, x, z)-\varphi(t, x, \bar{z})| \leq \bar{M}(T) \tag{30}
\end{equation*}
$$

where

$$
\lim _{T \rightarrow 0} \bar{M}(T)=0
$$

and in consequence

$$
\begin{gathered}
\left|I_{1}\right| \leq \nu_{0} \bar{M}(T) v(x) e^{(\alpha+\beta) T} \\
\left|I_{2}\right| \leq B_{T} W(t, x)
\end{gathered}
$$

(B_{T} is defined by 19)

$$
\left|I_{3}\right| \leq \gamma^{\prime}\left\|z_{t}-\bar{z}_{t}\right\| \psi(t, x, v(x), \bar{z}) \leq \gamma^{\prime}\|z-\bar{z}\|_{T} e^{\beta T} v(x)
$$

Therefore

$$
\begin{equation*}
\left|\frac{\partial}{\partial t}(W(t, x))\right| \leq B_{T}|W(t, x)|+M(T)\|z-\bar{z}\|_{T} v(x) \tag{31}
\end{equation*}
$$

where

$$
\varlimsup_{T \rightarrow 0} M(T)<\infty
$$

From the Gronwall inequality [10] there follows

$$
\begin{equation*}
|W(t, x)| \leq M^{1}(T) v(x)\|z-\bar{z}\|_{T} B_{T}^{-1}\left(e^{B_{T} T}-1\right) \tag{32}
\end{equation*}
$$

Integrating (32), we obtain

$$
\begin{equation*}
\int_{0}^{\infty} W(t, x) d x \leq M^{1}(T) A\|z-\bar{z}\|_{T} B_{T}^{-1}\left(e^{B_{T} T}-1\right) \tag{33}
\end{equation*}
$$

Let $M_{1}=M_{1}(T)=A\|z-\bar{z}\|_{T} B_{T}^{-1}\left(e^{B_{T}} T-1\right)$. We obtain (26) since we may define $B_{T}=B_{T_{0}}$ for $T<T_{0}$ and some arbitrary T_{0}, formula

$$
\lim _{T \rightarrow 0} M_{1}(T)=0
$$

is obvious.

Lemma 4. Under assumption of Theorem 1, for $t \leq T$ and $z, \bar{z} \in \bar{K}$

$$
\begin{equation*}
|s(t, x, z)-s(t, x, \bar{z})| \leq M_{2}(T)\|z-\bar{z}\|_{T} \tag{34}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\lim _{T \rightarrow 0} M_{2}(T)=0 \tag{35}
\end{equation*}
$$

Proof. There exists

$$
\begin{equation*}
\mu_{0}=\sup \left\{\mu\left(z_{t}\right): z \in K, t \in[0, T]\right\} \tag{36}
\end{equation*}
$$

We shall estimate $\sigma(t, x)=s(t, x, z)-s(t, x, \bar{z})$. From (14), we derive

$$
\begin{gather*}
\sigma(0, x)=0, \text { and } \tag{37}\\
\frac{\partial \sigma}{\partial t}=E_{1}+E_{2}+E_{3} \text { where } \tag{38}\\
E_{1}=\left[\frac{\partial c}{\partial x}\left(\varphi(t, x, z), z_{t}\right)-\frac{\partial c}{\partial x}\left(\varphi(t, x, \bar{z}), z_{t}\right] s(t, x, z)\right. \\
E_{2}=\left[\frac{\partial c}{\partial x}\left(\varphi(t, x, \bar{z}), z_{t}\right)-\frac{\partial c}{\partial x}\left(\varphi(t, x, \bar{z}), \bar{z}_{t}\right)\right] s(t, x, \bar{z}) \\
E_{3}=\frac{\partial c}{\partial x}\left(\varphi(t, x, \bar{z}), \bar{z}_{t}\right) \sigma
\end{gather*}
$$

By virtue of (30) $\left|E_{1}\right| \leq \eta_{0} \bar{M}(T) e^{\alpha T}$. By (15), (36) and assumption C_{5}

$$
\left|E_{2}\right| \leq \eta_{0}\left\|z_{t}-\bar{z}_{t}\right\| e^{\alpha T} \leq \eta_{0}\|z-\bar{z}\|_{T} e^{\alpha T}
$$

From (38) and assumption C_{3}

$$
\left|\frac{\partial \sigma}{\partial t}\right| \leq M^{\prime \prime}(T)| | z-\bar{z} \|_{T}+\alpha|\sigma|
$$

where

$$
\varlimsup_{T \rightarrow 0} M^{\prime \prime}(T)<\infty
$$

Hence, using the Gronwall inequality, from (37) and (39) we obtain

$$
|\sigma(t)| \leq M "(T) \alpha^{-1}\left(e^{\alpha T}-1\right)\|z-\bar{z}\|_{T}
$$

Denoting $M_{2}(T)=M^{\prime \prime}(T) \alpha^{-1}\left(e^{\alpha T}-1\right)$ we shall prove Proposition 2 .
For $t \leq T, z_{t}, \bar{z}_{t} \in \bar{K}$
$|\Theta z(t)-\Theta \bar{z}(t)|=$

$$
\begin{equation*}
=\left|\int_{0}^{\infty}[\psi(t, x, v(x), z) s(t, x, z)-\psi(t, x, v(x), \bar{z}) s(t, x, \bar{z})] d x\right| \tag{39}
\end{equation*}
$$

This is not greater than λ.

$$
\begin{aligned}
& \int_{0}^{\infty}|\psi(t, x, v(x), z)-\psi(t, x, v(x), \bar{z})| s(t, x, z) d x+ \\
& +\int_{0}^{\infty} \psi(t, x, v(x), \bar{z})|\sigma(t, x)| d x \leq M_{1}(T) e^{\alpha T} \mid\|z-\bar{z}\|_{T}+ \\
& +A e^{\beta T} M_{2}(T)\|z-\bar{z}\|_{T} .
\end{aligned}
$$

Setting

$$
M(T)=M_{1}(T) e^{\alpha T}+A e^{\beta T} M_{2}(T)
$$

we obtain Proposition 2 ,
Proof of Theorem 1. To prove Theorem 1 it remains to notice that for sufficiently small T the operator
$\Theta: \bar{K}_{T} \rightarrow \bar{K}_{T}$ fulfil the assumption of the Banach fixed-point theorem,

$$
\bar{K}_{T}=\left\{z_{[0, T]}: z \in \bar{K}\right\}
$$

Hence the operator Θ has exactly one fixed point in \bar{K}_{T}. Since

$$
\Theta\left(C_{+}(\Delta)\right) \subset \bar{K}
$$

Θ has no fixed-point out of \bar{K}, and Θ has exactly one fixed point in $C_{+}([0, T])$. To prove Θ has exactly one fixed point in $C_{+}\left(\mathbb{R}_{+}\right)$we notice that the problem (1), (22), (5) is time-independent, the Theorem 1 true in $\Delta=\left[t_{0}, T\right]$ with initial condition

$$
\begin{equation*}
u\left(t_{0}, x\right)=\bar{v}(x) \tag{40}
\end{equation*}
$$

From this follows that the set of all $t_{0} \in \mathbb{R}_{+}$for which (1), (2), (5) has exactly one solution in \mathbb{R}_{+}is closed. This completes the proof.

References

1. Dawidowicz A.L., On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann.Pol. Math. XLI (1983).
2. Dawidowicz A.L., On the existence of an invariant measure for a quasi-linear partial differential equation, Zeszyty Naukowe UJ Prace Matematyczne 23 (1982).
3. Dawidowicz A.L., On the generalized Avez method, Ann. Pol. Math. LVII 3 (1992), 209-218.
4. Dawidowicz A.L., Łoskot K., Existence and uniqueness of soluon of some integrodifferential equation Ann. Pol. Math. XLVII (1986), 79-87.
5. Dugundji J., Granas A., Fixed point theory, PWN, Warszawa 1982.
6. Kamont Z., Zacharek S., On the existence of weak solutions of quasilinear first order partial differential equations with a deviated argument, Rad.-Mat. [Radovi-Matematicki] 2 (1986), no. 2, 189-216.
7. Lasota A., Pianigiani G., Invariant measures on topological spaces, Boll. Un. Mat. Ital. 5 15-B (1977), 592-603.
8. Loskot K., Turbulent solutions of first order partial differential equation, J.Differenyial Equations 58 (1985) No. 1, 1-14.
9. Rudnicki R., Invariant measures for the flow of a first order partial differential equation, Ergodic Th. \& Dyn. Sys. 5 (1985), No. 3 437-443.
10. Szarski J., Differential inequalities, PWN, Warszawa 1965.

Received October 4, 2000
Jagiellonian University
Institute of Mathematics
Kraków

