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DELAYED VON FOERSTER EQUATION

by Najemedin Haribash

Abstract. In the paper the existence and uniqueness of a solution of an
integro-differential with delayed argument in integral part is proved.

1. Introduction. The theory of first order partial integro-differential
equations is interesting because of its applications of mathematics to biology.
The most interesting problem is that, of the chaotic behaviour considered by
Dawidowicz [1], [2], [3], Lasota [7], Rudnicki [9] and  Loskot [8]. To study
this problem it is necessary to prove the existence and uniqueness of solutions.
This problem has been studied in a lot of papers [6] In the present paper, the
results of the paper [4] are generalized on the case of delayed argument for z.

2. Formulation of theorems. Let us consider the system of equations

(1)
∂u

∂t
+ c(x, zt)

∂u

∂x
= λ(x, u, zt)

(2) z(t) =
∫ ∞

0
u(t, x)dx

where

(3) zt : [−r, 0] → R+

is defined by the formula

(4) zt(s) = z(t− s)

for t ≥ 0 and x ≥ 0.
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The equation (1) is considered with the initial condition

(5) u(0, x) = u0(x)

Throughout the paper, the coefficients c and λ are assuming to satisfy the
following assumptions
(C1)

c : R+ × C([−r; 0]; R) → R+

(C2) The coefficient c is of class C1 for x ≥ 0
(C3)

c(0, Z) = 0

(C4)

| ∂c
∂x
| ≤ α

(C5)
|c(x,Z)− c(x, Z)| ≤ γ||Z − Z||

where
||Z|| = sup

−r≤s≤0
|Z(s)|

(C6)

| ∂c
∂x

(x, z)| ≤ µ(z)

where µ is continuous
(Λ1) The function λ is of class C1 for x ≥ 0, u ≥ 0
(Λ2)

λ(x, 0, ϕ) = 0

(Λ3)
∂λ

∂u
≤ β

(Λ4)

|∂λ
∂u
| ≤ β(u, z)

where β is continuous
(Λ5) ∃γ′

|λ(x, u, Z)− λ(x, u, Z)| ≤ γ′||Z − z||u
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(Λ6)

|∂λ
∂x
| ≤ ν(z, u)u

Theorem 1. Let u0 be bounded and continuous on (0,∞), u0 ≥ 0 and let

(6) A =
∫ ∞

0
u0(x)dx <∞.

Let
z0 ∈ C

(
[−r, 0]

)
, z0(0) = A

Define
zt : [0, T ] → C([−r, 0])

by the formula
zt(s) = z(t− s) for t ≥ s
zt(s) = z0(t− s) for t < s

Then there exists exactly one non negative function u which is a solution of
(1),(4),(5)

3. The method of characteristics and construction of operator Θ.
Let C+([0, T ])be the set of all continuous and non-negative function on the
interval [0, T ]
First we consider problem (1), (5) where z ∈ C([−r, T ]) is a given function
Denote by ψ(t, x, y) = ψ(t, x, y, zt) and ϕ(t, x) = ϕ(t, x, zt)
he characteristics of (1)
i.e. the solution of

(7) ξ′ = c(ξ, zt), ξ(0) = x

and

(8) η′ = λ(ξ, η, zt), η(0) = y

respectively, for t ∈ [0, T ]

Definition 1. The function u : [0, T ]× [0,∞) is a solution of (1), (5)
if for every t ∈ [0, T ], x ≥ 0,

(9) u(t, ϕ(t, x)) = ψ(t, x, v(x))

Proposition 1. Under assumptions (C1)–(C3) and (Λ1)–(Λ3) if
z ∈ C+([0, T ]), v satisfies (4) and u is the solution of (1), (3), then for t ≥ 0

(10)
∫ ∞

0
u(t, x)dx <∞

and the function [0, T ] 3 t 7→
∫∞
0 u(t, x)dx is continuous.
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In fact, u depends on z (this dependence is omitted). For fixed v ≥ 0 define
Θz by the formula

(11) Θz(t) =
∫ ∞

0
u(t, x)dx

From proposition 1 there follows that Θ : C+([0, T ]) → C+([0, T ])

Definition 2. The function u : [0, T ]× [0,∞) is solution of (1), (2), (5) if
u is the solution of(1), (5) for z satisfying the condition

(12) Θz = z

Remark 1. To prove the existence or uniquencess of the solution of (1),
(2), (5) it is sufficient to prove the existence or uniqueness of the fixed point
of operator Θ.

4. Proof of the Theorem. We start with recalling the following lemmas
proved in [4]

Lemma 1. The C1-function ϕ is defined on ∆×R+, and C1-function ψ is
defined on ∆ × R+ × R+. Moreover, for fixed t the function x → ϕ(t, x) is a
bijection of R+ onto R+.

The Lemma is a simple consequence of our assumption. Let

(13) s(t, x, z) = s(t, x) =
∂

∂x
ϕ(t, x)

It is obvious that s satisfies the condition

(14)
∂S

∂t
=
∂c

∂x

(
ϕ(t, x), zt

)
S, S(0, x) = 1

Lemma 2. The following inequalities hold

(15) 0 ≤ S(t, x) ≤ eαt, 0 ≤ ϕ(t, x, y) ≤ eβty

As in [4], from these Lemmas it follows that for u defined by (9)

(16)
∫ ∞

0
u(t, x)dx ≤ Ae(α+β)t <∞.

Moreover, Θz(t) =
∫∞
0 u(t, x)dx is a continuous function. This follows from

[4] and the Lebesgue dominated convergence theorem.

Corollary 1. From [4] it follows that

Θz(t) = e(α+β)tA
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Assume that z satisfies the Lipschitz condition
Let us consider

H : [0, T ]× R+ × C+[0, T ] → R, T > 0

defined by the formula

(17) H(t, x, z) = ψ(t, x, v(x), z)S(t, x, z).

Since v is bounded, from lemma 2 it follows that u also is bounded for t ≤ T .
Since z is continuous, the set {zt|t ∈ [0, T ]} is compact and in consequence
there exists

(18) BT = sup
t∈[0,T ]

β(u, zt)

Hence, from (Λ4) it follows, that

(19)
∣∣∣∣∂λ∂u

∣∣∣∣ ≤ BT

for z ∈ X and u satisfying (1), (5). Hence∣∣∣∣∂H∂t
∣∣∣∣ ≤ ∣∣∣∣ ∂∂tψ(t, x, v(x), zt)

∣∣∣∣S(t, x, zt) + ψ(t, x, v(x), zt)
∣∣∣∣ ∂∂tS(t, x, zt)

∣∣∣∣
(20)

∣∣∣∣∂H∂t
∣∣∣∣ ≤ (BT + α)e(α+β)T .v(x)

Thus

(21) |Θz(t+ h)−Θz(t)| ≤ A(BT + α)e(α+β)Th

for t, t+ h ∈ [0, T ].
In consequence, if ∆ = [0,∞] then the set

K ⊂ C(∆)

This set is relatively compact if and only if, for every T > 0, the set of restric-
tions

{ z|[0,T ]
: z ∈ K}

is relatively compact.
We notice that the set K of all functions from C+(∆) bounded by Ae(α+β)t

and satisfying the Lipschitz condition with the constant

N(T ) = A(BT + α)e(α+β)T

satisfies

(22) Θ(K) ⊂ K

To prove Theorem 1 we use the following
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Proposition 2. Under the assumptions of Theorem 1, for z, z ∈ K, the
following inequality holds

(23) ||Θz −Θz||T ≤M(T )||z − z||T
where K is defined in the previous section, || · ||T denotes the norm in C([0, T ])
and

(24) lim
T→0

M(T ) = 0

To prove this proposition we shall prove some Lemmas.

Lemma 3. Under the assumptions of Theorem 1, ψ satisfies the inequality

(25)
∫
|ψ(t, x, v(x), z)− ψ(t, x, v(x), z)|Tdx ≤M1(T )||z − z||T

or t ∈ [0, T ] and z, z ∈ K. Moreover,

lim
T→0

M1(T ) = 0.

Proof. Let W (t, x) = ψ(t, x, v(x), z)− ψ(t, x, v(x), z).
Obviously, W (0, x) = 0.
We shall estimate ∂W

∂t (t, x).
We notice that, for z, z ∈ K, we have

(26) z(t) ≤ Ae(α+β)T , z(t) ≤ Ae(α+β)T

(27) ψ(t, x, v(x), z) ≤ sup
ξ≥0

v(ξ)eβT

and, consequently, there exists a compact set F such that(
z, ψ(t, x, v(x), z)

)
∈ F,(

z, ψ(t, x, v(x), z)
)
∈ F.

There exists a finite number

(28) ν0 = sup{ν(z, u) : (z, u) ∈ F}

We estimate ∂
∂t

(
W (t, x)

)
,

(29)
∂

∂t

(
W (t, x)

)
= I1 + I2 + I3

where
I1 = λ(ϕ(z), ψ(z), z)− λ(ϕ(z), ψ(z), z),

I2 = λ(ϕ(z), ψ(z), z)− λ(ϕ(z), ψ(z), z),

I3 = λ(ϕ(z), ψ(z), z)− λ(ϕ(z), ψ(z), z).
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In the last formula

ϕ(z) = ϕ(t, x, z), ϕ(z) = ϕ(t, x, z) and

ψ(z) = ψ(t, x, v(x), z), ψ(z) = ψ(t, x, v(x), z)
From assumption Λ5 and (29) it follows, that

|I1| ≤ ν0|ϕ(t, x, z)− ϕ(t, x, z)|ψ(t, x, v(x), z)

But
∂

∂t

[
ϕ(t, x, z)− ϕ(t, x, z)

]
= c(ϕ(t, x, z), z)− c(ϕ(t, x, z), z)

From assumption C3, C4 and the Gronwall inequality [10] it follows, that

(30) |ϕ(t, x, z)− ϕ(t, x, z)| ≤M(T ),

where
lim
T→0

M(T ) = 0,

and in consequence
|I1| ≤ ν0M(T )v(x)e(α+β)T ,

|I2| ≤ BTW (t, x).
(BT is defined by (19))

|I3| ≤ γ′||zt − zt||ψ(t, x, v(x), z) ≤ γ′||z − z||T eβT v(x)

Therefore

(31)
∣∣ ∂
∂t

(
W (t, x)

)∣∣ ≤ BT |W (t, x)|+M(T )||z − z||T v(x)

where
lim
T→0

M(T ) <∞.

From the Gronwall inequality [10] there follows

(32) |W (t, x)| ≤M1(T )v(x)||z − z||TB−1
T (eBT T − 1).

Integrating (32), we obtain

(33)
∫ ∞

0
W (t, x)dx ≤M1(T )A||z − z||TB−1

T (eBT T − 1).

Let M1 = M1(T ) = A||z − z||TB−1
T (eBT T − 1). We obtain (26) since we may

define BT = BT0 for T < T0 and some arbitrary T0, formula

lim
T→0

M1(T ) = 0

is obvious.
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Lemma 4. Under assumption of Theorem 1, for t ≤ T and z, z ∈ K
(34) |s(t, x, z)− s(t, x, z)| ≤M2(T )||z − z||T .
Moreover

(35) lim
T→0

M2(T ) = 0

Proof. There exists

(36) µ0 = sup{µ(zt) : z ∈ K, t ∈ [0, T ]}
We shall estimate σ(t, x) = s(t, x, z)− s(t, x, z). From (14), we derive

(37) σ(0, x) = 0, and

(38)
∂σ

∂t
= E1 + E2 + E3 where

E1 =
[
∂c

∂x
(ϕ(t, x, z), zt)−

∂c

∂x
(ϕ(t, x, z), zt

]
s(t, x, z),

E2 =
[
∂c

∂x
(ϕ(t, x, z), zt)−

∂c

∂x
(ϕ(t, x, z), zt)

]
s(t, x, z),

E3 =
∂c

∂x
(ϕ(t, x, z), zt)σ.

By virtue of (30) |E1| ≤ η0M(T )eαT . By (15), (36) and assumption C5

|E2| ≤ η0||zt − zt||eαT ≤ η0||z − z||T eαT .

From (38) and assumption C3∣∣∣∣∂σ∂t
∣∣∣∣ ≤M”(T )||z − z||T + α|σ|,

where
lim
T→0

M”(T ) <∞.

Hence, using the Gronwall inequality, from (37) and (39) we obtain

|σ(t)| ≤M”(T )α−1(eαT − 1)||z − z||T .
Denoting M2(T ) = M”(T )α−1(eαT − 1) we shall prove Proposition 2.

For t ≤ T ,zt, zt ∈ K∣∣∣∣Θz(t)−Θz(t)
∣∣∣∣ =

(39) =
∣∣∣∣ ∫ ∞

0

[
ψ(t, x, v(x), z)s(t, x, z)− ψ(t, x, v(x), z)s(t, x, z)

]
dx

∣∣∣∣.
This is not greater than λ.
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∫ ∞

0
|ψ(t, x, v(x), z)− ψ(t, x, v(x), z)|s(t, x, z)dx+

+
∫ ∞

0
ψ(t, x, v(x), z)|σ(t, x)|dx ≤M1(T )eαT ||z − z||T +

+AeβTM2(T )||z − z||T .
Setting

M(T ) = M1(T )eαT +AeβTM2(T )
we obtain Proposition 2.

Proof of Theorem 1. To prove Theorem 1 it remains to notice that for
sufficiently small T the operator
Θ : KT → KT fulfil the assumption of the Banach fixed-point theorem,

KT = {z|[0,T ]
: z ∈ K}.

Hence the operator Θ has exactly one fixed point in KT . Since

Θ
(
C+(∆)

)
⊂ K

Θ has no fixed-point out of K, and Θ has exactly one fixed point in C+([0, T ]).
To prove Θ has exactly one fixed point in C+(R+) we notice that the problem
(1), (2), (5) is time-independent, the Theorem 1 true in ∆ = [t0, T ] with initial
condition

(40) u(t0, x) = v(x).

From this follows that the set of all t0 ∈ R+ for which (1), (2), (5) has exactly
one solution in R+ is closed. This completes the proof.
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