DELAYED VON FOERSTER EQUATION

BY NAJEMEDIN HARIBASH

Abstract. In the paper the existence and uniqueness of a solution of an integro-differential with delayed argument in integral part is proved.

1. Introduction. The theory of first order partial integro-differential equations is interesting because of its applications of mathematics to biology. The most interesting problem is that, of the chaotic behaviour considered by Dawidowicz [1], [2], [3], Lasota [7], Rudnicki [9] and Loskot [8]. To study this problem it is necessary to prove the existence and uniqueness of solutions. This problem has been studied in a lot of papers [6] In the present paper, the results of the paper [4] are generalized on the case of delayed argument for z.

2. Formulation of theorems. Let us consider the system of equations

(1)
$$\frac{\partial u}{\partial t} + c(x, z_t) \frac{\partial u}{\partial x} = \lambda(x, u, z_t)$$

(2)
$$z(t) = \int_0^\infty u(t, x) dx$$

where

(3)
$$z_t: [-r,0] \to \mathbb{R}_+$$

is defined by the formula

for $t \ge 0$ and $x \ge 0$.

240

The equation (1) is considered with the initial condition

(5)
$$u(0,x) = u_0(x)$$

Throughout the paper, the coefficients c and λ are assuming to satisfy the following assumptions

 (C_1)

$$c: \mathbb{R}_+ \times C([-r; 0]; \mathbb{R}) \to \mathbb{R}_+$$

 (C_2) The coefficient c is of class C^1 for $x \ge 0$ (C_3)

$$c(0,Z) = 0$$

 (C_4)

$$|\frac{\partial c}{\partial x}| \leq \alpha$$

 (C_5)

$$|c(x,Z) - c(x,\overline{Z})| \le \gamma ||Z - \overline{Z}||$$

where

$$||Z|| = \sup_{-r \le s \le 0} |Z(s)|$$

 (C_6)

$$\left|\frac{\partial c}{\partial x}(x,z)\right| \le \mu(z)$$

where μ is continuous

(Λ_1) The function λ is of class C^1 for $x \ge 0, u \ge 0$ (Λ_2)

$$\lambda(x,0,\varphi) = 0$$

$$(\Lambda_3)$$

$$\frac{\partial \lambda}{\partial u} \leq \beta$$

 (Λ_4)

$$|\frac{\partial \lambda}{\partial u}| \leq \beta(u,z)$$

where β is continuous

 $(\Lambda_5) \exists \gamma'$

$$|\lambda(x, u, Z) - \lambda(x, u, \overline{Z})| \le \gamma' ||Z - \overline{z}||u|$$

$$(\Lambda_6)$$

$$|\frac{\partial \lambda}{\partial x}| \le \nu(z, u)u$$

THEOREM 1. Let u_0 be bounded and continuous on $(0, \infty)$, $u_0 \ge 0$ and let

(6)
$$A = \int_0^\infty u_0(x) dx < \infty.$$

Let

$$z_0 \in C([-r,0]), z_0(0) = A$$

Define

$$z_t: [0,T] \to C([-r,0])$$

by the formula

 $z_t(s) = z(t-s)$ for $t \ge s$ $z_t(s) = z_0(t-s)$ for t < sThen there exists exactly one non negative function u which is a solution of (1),(4),(5)

3. The method of characteristics and construction of operator Θ . Let $C^+([0,T])$ be the set of all continuous and non-negative function on the interval [0,T]

First we consider problem (1), (5) where $z \in C([-r, T])$ is a given function Denote by $\psi(t, x, y) = \psi(t, x, y, z_t)$ and $\varphi(t, x) = \varphi(t, x, z_t)$ he characteristics of (1)

i.e. the solution of

(7) $\xi' = c(\xi, z_t), \ \xi(0) = x$

and

(8)
$$\eta' = \lambda(\xi, \eta, z_t), \ \eta(0) = y$$

respectively, for $t \in [0, T]$

DEFINITION 1. The function $u: [0,T] \times [0,\infty)$ is a solution of (1), (5) if for every $t \in [0,T], x \ge 0$,

(9)
$$u(t,\varphi(t,x)) = \psi(t,x,v(x))$$

PROPOSITION 1. Under assumptions $(C_1)-(C_3)$ and $(\Lambda_1)-(\Lambda_3)$ if $z \in C_+([0,T])$, v satisfies (4) and u is the solution of (1), (3), then for $t \ge 0$

(10)
$$\int_0^\infty u(t,x)dx < \infty$$

and the function $[0,T] \ni t \mapsto \int_0^\infty u(t,x) dx$ is continuous.

In fact, u depends on z (this dependence is omitted). For fixed $v \ge 0$ define Θz by the formula

(11)
$$\Theta z(t) = \int_0^\infty u(t, x) dx$$

From proposition 1 there follows that $\Theta: C_+([0,T]) \to C_+([0,T])$

DEFINITION 2. The function $u: [0,T] \times [0,\infty)$ is solution of (1), (2), (5) if u is the solution of (1), (5) for z satisfying the condition

(12)
$$\Theta z = z$$

REMARK 1. To prove the existence or uniquencess of the solution of (1), (2), (5) it is sufficient to prove the existence or uniqueness of the fixed point of operator Θ .

4. Proof of the Theorem. We start with recalling the following lemmas proved in [4]

LEMMA 1. The C^1 -function φ is defined on $\Delta \times \mathbb{R}_+$, and C^1 -function ψ is defined on $\Delta \times \mathbb{R}_+ \times \mathbb{R}_+$. Moreover, for fixed t the function $x \to \varphi(t, x)$ is a bijection of \mathbb{R}_+ onto \mathbb{R}_+ .

The Lemma is a simple consequence of our assumption. Let

(13)
$$s(t, x, z) = s(t, x) = \frac{\partial}{\partial x}\varphi(t, x)$$

It is obvious that s satisfies the condition

(14)
$$\frac{\partial S}{\partial t} = \frac{\partial c}{\partial x} (\varphi(t, x), z_t) S, \ S(0, x) = 1$$

LEMMA 2. The following inequalities hold

(15)
$$0 \le S(t,x) \le e^{\alpha t}, \ 0 \le \varphi(t,x,y) \le e^{\beta t} y$$

As in [4], from these Lemmas it follows that for u defined by (9)

(16)
$$\int_0^\infty u(t,x)dx \le Ae^{(\alpha+\beta)t} < \infty.$$

Moreover, $\Theta z(t) = \int_0^\infty u(t, x) dx$ is a continuous function. This follows from [4] and the Lebesgue dominated convergence theorem.

COROLLARY 1. From [4] it follows that

$$\Theta z(t) = e^{(\alpha + \beta)t} A$$

Assume that z satisfies the Lipschitz condition Let us consider

$$H:[0,T]\times\mathbb{R}_+\times C_+[0,T]\to\mathbb{R},\ T>0$$

defined by the formula

(17)
$$H(t, x, z) = \psi(t, x, v(x), z)S(t, x, z).$$

Since v is bounded, from lemma 2 it follows that u also is bounded for $t \leq T$. Since z is continuous, the set $\{z_t | t \in [0, T]\}$ is compact and in consequence there exists

(18)
$$B_T = \sup_{t \in [0,T]} \beta(u, z_t)$$

Hence, from (Λ_4) it follows, that

(19)
$$\left|\frac{\partial\lambda}{\partial u}\right| \le B_T$$

for $z \in X$ and u satisfying (1), (5). Hence

$$\left|\frac{\partial H}{\partial t}\right| \leq \left|\frac{\partial}{\partial t}\psi(t, x, v(x), z_t)\right| S(t, x, z_t) + \psi(t, x, v(x), z_t) \left|\frac{\partial}{\partial t}S(t, x, z_t)\right|$$

$$\left|\frac{\partial H}{\partial t}\right| \leq (B_T + \alpha)e^{(\alpha + \beta)T} . v(x)$$

Thus

(21)
$$|\Theta z(t+h) - \Theta z(t)| \le A(B_T + \alpha)e^{(\alpha + \beta)T}h$$

for $t, t + h \in [0, T]$.

In consequence, if $\Delta = [0, \infty]$ then the set

$$K \subset C(\Delta)$$

This set is relatively compact if and only if, for every T > 0, the set of restrictions

$$\{ z_{|_{[0,T]}} : z \in K \}$$

is relatively compact.

We notice that the set \overline{K} of all functions from $C_+(\Delta)$ bounded by $Ae^{(\alpha+\beta)t}$ and satisfying the Lipschitz condition with the constant

$$N(T) = A(B_T + \alpha)e^{(\alpha + \beta)T}$$

satisfies

(22) $\Theta(\overline{K}) \subset \overline{K}$

To prove Theorem 1 we use the following

PROPOSITION 2. Under the assumptions of Theorem 1, for $z, \overline{z} \in \overline{K}$, the following inequality holds

(23)
$$||\Theta z - \Theta \overline{z}||_T \le M(T)||z - \overline{z}||_T$$

where \overline{K} is defined in the previous section, $|| \cdot ||_T$ denotes the norm in C([0,T]) and

(24)
$$\lim_{T \to 0} M(T) = 0$$

To prove this proposition we shall prove some Lemmas.

LEMMA 3. Under the assumptions of Theorem 1, ψ satisfies the inequality

(25)
$$\int |\psi(t, x, v(x), z) - \psi(t, x, v(x), \overline{z})|_T dx \leq M_1(T) ||z - \overline{z}||_T$$

or $t \in [0, T]$ and $z, \overline{z} \in K$. Moreover,

$$\lim_{T \to 0} M_1(T) = 0.$$

PROOF. Let $W(t, x) = \psi(t, x, v(x), z) - \psi(t, x, v(x), \overline{z})$. Obviously, W(0, x) = 0. We shall estimate $\frac{\partial W}{\partial t}(t, x)$. We notice that, for $z, \overline{z} \in \overline{K}$, we have

(26)
$$z(t) \le Ae^{(\alpha+\beta)T}, \ \overline{z}(t) \le Ae^{(\alpha+\beta)T}$$

(27)
$$\psi(t, x, v(x), z) \le \sup_{\xi \ge 0} v(\xi) e^{\beta T}$$

and, consequently, there exists a compact set F such that

$$(z, \psi(t, x, v(x), z)) \in F,$$

$$(\overline{z}, \psi(t, x, v(x), \overline{z})) \in F.$$

There exists a finite number

(28)
$$\nu_0 = \sup\{\nu(z, u) : (z, u) \in F\}$$

We estimate $\frac{\partial}{\partial t} (W(t, x))$,

(29)
$$\frac{\partial}{\partial t} (W(t,x)) = I_1 + I_2 + I_3$$

where

$$I_1 = \lambda(\varphi(z), \psi(z), z) - \lambda(\varphi(\overline{z}), \psi(z), z),$$

$$I_2 = \lambda(\varphi(\overline{z}), \psi(z), z) - \lambda(\varphi(\overline{z}), \psi(\overline{z}), z),$$

$$I_3 = \lambda(\varphi(\overline{z}), \psi(\overline{z}), z) - \lambda(\varphi(\overline{z}), \psi(\overline{z}), \overline{z}).$$

In the last formula

$$\begin{split} \varphi(z) &= \varphi(t,x,z), \ \varphi(\overline{z}) = \varphi(t,x,\overline{z}) \text{ and} \\ \psi(z) &= \psi(t,x,v(x),z), \ \psi(\overline{z}) = \psi(t,x,v(x),\overline{z}) \end{split}$$

From assumption Λ_5 and (29) it follows, that

$$I_1| \le \nu_0 |\varphi(t, x, z) - \varphi(t, x, \overline{z})| \psi(t, x, v(x), \overline{z})$$

 But

$$\frac{\partial}{\partial t} \big[\varphi(t, x, z) - \varphi(t, x, \overline{z}) \big] = c(\varphi(t, x, z), z) - c(\varphi(t, x, \overline{z}), \overline{z})$$

From assumption C_3 , C_4 and the Gronwall inequality [10] it follows, that

(30)
$$|\varphi(t,x,z) - \varphi(t,x,\overline{z})| \le \overline{M}(T)$$

where

$$\lim_{T \to 0} \overline{M}(T) = 0,$$

and in consequence

$$|I_1| \le \nu_0 \overline{M}(T) v(x) e^{(\alpha+\beta)T},$$

$$|I_2| \le B_T W(t, x).$$

 $(B_T \text{ is defined by } (19))$

$$|I_3| \le \gamma' ||z_t - \overline{z}_t||\psi(t, x, v(x), \overline{z}) \le \gamma' ||z - \overline{z}||_T e^{\beta T} v(x)$$

Therefore

(31)
$$\left|\frac{\partial}{\partial t} (W(t,x))\right| \le B_T |W(t,x)| + M(T)||z - \overline{z}||_T v(x)$$

where

$$\overline{\lim_{T \to 0}} M(T) < \infty.$$

From the Gronwall inequality [10] there follows

(32)
$$|W(t,x)| \le M^1(T)v(x)||z-\overline{z}||_T B_T^{-1}(e^{B_T T}-1).$$

Integrating (32), we obtain

(33)
$$\int_0^\infty W(t,x)dx \le M^1(T)A||z-\overline{z}||_T B_T^{-1}(e^{B_T T}-1).$$

Let $M_1 = M_1(T) = A||z - \overline{z}||_T B_T^{-1}(e^{B_T}T - 1)$. We obtain (26) since we may define $B_T = B_{T_0}$ for $T < T_0$ and some arbitrary T_0 , formula

$$\lim_{T \to 0} M_1(T) = 0$$

is obvious.

г			
н			
н			
	-	-	-

246

LEMMA 4. Under assumption of Theorem 1, for
$$t \leq T$$
 and $z, \overline{z} \in \overline{K}$
(34) $|s(t, x, z) - s(t, x, \overline{z})| \leq M_2(T)||z - \overline{z}||_T.$

Moreover

(35)
$$\lim_{T \to 0} M_2(T) = 0$$

PROOF. There exists

(36)
$$\mu_0 = \sup\{\mu(z_t) : z \in K, t \in [0, T]\}$$

We shall estimate $\sigma(t, x) = s(t, x, z) - s(t, x, \overline{z})$. From (14), we derive
(37) $\sigma(0, x) = 0$, and

(38)
$$\frac{\partial \sigma}{\partial t} = E_1 + E_2 + E_3 \text{ where}$$

$$E_{1} = \left[\frac{\partial c}{\partial x}(\varphi(t, x, z), z_{t}) - \frac{\partial c}{\partial x}(\varphi(t, x, \overline{z}), z_{t}\right]s(t, x, z),$$

$$E_{2} = \left[\frac{\partial c}{\partial x}(\varphi(t, x, \overline{z}), z_{t}) - \frac{\partial c}{\partial x}(\varphi(t, x, \overline{z}), \overline{z}_{t})\right]s(t, x, \overline{z}),$$

$$E_{3} = \frac{\partial c}{\partial x}(\varphi(t, x, \overline{z}), \overline{z}_{t})\sigma.$$

By virtue of (30) $|E_1| \leq \eta_0 \overline{M}(T) e^{\alpha T}$. By (15), (36) and assumption C_5 $|E_2| \leq \eta_0 ||z_t - \overline{z}_t|| e^{\alpha T} \leq \eta_0 ||z - \overline{z}||_T e^{\alpha T}$.

From (38) and assumption C_3

$$\left|\frac{\partial\sigma}{\partial t}\right| \le M^{"}(T)||z-\overline{z}||_{T} + \alpha|\sigma|,$$

where

$$\overline{\lim_{T \to 0}} M^{"}(T) < \infty.$$

Hence, using the Gronwall inequality, from (37) and (39) we obtain

$$|\sigma(t)| \le M^{"}(T)\alpha^{-1}(e^{\alpha T} - 1)||z - \overline{z}||_{T}.$$

Denoting $M_2(T) = M^{"}(T)\alpha^{-1}(e^{\alpha T} - 1)$ we shall prove Proposition 2. For $t \leq T, z_t, \ \overline{z}_t \in \overline{K}$ $\left|\Theta z(t) - \Theta \overline{z}(t)\right| =$ (39) $= \left|\int_0^\infty \left[\psi(t, x, v(x), z)s(t, x, z) - \psi(t, x, v(x), \overline{z})s(t, x, \overline{z})\right]dx\right|.$

This is not greater than λ .

$$\int_0^\infty |\psi(t, x, v(x), z) - \psi(t, x, v(x), \overline{z})| s(t, x, z) dx + + \int_0^\infty \psi(t, x, v(x), \overline{z}) |\sigma(t, x)| dx \le M_1(T) e^{\alpha T} ||z - \overline{z}||_T + + A e^{\beta T} M_2(T) ||z - \overline{z}||_T.$$

Setting

$$M(T) = M_1(T)e^{\alpha T} + Ae^{\beta T}M_2(T)$$

we obtain Proposition 2.

PROOF OF THEOREM 1. To prove Theorem 1 it remains to notice that for sufficiently small T the operator

 $\Theta: \overline{K}_T \to \overline{K}_T$ fulfil the assumption of the Banach fixed-point theorem,

$$\overline{K}_T = \{ z_{|_{[0,T]}} : z \in \overline{K} \}$$

Hence the operator Θ has exactly one fixed point in \overline{K}_T . Since

$$\Theta(C_+(\Delta)) \subset \overline{K}$$

 Θ has no fixed-point out of \overline{K} , and Θ has exactly one fixed point in $C_+([0,T])$. To prove Θ has exactly one fixed point in $C_+(\mathbb{R}_+)$ we notice that the problem (1), (2), (5) is time-independent, the Theorem 1 true in $\Delta = [t_0, T]$ with initial condition

(40)
$$u(t_0, x) = \overline{v}(x).$$

From this follows that the set of all $t_0 \in \mathbb{R}_+$ for which (1), (2), (5) has exactly one solution in \mathbb{R}_+ is closed. This completes the proof.

References

- 1. Dawidowicz A.L., On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann.Pol. Math. XLI (1983).
- 2. Dawidowicz A.L., On the existence of an invariant measure for a quasi-linear partial differential equation, Zeszyty Naukowe UJ Prace Matematyczne **23** (1982).
- Dawidowicz A.L., On the generalized Avez method, Ann. Pol. Math. LVII 3 (1992), 209–218.
- Dawidowicz A.L., Łoskot K., Existence and uniqueness of soluon of some integrodifferential equation Ann. Pol. Math. XLVII (1986), 79–87.
- 5. Dugundji J., Granas A., Fixed point theory, PWN, Warszawa 1982.
- Kamont Z., Zacharek S., On the existence of weak solutions of quasilinear first order partial differential equations with a deviated argument, Rad.-Mat. [Radovi-Matematicki] 2 (1986), no. 2, 189–216.
- Lasota A., Pianigiani G., Invariant measures on topological spaces, Boll. Un. Mat. Ital. 5 15-B (1977), 592–603.

- Loskot K., Turbulent solutions of first order partial differential equation, J.Differenyial Equations 58 (1985) No. 1, 1–14.
- Rudnicki R., Invariant measures for the flow of a first order partial differential equation, Ergodic Th. & Dyn. Sys. 5 (1985), No. 3 437–443.
- 10. Szarski J., Differential inequalities, PWN, Warszawa 1965.

Received October 4, 2000

Jagiellonian University Institute of Mathematics Kraków