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GEOMETRIC DEGREE OF GENERICALLY FINITE

EXTENSIONS

by Marek Karaś

Abstract. Let V, W be irreducible algebraic subsets of Cn. Every domi-
nant, generically finite mapping f : V → W can be extented to a dominant,
generically finite mapping F : Cn → Cn. We show that if f is a projec-
tion then there exists a dominant, generically finite extension F of f with
the same geometric degree. The same is shown for an arbitrary f with the
assumption that V, W are smooth sets and 4 · dim V + 2 ≤ n.

1. Introduction. Let f : V → W be any polynomial mapping of irre-
ducible algebraic subsets of Cn. It is known (see [2] Lemma 5.4) that the map-
ping f can be extended to a dominant, generically finite mapping F : Cn → Cn.
If f is, also, a dominant generically finite mapping, then a natural question
arises concerning the relation between the number gdegF (defined as the num-
ber of points in the generic fiber of F and called geometric degree of the map-
ping F ) and the number gdeg f .

If f is a finite mapping, then f can be extended to a finite mapping F :
Cn → Cn (see [7]). For relations between gdegF and gdeg f in this situation
see [3], [4], [5] and [6].

In this paper we will prove that any generically finite projection π : V →
π(V ) can be extended to a dominant, generically finite mapping with the same
geometric degree. Applying this fact we will show that any dominant, generi-
cally finite mapping between smooth algebraic sets (with a large codimension)
can be extended to a dominant, generically finite mapping with the same geo-
metric degree.

2. Notation and basic facts. Let f : V → W be any polynomial map-
ping of irreducible algebraic sets. The mapping f is called generically finite if
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there exists an open and dense subset U of W such that #f−1(y) is finite for
all y ∈ U. The mapping f is called dominant if f(V ) = W.

It is known that if f is a dominant and generically finite mapping then C(V )
is a finite field extension of the field f∗(C(W )) ' C(W ), where f∗ denotes the
homomorphism of coordinate rings f∗ : C[V ] 3 ϕ 7→ ϕ ◦ f ∈ C[W ], and its
extension to the homomorphism of the fields f∗ : C(V ) → C(W ). In this
situation gdeg f = [C(V ) : C(W )] = dim C(W )C(V ) (see [8]). If f is dominant
and generically finite, then dim V = dim W. Conversely, if dim V = dim W,
then f : V →W is dominant if and only if f is generically finite.

3. Projections. Now we will prove the following

Theorem 3.1. Let V ⊂ Ck × Cn be an irreducible algebraic set, π : V →
0×Cn the natural projection. If π : V → π(V ) is generically finite, then there
exists a generically finite mapping Π : Ck × Cn → Ck × Cn such that Π|V = π
and

gdeg Π = gdeg π.

Proof. Let x = (x1, . . . , xk) be coordinates in Ck and let y = (y1, . . . , yn)
be coordinates in Cn.

To begin, let us assume that k = 1. We know that C(V ) is a finite field
extension of the field C(π(V )). Thus x1|V is algebraic over C(π(V )). Let
P̃ = T l + ã1T

l−1 + . . .+ ãl ∈ C(π(V ))[T ] be the minimal polynomial for x1|V
over C(π(V )). Multiplying P̃ by a common multiple of the denominators of
ã1, . . . , ãl we obtain a polynomial P = a0T

l+a1T
l−1+. . .+al ∈ C[π(V )][T ] such

that P (x1|V ) = 0 and a0 6= 0. By an extension of coefficients a0, . . . , al from the
set π(V ) to the whole space 0×Cn we obtain a polynomial P̄ such that P̄ |V = 0
and deg P̄ = deg P̃ . Now let Π : C × Cn 3 (x, y) 7→ (P̄ (x, y), y) ∈ C × Cn. It
is easy to see that Π is a generically finite mapping such that Π|V = π, and
gdeg Π = deg P̄ = deg P̃ = gdeg π.

For k > 1 we proceed by induction. Choose a system of coordinates in Ck in
such a way that π1 : V → π1(V ) is a generically finite mapping, where π1 : V 3
((x1, . . . , xk), y) 7→ ((x2, . . . , xk), y) ∈ Ck−1 × Cn. It follows that π2 : π1(V ) →
π(V ) is a generically finite mapping, where π2 : π1(V ) 3 ((x2, . . . , xk), y) 7→
y ∈ 0× Cn. Of course, there is π = π2 ◦ π1 and gdeg π = gdeg π2 · gdeg π1. By
induction, there exists a generically finite mapping Π̃2 : Ck−1×Cn → Ck−1×Cn

such that Π̃2|π1(V ) = π2 and gdeg Π̃2 = gdeg π2. By the first part of the proof,
there exists a generically finite mapping Π1 : Ck × Cn → Ck × Cn such that
Π1|V = π1 and gdeg Π1 = gdeg π1. Set Π2 : Ck × Cn 3 ((x1, . . . , xk), y) 7→
(x1, Π̃2((x2, . . . , xk), y)) ∈ Ck × Cn, and

Π = Π2 ◦Π1.
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It is easy to check that Π : Ck ×Cn → Ck ×Cn is a generically finite mapping
such that Π|V = π and gdeg Π = gdeg π.

Let us notice that there can exist a dominant, generically finite extension
with a smaller geometric degree than the geometric degree of the extended
mapping. We have the following

Example 1. Let F : Cn 3 (x1, . . . , xn) 7→ (x1x2, x2, x3, . . . , xn) ∈ Cn,
then F is generically finite and gdegF = 1. Let W ∈ C[x3, . . . , xn][x1] be
any irreducible polynomial of degree k ∈ N (with respect to x1) and set V =
{ (x1, . . . , xn) ∈ Cn : x2 = 0, W (x1, x3, . . . , xn) = 0 }. Then F |V : V → F (V )
is a generically finite mapping and gdeg(F |V ) = k.

4. Mappings of smooth variety. Let us recall some facts about em-
beddings. A polynomial mapping f : V → Cn is called an embedding if
f(V ) = f(V ) and f is an isomorphism on the image. We have the following
well-known lemma (see e.g.[1])

Lemma 4.1. If X ⊂ Cn is a closed algebraic smooth set, dim X = k and
n > 2k + 1, then we can change coordinates in such a way that the projection

φ : X 3 (x, y) 7→ (0, y) ∈ 0× C2k+1,

is an embedding.

We also have the following

Theorem 4.2. [1, Thm 1.2] Let X ⊂ Cn be a closed algebraic set which
is smooth and not necessarily irreducible of dimension (not necessarily pure)
k. Let φ : X → Cn be an embedding. If n ≥ 4k + 2 then there exists an
isomorphism Φ : Cn → Cn such that

Φ|X = φ.

Now we are in a position to prove the following

Theorem 4.3. Let V,W ⊂ Cn be smooth, irreducible algebraic sets and
let f : V → W be a dominant, generically finite mapping. If V,W are
smooth and 4 · dim V + 2 ≤ n, then there exists a generically finite mapping
F : Cn → Cn such that F |V = f and

gdegF = gdeg f.

Proof. By Lemma 4.1 we can assume that the projections:

φ1 : V → 0× C2k+1 and φ2 : W → 0× Cn−2k−1
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are embeddings. Put

Ṽ = φ1(V ), W̃ = φ2(W )

and
f̃ = φ2 ◦ f ◦ φ−1

1 : Ṽ → W̃ .

The mapping f̃ is generically finite with gdeg f̃ = gdeg f.
Since Ṽ ⊂ 0 × C2k+1, W̃ ⊂ 0 × Cn−2k−1, we can consider the sets Ṽ and

W̃ as subsets of C2k+1 and Cn−2k−1, respectively. The following mapping

ψ : Ṽ 3 x 7→ (x, f̃(x)) ∈ V̂ ⊂ C2k+1 × Cn−2k−1,

where V̂ = ψ(Ṽ ), is an isomorphism. Thus for the projection:

π : V̂ 3 (x, y) 7→ (0, y) ∈ 0× Cn−2k−1

we have f̃ = π ◦ ψ, and since ψ is an isomorphism, it follows that π : V̂ →
W̃ = π(V̂ ) is a generically finite mapping and gdeg π = gdeg f̃ = gdeg f. By
Theorem 3.1 there exists a generically finite mapping Π : C2k+1 × Cn−2k−1 →
C2k+1 × Cn−2k−1 such that Π|V̂ = π and

gdeg Π = gdeg π.

Applying Theorem 4.2 to ψ : Ṽ → V̂ , φ1 : V → Ṽ and φ2 : W → W̃ , we
conclude that there exist isomorphisms Ψ, Φ1, Φ2 : Cn → Cn such that:

Ψ|Ṽ = ψ, Φ1|V = φ1, Φ2|W = φ2.

Now
F = Φ−1

2 ◦Π ◦Ψ ◦ Φ1

is a generically finite extension of f such that:

gdegF = gdeg f.
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