IDEAL AS AN INTERSECTION OF ZERO-DIMENSIONAL IDEALS AND THE NOETHER EXPONENT

by Witold Jarnicki, Liam o’Carroll and Tadeusz Winiarski

Abstract

The main goal of this paper is to present a method of expressing a given ideal I in the polynomial ring $\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ as an intersection of zero-dimensional ideals. As an application, we get an elementary proof for some cases of the Kollár estimation of the Noether exponent of a polynomial ideal presented in [6], [7]. Moreover, an outline of the effective algorithm is given.

1. Introduction. Let \mathbb{K} be an algebraically closed field. It is well known that any radical ideal I can be expressed as $I=\bigcap_{P \in V(I)} \mathfrak{m}_{P}$, where \mathfrak{m}_{P} is the maximal ideal corresponding to P. A natural question arises whether such an intersection is possible for an arbitrary ideal I, i.e. if we can attach an \mathfrak{m}_{P}-primary ideal \mathfrak{A}_{P} to each $P \in V(I)$ such that $I=\bigcap_{P \in V(I)} \mathfrak{A}_{P}$.

In this paper a positive answer to this question is given. Using primary decomposition, we reduce the problem to the case where I is primary. This case can be done easily and effectively, so finding the family $\left\{\mathfrak{A}_{P}\right\}$ is as difficult as a primary decomposition is. The proof of the primary case is based on the theory of Gröbner bases.

As an application we present a simple proof of Kollár's Noether exponent estimate for ideals in the polynomial ring of one and two variables and for ideals without embedded primary components.
2. Notation. Let \mathbb{K} be an algebraically closed field. For a given ideal I, $V(I)$ denotes its zero set in \mathbb{K}^{n}.

[^0]3. Zero-dimensional case. Let $I=\operatorname{Id}\left(f_{1}, \cdots, f_{m}\right)$ be an ideal in the polynomial ring $\mathbb{K}[X]=\mathbb{K}\left[X_{1}, \cdots, X_{n}\right]$ generated by $\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{K}[X]$. For a given point $P \in \mathbb{K}^{n}$ we define
\[

$$
\begin{align*}
\mathcal{M}_{P} & :=\left\{\alpha \in \mathbb{N}^{n}:(X-P)^{\alpha} \in I \mathcal{O}_{P}\right\}, \tag{1}\\
\mathcal{D}_{P} & :=\mathbb{N}^{n} \backslash \mathcal{M}_{P} . \tag{2}
\end{align*}
$$
\]

Observe that

$$
\alpha \in \mathcal{M}_{P} \Longrightarrow \alpha+\mathbb{N}^{n} \subset \mathcal{M}_{P} \Longrightarrow \mathcal{M}_{P}=\bigcup_{\alpha \in \mathcal{M}_{P}}\left(\alpha+\mathbb{N}^{n}\right)
$$

One can prove that there exists a unique finite set $\alpha^{(1)}, \cdots, \alpha^{(s)} \in \mathcal{M}_{P}$ such that

$$
\begin{align*}
& \alpha^{(i)} \notin\left(\alpha^{(j)}+\mathbb{N}^{n}\right), \quad \text { for } i \neq j, \tag{3}\\
& \mathcal{M}_{P}=\bigcup_{j=1}^{s}\left(\alpha^{(j)}+\mathbb{N}^{n}\right) .
\end{align*}
$$

Lemma 1. I is zero-dimensional if and only if $\# \mathcal{D}_{P}(I)<+\infty$ for every $P \in V(I)$.

Proof. It suffices to prove that P is an isolated point of $V(I)$ if and only if $\# \mathcal{D}_{P}(I)<+\infty$. Take a $P \in V(I)$. We may assume that $P=0$. Observe that any of the conditions implies that for every $j=1, \ldots, n$, there exists a nonzero polynomial $f_{j} \in I$ of the form $f_{j}=x_{j}^{k_{j}} g_{j}(x)$ with $g_{j}(0) \neq 0$ and $k_{j} \geq 1$. On the other hand, this fact implies that both P is an isolated point of $V(I)$ and $\left(0, \cdots, k_{j}, \cdots, 0\right) \in \mathcal{M}_{0}(I)$ for $j=1, \cdots, n$, which proves that $\mathcal{D}_{0}(I)$ is finite.

Definition 2. For a given isolated point $P \in V(I), d_{P}=d_{P}(I):=1+$ $\max \left\{|\alpha|: \alpha \in \mathcal{D}_{P}(I)\right\}$ is defined to be the d-multiplicity of I at P.

Remark 3. $d_{P}(I)=\min \left\{k \in \mathbb{N}: \mathfrak{m}^{k} \subset I\right\}$, where $\mathfrak{m}=\operatorname{Id}(X-P)$ is the ideal corresponding to the point P.

Proposition 4. The following conditions hold

1. $P \notin V(I) \Longleftrightarrow \mathcal{M}_{P}=\mathbb{N}^{n}$.
2. If P is an isolated point of $V(I)$ and Q_{P} is the primary component of I with associated prime $I(P)$, then

$$
\mathcal{M}_{P}(I)=\mathcal{M}_{P}\left(Q_{P}\right) \quad \text { and } \quad \mathcal{D}_{P}(I)=\mathcal{D}_{P}\left(Q_{P}\right)
$$

3. P is an isolated point of $V(I)$ if and only if $\# \mathcal{D}_{P}(I)<+\infty$.

Proof. To prove (1) it is enough to observe that if $P \notin V(I)$ then $1 \in$ $I \mathcal{O}_{P}$.

Without loss of generality we may assume that $P=0$. Since 0 is an isolated point of $V(I), Q_{0}$ does not depend on a primary decomposition of I (see e.g. [1], Thm. 8.56). Thus $I=Q_{0} \cap J_{0}$, where J_{0} contains the rest of primary components. Since $Q_{0} \mathcal{O}_{0}=I \mathcal{O}_{0}, \mathcal{M}_{0}\left(Q_{0}\right)=\mathcal{M}_{0}(I)$. To prove the opposite inclusion, take $\beta \in \mathcal{M}_{0}(I)$. Then there exists $f=x^{\beta}\left(1+\sum_{\alpha>0} a_{\alpha} X^{\alpha}\right) \in I$. Therefore, $f \in Q_{0}$ and finally $x^{\beta} \in Q_{0} \mathcal{O}_{0}$.

Because of (2) we may assume that I is zero-dimensional. Applying Lemma 1 finishes the proof.

Effective construction of \mathcal{D}_{P}. Again, it is enough to consider the case $P=0$. Let $J_{\alpha}=I: \operatorname{Id}\left(X^{\alpha}\right)$. Observe that

$$
\begin{align*}
\mathcal{M}_{0}(I)=\left\{\alpha \in \mathbb{N}^{n}: \exists g \in \mathbb{K}[X]: g(0)\right. & \left.\neq 0, X^{\alpha} g \in I\right\} \tag{5}\\
& =\left\{\alpha \in \mathbb{N}^{n}: \exists g \in J_{\alpha}, g(0) \neq 0\right\} .
\end{align*}
$$

Now it suffices to compute the Gröbner basis $G_{\alpha}=\left\{g_{\alpha}^{(1)}, \cdots, g_{\alpha}^{\left(s_{\alpha}\right)}\right\}$ of J_{α} (see e.g. [3] or [1]) for "all" α (because of (1) and Lemma 1 the computation ends after a finite number of steps) and check whether there exists $j \in\left\{1, \ldots, s_{\alpha}\right\}$ such that $g_{\alpha}^{(j)}(0) \neq 0$.

Theorem 5. If I is a zero-dimensional ideal, then $d(I):=\max _{P \in V(I)}$ $d_{P}(I)$ is the Noether exponent $N(I)=\min \left\{k \in \mathbb{N}:(\operatorname{rad}(I))^{k} \subset I\right\}$.

Proof. The proof that $d(I) \geq N(I)$ follows directly from the fact that for every $P \in V(I)$ we have $\mathfrak{m}^{d_{P}(I)} \subset I \mathcal{O}_{P}$. To prove the opposite, one can assume that $0 \in V(I), d_{0}(I)=d(I)$. Take an $\alpha \in \mathcal{D}_{0}$ such that $|\alpha|=d_{0}(I)-1$, and $g \in \mathbb{K}[X]$ such that $g(0) \neq 0$ and $g(P)=0$ for all $P \in V(I) \backslash\{0\}$. Observe that $X_{j} g(X) \in \operatorname{rad}(I), j=1, \ldots, n$, but $(\operatorname{rad}(I))^{d_{0}(I)-1} \ni X^{\alpha}(g(X))^{|\alpha|} \notin I$.

Lemma 6. Let I be a zero-dimensional ideal. Then $d(I) \leq \operatorname{dim} \mathbb{K}[X] / I$.
Proof. Let $V(I)=\left\{P_{1}, \ldots, P_{s}\right\}$ and let Q_{1}, \ldots, Q_{s} be the primary decomposition of I such that $V\left(Q_{i}\right)=P_{i}$. Since $I \subset Q_{i}, d_{P_{i}}(I)=d_{P_{i}}\left(Q_{i}\right)$ (by Proposition (4) and $\operatorname{dim} \mathbb{K}[X] / Q_{i} \leq \operatorname{dim} \mathbb{K}[X] / I$, it suffices to prove the case $s=1$ and $P:=P_{1}=0$.

Let $l=\operatorname{dim} \mathbb{K}[X] / I$. To end the proof, it is enough to show that for any $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{K}^{n},\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)^{l} \in I \mathcal{O}_{0}$. Fix an a and let T be a linear isomorphism such that $T\left(X_{1}\right)=a_{1} X_{1}+\cdots+a_{n} X_{n}$. Let $T^{*} I \cap \mathbb{K}\left[X_{1}\right]=\operatorname{Id}(f)$. Since I is primary, we may take $f=X_{1}^{k}$. Observe that

$$
k=\operatorname{dim} \mathbb{K}\left[X_{1}\right] /\left(X_{1}^{k}\right) \leq \operatorname{dim} \mathbb{K}[X] / T^{*} I=\operatorname{dim} \mathbb{K}[X] / I=l
$$

- this implies that $X_{1}^{l} \in T^{*} I$.

Lemma 7. Let $I=\operatorname{Id}\left(f_{1}, \ldots, f_{m}\right)$ be an ideal, where the f_{i} are non-zero polynomials, and let $1 \leq k \leq n$. Then there exist linear forms $L_{j} \in \mathcal{L}\left(\mathbb{K}^{m}, \mathbb{K}\right)$, $j=2, \ldots, k$ such that for $I_{k}=\operatorname{Id}\left(f_{1}, L_{2} \circ f, \ldots, L_{k} \circ f\right)$ where f denotes the m-tuple f_{1}, \ldots, f_{m}, the components of $V\left(I_{k}\right)$ not contained in $V(I)$ are at most $n-k$-dimensional.

Proof. The case $k=1$ is trivial. Fix a $k \geq 2$ and suppose than the forms L_{2}, \ldots, L_{k-1} are constructed. Let V_{1}, \ldots, V_{s} be components of $V\left(I_{k}\right)$ not contained in $V(I)$. For each $j=1, \ldots, s$, there exist $P_{j} \in V_{j}$ such that the sequence $f_{1}\left(P_{j}\right), \ldots, f_{m}\left(P_{j}\right)$ has at least one non-zero element. Let $H_{j}=$ $\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{K}^{m}: \alpha_{1} f_{1}\left(P_{j}\right)+\ldots+\alpha_{m} f_{m}\left(P_{j}\right) \neq 0\right\}, j=1, \ldots, s$. Since the sets H_{j} are Zariski-open, the set $H:=\cap_{j=1}^{s} H_{j} \neq \emptyset$. Take $\alpha \in H$ and let $L_{k}\left(Y_{1}, \ldots, Y_{m}\right)=\alpha_{1} Y_{1}+\ldots+\alpha_{m} Y_{m}$. Since $V\left(L_{k} \circ f\right)$ intersects each V_{j} properly, the dimension decreases.

Corollary 8. Let $I=\operatorname{Id}\left(f_{1}, \ldots, f_{m}\right)$ be an ideal and suppose the numbers $d_{i}:=\operatorname{deg} f_{i}$ form a non-increasing sequence. Then there exists an ideal $J \subset I$ such that all components of $V(J)$ not contained in $V(I)$ are zero-dimensional, $J=\operatorname{Id}\left(g_{1}, \ldots, g_{n}\right), \operatorname{deg} g_{n}=\operatorname{deg} f_{m}$, and $\operatorname{deg} g_{i} \leq \operatorname{deg} f_{i}$ for $i=1, \ldots, n-1$, where if $n>m$, set $f(1)=\cdots=f_{n-m-1}=0$.

Proof. If is enough to renumber the generators and apply Lemma 7 followed by Gaussian elimination of the forms L_{i}.

Theorem 9. Let I be as in Corollary 8. Then $N(I) \leq d_{1} d_{2} \cdots d_{n-1} d_{m}$.
Proof. Let J be as in Corollary 8. Applying Lemma 5, Lemma 6, and Bezout's theorem, we get
$N(I)=d(I)=\operatorname{dim} \mathbb{K}[X] / I \leq \operatorname{dim} \mathbb{K}[X] / J \leq g_{1} g_{2} \cdots \cdots g_{n} \leq f_{1} f_{2} \cdots f_{n-1} f_{m}$.
4. The case of one and two variables. In the ring of polynomials of one variable all ideals are zero-dimensional.

Theorem 10. The estimate is true for ideals in the ring of polynomials of two variables.

Proof. Take an ideal $I=\operatorname{Id}\left(f_{1}, \ldots, f_{m}\right)$ as in Corollary 8 and assume that I is one-dimensional. Let g_{1}, \ldots, g_{s} be irreducible polynomials corresponding to the hypersurfaces contained in $V(I)$. Let r_{1}, \ldots, r_{s} be such that $g:=g_{1}^{r_{1}}$. $\cdots g_{s}^{r_{s}}=\operatorname{GCD}\left(f_{1}, \ldots, f_{m}\right)$. Put $\widetilde{f}_{i}:=f_{i} / g, i=1, \ldots, m$. Observe that $J:=\operatorname{Id}\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{m}\right)$ is zero-dimensional.

Put $d=\left(d_{1}-\operatorname{deg} g\right)\left(d_{m}-\operatorname{deg} g\right)+\max \left\{r_{1}, r_{2}, \ldots, r_{s}\right\} \leq d_{1} d_{m}$ and let $p_{1}, \ldots, p_{d} \in \operatorname{rad}(I)$. Obviously, $p_{1}, \ldots, p_{d} \in \operatorname{rad}(J)$ and, consequently, $p_{1} \ldots \ldots$ $p_{d} \in I$.

Remark 11. The above technique can be used to "remove" components of codimension one during the effective calculation of the Noether exponent.
5. Higher-dimensional case. The main goal of this part is to present a given ideal I as an intersection of primary ideals and then to use induction. The proof does not work for ideals with embedded primary components.

Proposition 12. Let $I=\operatorname{Id}\left(f_{1}, \ldots, f_{m}\right)$ be a primary ideal and let $k \in \mathbb{N}$ such that for every $y=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{K}^{k}$ the ideal $I_{y}=\operatorname{Id}\left(f_{1}(y, Z), \ldots\right.$, $\left.f_{m}(y, Z)\right)$ in the ring $\mathbb{K}[Z]=\mathbb{K}\left[Z_{1}, \ldots, Z_{n-k}\right]$ is proper and zero-dimensional. Let $f \in \mathbb{K}[X]$. Then the following conditions are equivalent, writing $X=Y \cup Z$ in an obvious notation:

1. $f \in I$,
2. $f \in \bigcap_{y \in \mathbb{K}^{k}}(I+\operatorname{Id}(Y-y))$,
3. $\forall y \in \mathbb{K}^{k}: f_{y}=f(y, Z) \in I_{y}$,
4. there exists a nonempty Zariski-open set $U \subset \mathbb{K}^{k}$ such that $\forall y \in U$: $f_{y} \in I_{y}$.
Observe that the theorem is not true without the assumption that I is primary. For example, take $I=\operatorname{Id}\left(Y Z, Z^{2}\right)=\operatorname{Id}(Z) \cap \operatorname{Id}\left(Y, Z^{2}\right), k=1$ and $f=Z$. Then f satisfies condition (4) with $U=\mathbb{K} \backslash\{0\}$, but $f \notin I$.

Proof. The implications $1 \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 4$ are trivial. To prove $4 \Longrightarrow 1$ suppose that $G=\left(g_{1}, \ldots, g_{s}\right), g_{i} \in \mathbb{K}[Y][Z]$ is the comprehensive Gröbner basis ([10], see also [1]) of I for parameters $y \in U$. Observe that for y from a Zariski-open set $U^{\prime} \subset U \subset \mathbb{K}^{k}$ the division of $f(y, Z)$ by $\left(g_{1}(y, Z), \ldots, g_{s}(y, Z)\right)$ is conducted the same way (i.e. before each step the multidegree of all the polynomials involved do not depend on y). Since $\forall y \in \mathbb{K}^{k}, f_{y} \in I_{y}$, the remainders of the divisions are 0 . Let $q_{1}, \ldots, q_{s} \in \mathbb{K}(Y)[Z]$ be such that $f(y, Z)=\sum_{i=1}^{s} q_{i}(y, Z) g_{i}(y, Z)$ for $y \in U^{\prime}$. Multiplying the equation by the common denominator $s(Y)$ of coefficients of all q_{i} we get $s(Y) f(Y, Z)=$ $\sum_{i=1}^{s} r_{i}(Y, Z) g_{i}(Y, Z)$, where $r_{i} \in \mathbb{K}[Y][Z]$. This implies that $s(Y) f(Y, Z) \in I$. Since I is primary and $I \cap \mathbb{K}[Y]=\{0\}$, we get $f \in I$.

Theorem 13. The estimate is true for ideals without embedded primary components.

Proof. We apply induction on the number of variables. The cases $n=1$ and $n=2$ are already solved.

Take $n \geq 3$ and an $I=\operatorname{Id}\left(f_{1}, \ldots, f_{m}\right)$ as in Corollary 8 and let $d:=d_{1} d_{2}$. $\cdots d_{n-1} d_{m}$. Let $Q_{1} \cap \cdots \cap Q_{s}$ be a primary decomposition of I. Observe that for a generic linear isomorphism T, each of the components $T^{*} Q_{1}, \ldots, T^{*} Q_{s}$ of $T^{*} I$ satisfies the hypotheses of Proposition 12. It suffices to prove that for any $p_{1}, \ldots, p_{d} \in \operatorname{rad}\left(T^{*} I\right), p_{1} \cdots p_{d} \in T^{*} Q_{i}$ for any $i=1, \ldots, s$.

Let Q be a primary component of $T^{*} I$. If Q is zero-dimensional then it is an isolated component and $(\operatorname{rad} Q)^{d} \subset Q$ since the multiplicity of Q does not exceed d.

Assume now that $k:=\operatorname{dim} Q>0$. Let $U \subset \mathbb{K}^{k}$ be such that, for $y \in U, T^{*} I_{y}$ has no embedded primary components. Fix $y \in U$. Since $\left(p_{1}\right)_{y}, \ldots,\left(p_{d}\right)_{y} \in \operatorname{rad}\left(T^{*} I_{y}\right)$ and $T^{*} I_{y}$ has no embedded primary components, we get $\left(p_{1} \cdots p_{d}\right)_{y} \in T^{*} I_{y} \subset Q_{y}$ by the inductive hypothesis. Applying Proposition 12 ends the proof.

6. Reducing the number of generators.

Lemma 14. Let I, J and Q be ideals such that $V(I) \cup V(Q)=V(J)$ and $V(I) \cap V(Q)=\emptyset$. Fix $d \in \mathbb{N}$. If $\operatorname{rad}(J)^{d} \subset J$ then $\operatorname{rad}(I)^{d} \subset I$.

Proof. Let $I=Q_{1} \cap \ldots \cap Q_{k}$ be a primary decomposition. For $j=1, \ldots, k$ there exists a polynomial $h_{j} \in Q \backslash \operatorname{rad}\left(Q_{j}\right)$. Let $P_{j} \in V\left(Q_{j}\right)$ be such that $h_{j}\left(P_{j}\right) \neq 0$. Using the construction in 7 we get a polynomial $h \in Q$ such that $h\left(P_{j}\right) \neq 0$ for $j=1, \ldots, k$.

Take $p_{1}, \ldots, p_{d} \in \operatorname{rad}(I)$. Observe that $h p_{1}, \ldots, h p_{d} \in \operatorname{rad}(J)$. It follows that $h^{d} p_{1} \cdots \cdots p_{d} \in J$. Assume that $p_{1} \cdots \cdots p_{d} \notin Q_{j}$ for some $j \in\{1, \ldots, k\}$. Since Q_{j} is primary, $h^{d n} \in Q_{j}$ for some $n \in \mathbb{N}$. It follows that $h \in \operatorname{rad}\left(Q_{j}\right)$ contradiction. This proves that $\operatorname{rad}(I)^{d} \subset I$.

Corollary 15. To prove the Kollár estimate it is enough to consider the case of n generators.

Proof. It suffices to apply Corollary 8 , take Q corresponding to the components of $V(J)$ not contained in $V(I)$ and then apply Lemma 14.
7. Closing remarks. (1) Let A be a Noetherian ring. Then we note that:
0_{A} is an intersection of ideals which are powers of maximal ideals (and so are zero-dimensional).

For consider $a \in A \backslash\left\{0_{A}\right\}$ and let $I=0: a$. Then $I \subset M$, for some maximal ideal M. By Krull's Intersection Theorem, there exists $n \in \mathbb{N}$ such that $a / 1 \notin M_{M}^{n}$. Hence $a \notin M^{n}$ and the result follows.
(2) Let A be an excellent (or indeed $J-2$) ring. Then by a general version of Zariski's Main Lemma on holomorphic functions (see [5], 4]), 0_{A} is an intersection of ideals of the form \mathfrak{m}^{e}, where \mathfrak{m} is a maximal ideal and e is the maximum of the Noether exponents of the primary components in a primary decomposition of 0_{A}.
(3) We remark that Proposition 12 supplies a proof using comprehensive Gröbner bases of the following striking result, which can be regarded as a 'Nullstellensatz with Normalization':

Let A be an affine ring over the field \mathbb{K} with 0_{A} a primary ideal. Via Noether Normalization, write $A=\mathbb{K}\left[Y_{1}, \ldots, Y_{k}, z_{1}, \ldots, z_{n-k}\right]$ where Y_{1}, \ldots, Y_{k} are algebraically independent and A is integral over $\mathbb{K}\left[Y_{1}, \ldots, Y_{k}\right]$. Then if $U \subset \mathbb{K}^{k}$ is a non-empty Zariski-open set, $\bigcap_{y \in U} I d(Y-y) \cdot A=0_{A}$.

In this connection, we note the following proof of Theorem 13 in the unmixed case that avoids this result (for which it would be of interest to have a 'classical' proof).

Alternative proof of Theorem 13 in the unmixed case:
Let I be an ideal in $\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ with primary decomposition $I=Q_{1} \cap \ldots \cap$ Q_{s}, with ht $I=$ ht $Q_{i}, i=1, \ldots, s$. Set $P_{i}=\operatorname{rad}\left(Q_{i}\right), i=1, \ldots, s$. Let A denote $\mathbb{K}\left[X_{1}, \ldots, X_{n}\right] / I$, and for each i let \mathfrak{p}_{i} denote P_{i} / I. Via Noether Normalization, we have an integral extension $B \subset A$, with B a polynomial ring. By the basic properties of integral extensions, $\mathfrak{p}_{i} \cap B=0, i=1, \ldots, s$. Hence, setting $S=$ $B \backslash\{0\}, S$ consists of non-zerodivisors in A. Then $S^{-1} A$ is a zero-dimensional affine ring integral over \mathbb{L}, the quotient field of B, and the Noether exponent of 0_{A} is the same as the Noether exponent of $0_{S^{-1} A}$. Moreover, the defining ideal of $S^{-1} A$ arises from I by a linear (even triangular) transformation of variables, so the degrees of the generators get no worse. Hence we have reduced the proof to the zero-dimensional case.

References

1. Becker T., Weispfenning V., Gröbner Bases, Springer-Verlag, (1993).
2. Berenstein C., Yger A., Residue calculus and effective Nullstellensatz, (1997) (preprint).
3. Cox D., Little J., O'Shea D., Ideals, Varieties and Algorithms, Springer-Verlag (1992).
4. Duncan A.J., O'Carroll L., A full uniform Artin-Rees theorem, J. reine angew. Math. 394 (1989), 203-207.
5. Eisenbud D., Hochster M., A nullstellensatz with nilpotents and Zariski's main lemma on holomorphic functions, J. Algebra 58 (1979), 157-161.
6. Kollár J., Sharp effective nullstellensatz, J. Amer. Math. Soc. 1 (1988), 963-975.
7. Kollár J., Effective nullstellensatz for arbitrary ideals, J. Eur. Math. Soc. 1 (1999), 313-337.
8. Łojasiewicz S., Introduction to Complex Analytic Geometry, Birkhäuser Verlag (1991).
9. Sadullaiev A., Kriterii algebraičnosti analitičeskich množestw, Sbornik o golomorfnih funkcjah mnogih kompleksnih pieremiennih (1976), 107-122.
10. Weispfenning D., Comprehensive Gröbner bases, J. Symbolic Comput. 14 (1992), 1-29.

Received December 28, 2000
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: wmj@im.uj.edu.pl
University of Edinburgh
Department of Mathematics
King's Buildings
Edinburgh EH9 3JZ
Scotland
e-mail: loc@maths.ed.ac.uk
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: winiarsk@im.uj.edu.pl

[^0]: Research partially supported by KBN grant 2 P03A 00115 .

