ON LEMPERT FUNCTIONS IN C^{2}

By Witold Jarnicki

Abstract

We give a characterization of all cartesian products $D_{1} \times D_{2} \subset$ \mathbb{C}^{2} for which the Lempert function and the injective Lempert function coincide. In particular, we show that there exist domains in \mathbb{C}^{2} for which they are different.

1. Introduction. The main result of this paper is very similar to the one presented in $\mathbf{2}$, which concerns equality between the Kobayashi-Royden and Hahn pseudometrics for product domains in \mathbb{C}^{2}. The ideas and techniques used here are mostly the same; therefore, only essentially different parts are presented.

For a domain $D \subset \mathbb{C}^{n}$, the Lempert function L and the injective Lempert function H are defined by the formulae:

$$
\begin{aligned}
L_{D}\left(z_{1}, z_{2}\right):=\inf \left\{p\left(\lambda_{1}, \lambda_{2}\right): \exists_{f \in \mathcal{O}(E, D)}\right. & \left.f\left(\lambda_{1}\right)=z_{1}, f\left(\lambda_{2}\right)=z_{2}\right\}, z_{1}, z_{2} \in D \\
H_{D}\left(z_{1}, z_{2}\right):=\inf \left\{p\left(\lambda_{1}, \lambda_{2}\right): \exists_{f \in \mathcal{O}(E, D)}\right. & f\left(\lambda_{1}\right)=z_{1}, f\left(\lambda_{2}\right)=z_{2} \\
& f \text { is injective }\}, \quad z_{1}, z_{2} \in D, z_{1} \neq z_{2}
\end{aligned}
$$

where E denotes the unit disc and p denotes the Poincaré distance (cf. [1] $)^{1}$, Put $H_{D}(z, z):=0$. Obviously, $L \leq H$. It is known that both functions are invariant under biholomorphic mappings, i.e., if $f: D \longrightarrow \widetilde{D}$ is biholomorphic, then

$$
H_{D}\left(z_{1}, z_{2}\right)=H_{\widetilde{D}}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right), \quad L_{D}\left(z_{1}, z_{2}\right)=L_{\widetilde{D}}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right), \quad z_{1}, z_{2} \in D
$$

It is also known that $H_{\mathbb{C}} \equiv L_{\mathbb{C}} \equiv 0$ and that for a hyperbolic (in the sense of the uniformization theorem) domain $D \subset \mathbb{C}$ and for any $z_{1}, z_{2} \in D, z_{1} \neq z_{2}$ we have $H_{D}\left(z_{1}, z_{2}\right) \equiv L_{D}\left(z_{1}, z_{2}\right)$ iff D is simply connected. Using methods similar to [3], one can prove that $H_{D} \equiv L_{D}$ for any domain $D \subset \mathbb{C}^{n}, n \geq 3$.

[^0]Let $D_{1}, D_{2} \subset \mathbb{C}$. The aim of this paper is to show that $H_{D_{1} \times D_{2}} \equiv L_{D_{1} \times D_{2}}$ iff at least one of D_{1}, D_{2} is simply connected or biholomorphic to \mathbb{C}_{*}. In particular, there are domains $D \subset \mathbb{C}^{2}$ for which $H_{D} \not \equiv L_{D}$.

2. The main result.

Theorem 1. Let $D_{1}, D_{2} \subset \mathbb{C}$ be domains. Then:

1. If at least one of D_{1}, D_{2} is simply connected, then $H_{D_{1} \times D_{2}} \equiv L_{D_{1} \times D_{2}}$.
2. If at least one of D_{1}, D_{2} is biholomorphic to \mathbb{C}_{*}, then $H_{D_{1} \times D_{2}} \equiv$ $L_{D_{1} \times D_{2}}$.
3. Otherwise, $H_{D_{1} \times D_{2}} \not \equiv L_{D_{1} \times D_{2}}$.

Let $p_{j}: D_{j}^{*} \longrightarrow D_{j}$ be a holomorphic universal covering of $D_{j}\left(D_{j}^{*} \in\right.$ $\{\mathbb{C}, E\}), j=1,2$. Recall that if D_{j} is simply connected, then $H_{D_{j}} \equiv L_{D_{j}}$. If D_{j} is not simply connected and D_{j} is not biholomorphic to \mathbb{C}_{*}, then, by the uniformization theorem, $D_{j}^{*}=E$ and p_{j} is not injective.

Hence, Theorem 1 is an immediate consequence of the following three propositions (we keep the above notation).

Proposition 2. If $H_{D_{1}} \equiv L_{D_{1}}$, then $H_{D_{1} \times D_{2}} \equiv L_{D_{1} \times D_{2}}$ for any domain $D_{2} \subset \mathbb{C}$.

Proposition 3. If D_{1} is biholomorphic to \mathbb{C}_{*}, then $H_{D_{1} \times D_{2}} \equiv L_{D_{1} \times D_{2}}$ for any domain $D_{2} \subset \mathbb{C}$.

Proposition 4. If $D_{j}^{*}=E$ and p_{j} is not injective, $j=1,2$, then $H_{D_{1} \times D_{2}} \not \equiv$ $L_{D_{1} \times D_{2}}$.

Observe that for any domain $D \subset \mathbb{C}^{n}$ we have:
$H_{D} \equiv L_{D}$ iff for any $f \in \mathcal{O}(E, D), 0<\alpha<\vartheta<1$ with $f(0) \neq f(\alpha)$, there exists an injective $g \in \mathcal{O}(E, D)$ such that $g(0)=f(0)$ and $g(\vartheta)=f(\alpha)$. (*)

Proof of Proposition 2. Let $f=\left(f_{1}, f_{2}\right) \in \mathcal{O}\left(E, D_{1} \times D_{2}\right), 0<\alpha<$ $\vartheta<1$, and $f(0) \neq f(\alpha)$.

First, consider the case where $f_{1}(0) \neq f_{1}(\alpha)$.
By $(*)$, there exists an injective function $g_{1} \in \mathcal{O}\left(E, D_{1}\right)$ such that $g_{1}(0)=$ $f_{1}(0)$ and $g_{1}(\vartheta)=f_{1}(\alpha)$. Put $g(z):=\left(g_{1}(z), f_{2}\left(\frac{\alpha}{\vartheta} z\right)\right)$.

Obviously, $g \in \mathcal{O}\left(E, D_{1} \times D_{2}\right)$ and g is injective. Moreover, $g(0)=f(0)$ and $g(\vartheta)=\left(g_{1}(\vartheta), f_{2}(\alpha)\right)=\left(f_{1}(\alpha), f_{2}(\alpha)\right)=f(\alpha)$.

Suppose now that $f_{1}(0)=f_{1}(\alpha)$. Take $0<d<\operatorname{dist}\left(f_{1}(0), \partial D_{1}\right) \square^{2}$ and put

$$
\begin{gathered}
h(z):=\frac{f_{2}\left(\frac{\alpha}{\vartheta} z\right)-f_{2}(0)}{f_{2}(\alpha)-f_{2}(0)}, \quad M:=\max \{|h(z)|: z \in \bar{E}\}, \\
g_{1}(z):=f_{1}(0)+\frac{d}{M+\frac{1}{\vartheta}}\left(h(z)-\frac{z}{\vartheta}\right), \quad g(z):=\left(g_{1}(z), f_{2}\left(\frac{\alpha}{\vartheta} z\right)\right), \quad z \in E .
\end{gathered}
$$

[^1]Obviously, $g \in \mathcal{O}\left(E, \mathbb{C} \times D_{2}\right)$. Since $\left|g_{1}(z)-f_{1}(0)\right|<d$, we get $g_{1}(z) \in$ $B\left(f_{1}(0), d\right) \subset D_{1},{ }^{3} z \in E$. Hence $g \in \mathcal{O}\left(E, D_{1} \times D_{2}\right)$. Take $z_{1}, z_{2} \in E$ such that $g\left(z_{1}\right)=g\left(z_{2}\right)$. Then $h\left(z_{1}\right)=h\left(z_{2}\right)$, and consequently $z_{1}=z_{2}$.

Finally $g(0)=\left(g_{1}(0), f_{2}(0)\right)=\left(f_{1}(0)+\frac{d}{M+\frac{1}{\vartheta}} h(0), f_{2}(0)\right)=f(0)$ and $g(\vartheta)=$ $\left(g_{1}(\vartheta), f_{2}(\alpha)\right)=\left(f_{1}(0)+\frac{d}{M+\frac{1}{\vartheta}}(h(\vartheta)-1), f_{2}(\alpha)\right)=\left(f_{1}(0), f_{2}(\alpha)\right)=f(\alpha)$.

Proof of Proposition 3. We may assume that $D_{1}=\mathbb{C}_{*}$ and $D_{2} \neq \mathbb{C}$. Using $(*)$, let $f=\left(f_{1}, f_{2}\right) \in \mathcal{O}\left(E, \mathbb{C}_{*} \times D_{2}\right), 0<\alpha<\vartheta<1$, and $f(0) \neq f(\alpha)$. Applying an appropriate automorphism of \mathbb{C}_{*}, we may assume that $f_{1}(0)=1$.

For the case where $f_{2}(0)=f_{2}(\alpha)$, we apply the above construction to the domains $\widetilde{D}_{1}=f_{2}(0)+\operatorname{dist}\left(f_{2}(0), \partial D_{2}\right) E, \widetilde{D}_{2}=\mathbb{C}_{*}$ and mappings $\widetilde{f}_{1} \equiv f_{2}(0)$, $\widetilde{f_{2}}=f_{1}$.

Now, consider the case where $f_{2}(0) \neq f_{2}(\alpha)$ and $f_{1}(\alpha)=1+\vartheta$. We put

$$
g_{1}(z):=1+z, \quad g(z):=\left(g_{1}(z), f_{2}\left(\frac{\alpha}{\vartheta} z\right)\right), \quad z \in E
$$

Obviously, $g \in \mathcal{O}\left(E, \mathbb{C}_{*} \times D_{2}\right)$ and g is injective. We have $g(0)=\left(1, f_{2}(0)\right)=$ $f(0)$ and $g(\vartheta)=\left(1+\vartheta, f_{2}(\alpha)\right)=f(\alpha)$.

In all other cases, define a sequence $\left(d_{k}\right)$ such that we have

$$
\begin{gathered}
d_{k}^{k}=\frac{f_{1}(\alpha)}{1+\vartheta}, \quad k \in \mathcal{N} \\
\operatorname{Arg}\left(d_{k}\right) \longrightarrow 0
\end{gathered}
$$

Observe that $d_{k} \longrightarrow 1$. Let $M:=\max \left\{\left|f_{2}(z)\right|:|z| \leq \frac{\alpha}{\vartheta}\right\}$. Take a $k \in \mathcal{N}$ such that $\left|c_{k}\right|>M$, where

$$
c_{k}:=\frac{f_{2}(\alpha)-d_{k} f_{2}(0)}{1-d_{k}}
$$

Put

$$
\begin{aligned}
h(z) & :=\frac{f_{2}\left(\frac{\alpha}{\vartheta} z\right)-c_{k}}{f_{2}(0)-c_{k}} \\
g_{1}(z):=(1+z) h^{k}(z), \quad g_{2}(z) & :=f_{2}\left(\frac{\alpha}{\vartheta} z\right), \quad g(z):=\left(g_{1}(z), g_{2}(z)\right), \quad z \in E .
\end{aligned}
$$

Obviously, $g \in \mathcal{O}\left(E, \mathbb{C} \times D_{2}\right)$. Since $h(z) \neq 0$, we have $g_{1}(z) \neq 0, z \in E$. Hence $g \in \mathcal{O}\left(E, \mathbb{C}_{*} \times D_{2}\right)$. Take $z_{1}, z_{2} \in E$ such that $g\left(z_{1}\right)=g\left(z_{2}\right)$. Then $h\left(z_{1}\right)=h\left(z_{2}\right)$, and consequently $z_{1}=z_{2}$.

Finally, $g(0)=\left(h^{k}(0), f_{2}(0)\right)=f(0)$ and

[^2]\[

$$
\begin{aligned}
g(\vartheta)=\left(g_{1}(\vartheta), f_{2}(\alpha)\right) & =\left((1+\vartheta)\left(\frac{f_{2}(\alpha)-c_{k}}{f_{2}(0)-c_{k}}\right)^{k}, f_{2}(\alpha)\right) \\
& =\left((1+\vartheta)\left(\frac{f_{2}(\alpha)\left(1-d_{k}\right)-f_{2}(\alpha)+d_{k} f_{2}(0)}{f_{2}(0)\left(1-d_{k}\right)-f_{2}(\alpha)+d_{k} f_{2}(0)}\right)^{k}, f_{2}(\alpha)\right) \\
& =\left((1+\vartheta)\left(\frac{d_{k}\left(f_{2}(0)-f_{2}(\alpha)\right)}{f_{2}(0)-f_{2}(\alpha)}\right)^{k}, f_{2}(\alpha)\right) \\
& =\left((1+\vartheta) d_{k}^{k}, f_{2}(\alpha)\right)=f(\alpha) .
\end{aligned}
$$
\]

Proof of Proposition 4. One can show (see [2]) that there exist $\varphi_{1}, \varphi_{2} \in$ $\operatorname{Aut}(E)$ and a point $q=\left(q_{1}, q_{2}\right) \in E^{2}, q_{1} \neq q_{2}$, such that $p_{j}\left(\varphi_{j}\left(q_{1}\right)\right)=$ $p_{j}\left(\varphi_{j}\left(q_{2}\right)\right), j=1,2$, and $\operatorname{det}\left[\left(p_{j} \circ \varphi_{j}\right)^{\prime}\left(q_{k}\right)\right]_{j, k=1,2} \neq 0$. Put $\widetilde{p}_{j}:=p_{j} \circ \varphi_{j}, j=1,2$, and suppose that $H_{D_{1} \times D_{2}} \equiv L_{D_{1} \times D_{2}}$. Put $z=\left(z_{1}, z_{2}\right):=\left(\widetilde{p}_{1}(0), \widetilde{p}_{2}(0)\right)$ and $w=\left(w_{1}, w_{2}\right):=\left(\widetilde{p}_{1}(r), \widetilde{p}_{2}(r)\right)$, where $r \in(0,1)$ is such that $\widetilde{p}_{j}: \overline{B(0, r)} \longrightarrow D_{j}$ is injective.

Let $(1,1 / \sqrt{r}) \ni \alpha_{n} \searrow 1$. Fix an $n \in \mathcal{N}$. Since $L_{D_{1} \times D_{2}}(z, w)=p(0, r)$, there exists $f_{n} \in \mathcal{O}\left(E, D_{1} \times D_{2}\right)$ such that $f_{n}(0)=z$ and $f_{n}\left(\alpha_{n} r\right)=w$. By (*), there exists an injective holomorphic mapping $g_{n}=\left(g_{n, 1}, g_{n, 2}\right): E \longrightarrow D_{1} \times D_{2}$ such that $g_{n}(0)=z$ and $g_{n}\left(\alpha_{n}^{2} r\right)=w$. Let $\widetilde{g}_{n, j}$ be the lifting with respect to \widetilde{p}_{j} of $g_{n, j}$ with $\widetilde{g}_{n, j}(0)=0, j=1,2$. Observe that $\widetilde{g}_{n, j}\left(\alpha_{n}^{2} r\right)=r$ for n large enough, $j=1,2$.

By the Montel theorem, we may assume that the sequence $\left(\widetilde{g}_{n, j}\right)_{n=1}^{\infty}$ is locally uniformly convergent, $\widetilde{g}_{0, j}:=\lim _{n \rightarrow \infty} \widetilde{g}_{n, j}$. We have $\widetilde{g}_{0, j}(0)=0$, $\widetilde{g}_{0, j}(r)=r$ and $\widetilde{g}_{0, j}: E \longrightarrow E$. By the Schwarz lemma we have $\widetilde{g}_{0, j}=\mathrm{id}_{E}$, $j=1,2$. From now on, we proceed as in [2].
3. Acknowledgement. I would like to thank Professors Peter Pflug and Włodzimierz Zwonek for their valuable remarks.

References

1. Jarnicki M., Pflug P., Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math. 9, Walter de Gruyter, Berlin, 1993.
2. Jarnicki W., Kobayashi-Royden vs. Hahn pseudometric in \mathbb{C}^{2}, Ann. Polon. Math., 75 (2000), 289-294.
3. Overholt M., Injective hyperbolicity of domains, Ann. Polon. Math. 62(1) (1995), 79-82.

Received April 11, 2001
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: wmj@im.uj.edu.pl

[^0]: ${ }^{1}$ Observe that for any $z_{1}, z_{2} \in D, z_{1} \neq z_{2}$, there exists an injective holomorphic disc $f: E \longrightarrow D$ such that $z_{1}, z_{2} \in f(E)$. Indeed, first we take an injective \mathcal{C}^{1}-curve $\alpha:[0,1] \longrightarrow$ D with $\alpha(0)=z_{1}, \alpha(1)=z_{2}$, and $\alpha^{\prime}(t) \neq 0$ for all $t \in[0,1]$. Next, we take a \mathcal{C}^{1}-approximation of α by a polynomial mapping P with $P(0)=z_{1}$ and $P(1)=z_{2} ; P$ has to be injective when close enough to α. Finally, we proceed as in Remark 3.1.1 in [1].

[^1]: ${ }^{2} \operatorname{dist}\left(z_{0}, A\right):=\inf \left\{\left\|z-z_{0}\right\|: z \in A\right\}$, where $\|\cdot\|$ is the Euclidean norm; $\operatorname{dist}\left(z_{0}, \emptyset\right):=+\infty$.

[^2]: ${ }^{3} B\left(z_{0}, r\right):=\left\{z \in \mathbb{C}^{n}:\left\|z-z_{0}\right\|<r\right\}$.

