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Abstract

We propose in this paper the shrinking projection method for finding common elements of
the set of fixed points of a nonspreading-type multivalued mapping and the set of solutions
of split equilibrium problems. We then prove strong convergence theorems in Hilbert spaces.
Furthermore, we give an example and numerical results to illustrate our main theorem.
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1 Introduction

In what follows, let H1 and H2 be real Hilbert spaces with the inner product 〈·, ·〉 and the norm
‖ · ‖. Let C and Q be a nonempty convex subsets of H1 and H2, respectively. A subset C ⊂ H1 is
said to be proximinal if for each x ∈ H1, there exists y ∈ C such that

‖x− y‖ = d(x,C) = inf{‖x− z‖ : z ∈ C}.

Let CB(C),K(C) and P (C) denote the families of nonempty closed bounded subsets, nonempty
compact subsets and nonempty proximinal bounded subset of C, respectively. The Hausdorff metric
on CB(C) is defined by

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y, A)
}
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for all A,B ∈ CB(C) where d(x,B) = infb∈B ‖x − b‖. A singlevalued mapping T : C → C is said
to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C. A multivalued mapping T : C → CB(C) is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖

for all x, y ∈ C. An element z ∈ C is called a fixed point of T : C → C (resp., T : C → CB(C)) if
z = Tz (resp., z ∈ Tz). The fixed point set of T is denoted by F (T ). We write xn ⇀ x to indicate
that the sequence {xn} converges weakly to x and xn → x implies that {xn} converges strongly to
x.

Recent fixed point results for multivalued mappings can be found in [1, 7, 12, 14, 15, 16, 17, 21]
and references therein.

A mapping T : C → CB(C) is said to be demiclosed at 0 if {xn} ⊂ C such that xn ⇀ x and
limn→∞ d(xn, Txn) = 0 imply x ∈ Tx.

Let F1 : C × C → R be a bifunction. The equilibrium problem is to find a point x̂ ∈ C such that

F1(x̂, y) ≥ 0 (1.1)

for all y ∈ C, which has been introduced and studied by Blum and Oettli [2]. The solution set of
the equilibrium problem (1.1) is denoted by EP (F1).

Recently, Combettes and Hirstoaga [4] introduced and studied an iterative method for finding the
best approximation to the initial data when EP (F1) 6= ∅ and prove a strong convergence theorem.
Subsequently, Takahashi et al.[18] introduced a new projection method called the shrinking projec-
tion method for finding the common element of the set of solution of equilibriums and the set of
fixed points for a nonexpansive singlevalued mapping in Hilbert spaces. They proved the following
theorem:

Theorem 1.1. [18] Let H1 be a Hilbert space and C be a nonempty closed convex subset of H1.
Let {Tn} and τ be a family of nonexpansive mappings of C into H such that F := ∩∞n=1F (Tn) =
F (τ) 6= ∅ and let x0 ∈ H. Suppose that {Tn} satisfies the NST -condition (I) with τ . For C1 = C

and u1 = PC1x0, define a sequence {un} in C as follows:
yn = αnun + (1− αn)Tnun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, ∀n ∈ N,

(1.2)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then the sequence {un} converges strongly to a point
z0 = PF x0.
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Very recently, Kazmi and Rizvi [8] introduced and studied the following split equilibrium problem
which is a generalization of the equilibrium problem:

Let C ⊆ H1 and Q ⊆ H2. Let F1 : C × C → R and F2 : Q × Q → R be two bifunctions. Let
A : H1 → H2 be a bounded linear operator. The split equilibrium problem is to find x̂ ∈ C such
that

F1(x̂, x) ≥ 0 for all x ∈ C (1.3)

and
ŷ = Ax̂ ∈ Q solves F2(ŷ, y) ≥ 0 for all y ∈ Q. (1.4)

Note that the inequality (1.3) is the classical equilibrium problem and we denote its solution set
by EP (F1). The problems (1.3) and (1.4) constitute a pair of equilibrium problems which have
to find the image ŷ = Ax̂, under a given bounded linear operator A, of the solution x̂ of the
problem (1.3) in H1 which is the solution of the problem (1.4) in H2. It’s easy to see that the
split equilibrium problem generalize an equilibrium problem. We denote the solution set of the
problem (1.4) by EP (F2). The solution set of the split equilibrium (1.3) and (1.4) is denoted by
Ω = {z ∈ EP (F1) : Az ∈ EP (F2)}.

In the recent years, the problem of finding a common element of the set of solution of split
equilibriums and the set of fixed points for a singlevalued mapping in the framework of Hilbert
spaces and Banach spaces have been intensively studied by many authors, for instance, (see [5, 8,
19, 20]) and the references cited therein.

In 2008, Kohsaka and Takahashi [10] introduced a new class of mappings, which is called the class
of nonspreading mappings.

Let H be a Hilbert space and C be nonempty closed convex subset of H. Then a mapping
T : C → C is said to be nonspreading if

2‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖y − Tx‖2

for all x, y ∈ C. Recently, Iemoto and Takahashi [6] showed that T : C → C is nonspreading if and
only if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2〈x− Ty, y − Ty〉, ∀x, y ∈ C.

Very recently, Liu [11] introduced the following class of multi-valued mappings:

A mapping T : C → CB(C) is called nonspreading if

2‖ux − uy‖2 ≤ ‖ux − y‖2 + ‖uy − x‖2, for ux ∈ Tx, uy ∈ Ty, ∀x, y ∈ C.

for all ux ∈ Tx and uy ∈ Ty for all x, y ∈ C. Also, he proved a weak convergence theorem for
finding a common element of the set of solutions of an equilibrium problem and the set of common
fixed points.
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In this paper, inspired by Liu [11] and Takahashi et al.[18], we define and study a new multivalued
mapping which is called nonspreading-type by using the Hausdorff metric. We then introduce an
iterative method by using the shrinking projection method for finding the common element of the
set of solutions of a split equilibrium problem and the set of fixed points of a nonspreading-type
multivalued mapping, also, obtain strong convergence theorems in a Hilbert space. Furthermore,
we give an example and numerical results for supporting our main theorem.

2 Preliminaries

We now provide some results for the main results. In a Hilbert space H1, let C be a nonempty
closed convex subset of H1. For every point x ∈ H1, there exists a unique nearest point of C,
denoted by PCx, such that ‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. Such a PC is called the metric
projection from H1 on to C. Further, for any x ∈ H1 and z ∈ C, z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

Lemma 2.1. Let H1 be a real Hilbert space. Then the following equations hold:

(1) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 for all x, y ∈ H1;

(2) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H1;

(3) ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2 for all t ∈ [0, 1] and x, y ∈ H1;

(4) If {xn}∞n=1 is a sequence in H1 which converges weakly to z ∈ H1, then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2

for all y ∈ H1.

Lemma 2.2. [13] Let C be a nonempty, closed and convex subset of a real Hilbert space H1 and
PC : H1 → C be the metric projection from H1 onto C. Then the following inequality holds:

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2, ∀x ∈ H1, ∀y ∈ C.

Lemma 2.3. [9] Let C be a nonempty, closed and convex subset of a real Hilbert space H1. Given
x, y, z ∈ H1 and also given a ∈ R, the set

{v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a}

is convex and closed.

Assumption 2.4. [2] Let F1 : C × C → R be a bifunction satisfying the following assumptions:

(1) F1(x, x) = 0 for all x ∈ C;
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(2) F1 is monotone, i.e., F1(x, y) + F1(y, x) ≤ 0 for all x ∈ C;

(3) For each x, y, z ∈ C, lim supt→0 F1(tz + (1− t)x, y) ≤ F1(x, y);

(4) For each x ∈ C, y → F1(x, y) is convex and lower semi-continuous.

Lemma 2.5. [4] Let F1 : C × C → R be a bifunction satisfying Assumption 2.4. For any r > 0
and x ∈ H1, define a mapping TF1

r : H1 → C as follows:

TF1
r (x) =

{
z ∈ C : F1(z, y) +

1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
.

Then we have the following:

(1) TF1
r is nonempty and single-value;

(2) TF1
r is firmly nonexpansive, i.e., for any x, y ∈ H1,

‖TF1
r x− TF1

r y‖2 ≤ 〈TF1
r x− TF1

r y, x− y〉;

(3) F (TF1
r ) = EP (F1);

(4) EP (F1) is closed and convex.

Further, assume that F2 : Q × Q → R satisfying Assumption 2.4. For each s > 0 and w ∈ H2,
define a mapping TF2

s : H2 → Q as follows:

TF2
s (w) =

{
d ∈ Q : F2(d, e) +

1
s
〈e− d, d− w〉 ≥ 0, ∀e ∈ Q

}
.

Then we have the following:

(5) TF2
s is nonempty and single-value;

(6) TF2
s is firmly nonexpansive;

(7) F (TF2
s ) = EP (F2, Q);

(8) EP (F2, Q) is closed and convex.

Condition(A). Let H1 be a Hilbert space and C be a subset of H1. A multi-valued mapping
T : C → CB(C) is said to satisfy Condition (A) if ‖x− p‖ = d(x, Tp) for all x ∈ H1 and p ∈ F (T ).

Remark 2.6. We see that T satisfies Condition (A) if and only if Tp = {p} for all p ∈ F (T ). It is
known that the best approximation operator PT , which is defined by PT x = {y ∈ Tx : ‖y − x‖ =
d(x, Tx)}, also satisfies Condition (A).

3 Main results

Let H1 be a real Hilbert space and C be a nonempty convex subset of H1. In this paper, we
introduce, by using Hausdorff metric, the class of nonspreading multivalued mappings. We say that
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a mapping T : C → CB(C) is a k-nonspreading multivalued mapping if there exists k > 0 such that

H(Tx, Ty)2 ≤ k
(
d(Tx, y)2 + d(x, Ty)2

)
(3.1)

for all x, y ∈ C.

It is easy to see that, if T is 1
2 -nonspreading, then T is nonspreading in the case of singlevalued map-

pings (see [10]). Moreover, if T is a 1
2 -nonspreading and F (T ) 6= ∅, then T is quasi-nonexpansive.

Indeed, for all x ∈ C and p ∈ F (T ), we have

2H(Tx, Tp)2 ≤ d(Tx, p)2 + d(x, Tp)2

≤ H(Tx, Tp)2 + ‖x− p‖2.

It follows that

H(Tx, Tp) ≤ ‖x− p‖. (3.2)

We say that a mapping T : C → CB(C) is a nonspreading-type multivalued mapping if T is
1
2 -nonspreading.

Now, we give an example of a nonspreading-type multivalued mapping which is not a nonexpansive
multivalued mapping.

Example 3.1. Consider C = [−3, 0] with the usual norm. Define a multivalued mapping T : C →
CB(C) by

Tx =

{
{0}, x ∈ [−2, 2];[
− exp{x + 2}, 0

]
, x /∈ [−2, 2].

To see that T is nonspreading-type, we observe the following cases:

Case 1: if x, y ∈ [−2, 0], then H(Tx, Tx) = 0.

Case 2: if x ∈ [−2, 0] and y /∈ [−2, 0], then Tx = {0} and Ty =
[
− exp{y + 2}, 0

]
. This implies

that

2H(Tx, Ty)2 = 2
(
− exp{y + 2}

)2
< 2 < d(Tx, y)2 + d(x, Ty)2.

Case 3: if x, y /∈ [−2, 2], then Tx =
[
− exp{x + 2}, 0

]
and Ty =

[
− exp{y + 2}, 0

]
. This implies

that

2H(Tx, Ty)2 = 2
(
− exp{x + 2}+ exp{y + 2}

)2
< 2 < d(Tx, y)2 + d(x, Ty)2.

But T is not nonexpansive since for x = −2 and y = −9
4 , we have Tx = {0} and Ty =

[
− 1

exp{1/4} , 0
]
.

This implies that H(Tx, Ty) = 1
exp{1/4} > 1

4 =
∣∣− 2−

(
− 9

4

)∣∣ = ‖x− y‖.

Let C be a nonempty set in a Hilbert space H1. We define T (C) = ∪x∈CTx and (ST )x = S(Tx)
for all x ∈ C. Now, we are ready to prove some convergence theorem for a nonspreading-type
multivalued mapping in Hilbert spaces. To this end, we need the following crucial results:
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Lemma 3.2. Let C be a closed convex subset of a real Hilbert space H1. Let T : C → CB(C) be a
nonspreading-type multivalued mapping and F (T ) 6= ∅. Then the followings hold
(i) F (T ) is closed;
(ii) if T satisfies Condition (A), then F (T ) is convex.

Proof. (i) Let {xn} be a sequence in F (T ) such that xn → x as n →∞. We have

d(x, Tx) ≤ ‖x− xn‖+ d(xn, Tx)

≤ ‖x− xn‖+ H(Txn, Tx)

≤ 2‖x− xn‖.

It follows that d(x, Tx) = 0. Hence x ∈ F (T ).
(ii) Let p = tp1 + (1 − t)p2, where p1, p2 ∈ F (T ) and t ∈ (0, 1). Let z ∈ Tp. It follows from (3.2)
that

‖p− z‖2 = ‖t(z − p1) + (1− t)(z − p2)‖2

= t‖z − p1‖2 + (1− t)‖z − p2‖2 − t(1− t)‖p1 − p2‖2

= td(z, Tp1)2 + (1− t)d(z, Tp2)2 − t(1− t)‖p1 − p2‖2

≤ tH(Tp, Tp1)2 + (1− t)H(Tp, Tp2)2 − t(1− t)‖p1 − p2‖2

≤ t‖p− p1‖2 + (1− t)‖p− p2‖2 − t(1− t)‖p1 − p2‖2

= t(1− t)2‖p1 − p2‖2 + (1− t)t2‖p1 − p2‖2 − t(1− t)‖p1 − p2‖2

= 0

and hence p = z. Therefore, p ∈ F (T ). This completes the proof.

Lemma 3.3. Let C be a closed and convex subset of a real Hilbert space H1 and T : C → K(C)
be a k-nonspreading multivalued mapping such that k ∈ (0, 1

2 ]. If x, y ∈ C and a ∈ Tx, then there
exists b ∈ Ty such that

‖a− b‖2 ≤ H(Tx, Ty)2 ≤ k

1− k

(
‖x− y‖2 + 2〈x− a, y − b〉

)
.

Proof. Let x, y ∈ C and a ∈ Tx. By Nadler’s Theorem (see [12]), there exists b ∈ Ty such that

‖a− b‖2 ≤ H(Tx, Ty)2.
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It follows that

1
k
H(Tx, Ty)2

≤ d(Tx, y)2 + d(x, Ty)2

≤ ‖a− y‖2 + ‖x− b‖2

≤ ‖a− x‖2 + 2〈a− x, x− y〉+ ‖x− y‖2 + ‖x− a‖2 + 2〈x− a, a− b〉+ ‖a− b‖2

= 2‖a− x‖2 + ‖x− y‖2 + ‖a− b‖2 + 2〈a− x, x− a− (y − b)〉

≤ 2‖a− x‖2 + ‖x− y‖2 + H(Tx, Ty)2 + 2〈a− x, x− a− (y − b)〉.

This implies that

H(Tx, Ty)2 ≤ k

1− k

(
‖x− y‖2 + 2〈x− a, y − b〉

)
.

This completes the proof.

Lemma 3.4. Let C be a closed and convex subset of a real Hilbert space H1 and T : C → K(C) be
a k-nonspreading multivalued mapping such that k ∈ (0, 1

2 ]. Let {xn} be a sequence in C such that
xn ⇀ p and limn→∞ ‖xn − yn‖ = 0 for some yn ∈ Txn. Then p ∈ Tp.

Proof. Let {xn} be a sequence in C which converges weakly to p and let yn ∈ Txn be such that
‖xn − yn‖ → 0.

Now, we show that p ∈ F (T ). By Lemma 3.4, there exists zn ∈ Tp such that

‖yn − zn‖2 ≤ k

1− k

(
‖xn − p‖2 + 2〈xn − yn, p− zn〉

)
.

Since Tp is compact and zn ∈ Tp, there exists {zni} ⊂ {zn} such that zni → z ∈ Tp. Since {xn}
converges weakly, it is bounded. For each x ∈ H1, define a function f : H1 → [0,∞) by

f(x) := lim sup
i→∞

k

1− k
‖xni − x‖2.

Then, by Lemma 2.1(4), we obtain

f(x) = lim sup
i→∞

k

1− k

(
‖xni − p‖2 + ‖p− x‖2

)
for all x ∈ H1. Thus f(x) = f(p) + k

1−k‖p− x‖2 for all x ∈ H1. It follows that

f(z) = f(p) +
k

1− k
‖p− z‖2. (3.3)

We observe that

f(z) = lim sup
i→∞

k

1− k
‖xni − z‖2 = lim sup

i→∞

k

1− k
‖xni − yni + yni − z‖2 ≤ lim sup

i→∞

k

1− k
‖yni − z‖2.
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This implies that

f(z) ≤ lim sup
i→∞

k

1− k
‖yni − z‖2

= lim sup
i→∞

k

1− k

(
‖yni − zni + zni − z‖

)2

≤ lim sup
i→∞

k

1− k

(
‖xni − p‖2 + 2〈xni − yni , p− zni〉

)
≤ lim sup

i→∞

k

1− k
‖xni − p‖2

= f(p). (3.4)

Hence it follows from (3.3) and (3.4) that ‖p− z‖ = 0. This completes the proof.

Theorem 3.5. Let H1, H2 be two real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty closed
convex subsets of Hilbert spaces H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator and T : C → K(C) a nonspreading-type multivalued mapping. Let F1 : C × C → R,
F2 : Q × Q → R be bifunctions satisfying Assumtion 2.4 and F2 is upper semi-continuous in
the first argument. Assume that Θ = F (T ) ∩ Ω 6= ∅, where Ω = {z ∈ C : z ∈ EP (F1) and
Az ∈ EP (F2)}. For an initial point x1 ∈ H1 with C1 = C, let {un}, {yn} and {xn} be sequences
defined by 

un = TF1
rn

(I − γA∗(I − TF2
rn

)A)xn,

yn ∈ αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1, ∀n ≥ 1

(3.5)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral radius of A∗A and A∗

is the adjoint of A. Assume that the following conditions hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If T satisfies Condition (A), then the sequences {xn}, {yn} and {xn} converge strongly to PΘx1.

Proof. We split the proof into six steps.

Step 1. Show that PCn+1x1 is well-defined for every x1 ∈ H1.

By Lemma 3.2, we obtain that F (T ) is closed and convex. Since A is a bounded linear operator,
it is easy to prove that Ω is closed and convex. So, Θ = F (T ) ∩Ω is also closed and convex. From
the definition of Cn+1, it follows from Lemma 2.3 that Cn+1 is closed and convex for each n ≥ 1.
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Since TF2
rn

is firmly nonexpansive and I − TF2
rn

is 1-inverse strongly monotone, we see that

‖A∗(I − TF2
rn

)Ax−A∗(I − TF2
rn

)Ay‖2 = 〈A∗(I − TF2
rn

)(Ax−Ay), A∗(I − TF2
rn

)(Ax−Ay)〉

= 〈(I − TF2
rn

)(Ax−Ay), AA∗(I − TF2
rn

)(Ax−Ay)〉

≤ L〈(I − TF2
rn

)(Ax−Ay), (I − TF2
rn

)(Ax−Ay)〉

= L‖(I − TF2
rn

)(Ax−Ay)‖2

≤ L〈Ax−Ay, (I − TF2
rn

)(Ax−Ay)〉

= L〈x− y, A∗(I − TF2
rn

)Ax−A∗(I − TF2
rn

)Ay〉

for all x, y ∈ H1. This implies that A∗(I−TF2
rn

)A is a 1
L -inverse strongly monotone mapping. Since

γ ∈ (0, 1
L), it follows that I − γA∗(I − TF2

rn
)A is nonexpansive. Let p ∈ Θ. Then p = TF1

rn
p and

(I − γA∗(I − TF2
rn

)A)p = p. Thus, we have

‖un − p‖ = ‖TF1
rn

(I − γA∗(I − TF2
rn

)A)xn − TF1
rn

(I − γA∗(I − TF2
rn

)A)p‖

≤ ‖(I − γA∗(I − TF2
rn

)A)xn − (I − γA∗(I − TF2
rn

)A)p‖

≤ ‖xn − p‖. (3.6)

This implies that

‖yn − p‖ = ‖αnun + (1− αn)zn − p‖

≤ αn‖un − p‖+ (1− αn)‖zn − p‖

= αn‖un − p‖+ (1− αn)d(zn, Tp)

≤ αn‖un − p‖+ (1− αn)H(Tun, Tp)

≤ ‖un − p‖

for all zn ∈ Tun. So, we have p ∈ Cn+1, thus Θ ⊂ Cn+1. Therefore PCn+1x1 is well defined.

Step 2. Show that limn→∞ ‖xn − x1‖ exists.

Since Θ is a nonempty, closed and convex subset of H1, there exists a unique v ∈ Θ such that

v = PΘx1.

From xn = PCnx1, Cn+1 ⊂ Cn and xn+1 ∈ Cn, ∀n ≥ 1, we get

‖xn − x1‖ ≤ ‖xn+1 − x1‖, ∀n ≥ 1.

On the other hand, as Θ ⊂ Cn, we obtain

‖xn − x1‖ ≤ ‖v − x1‖, ∀n ≥ 1.

It follows that the sequence {xn} is bounded and nondecreasing. Therefore limn→∞ ‖xn − x1‖
exists.
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Step 3. Show that xn → w ∈ C as n →∞.

For m > n, by the definition of Cn, we see that xm = PCmx1 ∈ Cm ⊂ Cn. By Lemma 2.2, we get

‖xm − xn‖2 ≤ ‖xm − x1‖2 − ‖xn − x1‖2.

From Step 2, we obtain that {xn} is Cauchy. Hence, there exists w ∈ C such that xn → w as
n →∞.

Step 4. Show that w ∈ F (T ).

From Step 3, we get
‖xn+1 − xn‖ → 0 (3.7)

as n →∞. Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ → 0 (3.8)

as n →∞. Hence, yn → w as n →∞. For p ∈ Θ, we estimate

‖un − p‖2 = ‖TF1
rn

(I − γA∗(I − TF2
rn

)A)xn − p‖2

= ‖TF1
rn

(I − γA∗(I − TF2
rn

)A)xn − TF1
rn

p‖2

≤ ‖xn − γA∗(I − TF2
rn

)Axn − p‖2

≤ ‖xn − p‖2 + γ2‖A∗(I − TF2
rn

)Axn‖2 + 2γ〈p− xn, A∗(I − TF2
rn

)Axn〉.

Thus we have

‖un − p‖2 ≤ ‖xn − p‖2 + γ2〈Axn − TF2
rn

Axn, AA∗(I − TF2
rn

)Axn〉

+2γ〈p− xn, A∗(I − TF2
rn

)Axn〉. (3.9)

On the other hand, we have

γ2〈Axn − TF2
rn

Axn, AA∗(I − TF2
rn

)Axn〉 ≤ Lγ2〈Axn − TF2
rn

Axn, Axn − TF2
rn

Axn〉

= Lγ2‖Axn − TF2
rn

Axn‖2 (3.10)

and

2γ〈p− xn, A∗(I − TF2
rn

)Axn〉 = 2γ〈A(p− xn), Axn − TF2
rn

Axn〉

= 2γ〈A(p− xn) + (Axn − TF2
rn

Axn)

−(Axn − TF2
rn

Axn), Axn − TF2
rn

Axn〉

= 2γ{〈Ap− TF2
rn

Axn, Axn − TF2
rn

Axn〉 − ‖Axn − TF2
rn

Axn‖2}

≤ 2γ{1
2
‖Axn − TF2

rn
Axn‖2 − ‖Axn − TF2

rn
Axn‖2}

= −γ‖Axn − TF2
rn

Axn‖2. (3.11)
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Using (3.9), (3.10) and (3.11), we have

‖un − p‖2 ≤ ‖xn − p‖2 + Lγ2‖Axn − TF2
rn

Axn‖2 − γ‖Axn − TF2
rn

Axn‖2

= ‖xn − p‖2 + γ(Lγ − 1)‖Axn − TF2
rn

Axn‖2. (3.12)

It follows that, for all zn ∈ Tun,

‖yn − p‖2 = ‖αnun + (1− αn)zn − p‖2

≤ αn‖un − p‖2 + (1− αn)‖zn − p‖2

= αn‖xn − p‖2 + (1− αn)d(zn, Tp)2

≤ αn‖xn − p‖2 + (1− αn)H(Tun, Tp)2

≤ αn‖xn − p‖2 + (1− αn)‖un − p‖2

≤ αn‖xn − p‖2 + (1− αn)(‖xn − p‖2 + γ(Lγ − 1)‖Axn − TF2
rn

Axn‖2)

≤ ‖xn − p‖2 + γ(Lγ − 1)‖Axn − TF2
rn

Axn‖2.

Therefore, we have

− γ(Lγ − 1)‖Axn − TF2
rn

Axn‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

≤
(
‖xn − p‖+ ‖yn − p‖

)
‖xn − yn‖.

It follows from γ(Lγ − 1) < 0 and (3.8) that

lim
n→∞

‖Axn − TF2
rn

Axn‖ = 0. (3.13)

Since TF1
rn

is firmly nonexpansive and I − γA∗(TF2
rn
− I)A is nonexpansive, it follows that

‖un − p‖2

= ‖TF1
rn

(xn − γA∗(I − TF2
rn

)Axn)− TF1
rn

p‖2

≤ 〈TF1
rn

(xn − γA∗(I − TF2
rn

)Axn)− TF1
rn

p, xn − γA∗(I − TF2
rn

)Axn − p〉

= 〈un − p, xn − γA∗(I − TF2
rn

)Axn − p〉

=
1
2
{‖un − p‖2 + ‖xn − γA∗(I − TF2

rn
)Axn − p‖2 − ‖un − xn − γA∗(I − TF2

rn
)Axn‖2}

≤ 1
2
{‖un − p‖2 + ‖xn − p‖2 − ‖un − xn − γA∗(I − TF2

rn
)Axn‖2}

=
1
2
{‖un − p‖2 + ‖xn − p‖2 − (‖un − xn‖2 + γ2‖A∗(I − TF2

rn
)Axn‖2

− 2γ〈un − xn, A∗(I − TF2
rn
− I)Axn〉)},

which implies that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2 + 2γ〈un − xn, A∗(I − TF2
rn

)Axn〉

≤ ‖xn − p‖2 − ‖un − xn‖2 + 2γ‖un − xn‖‖A∗(I − TF2
rn

)Axn‖. (3.14)
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It follows from (3.6) that

‖yn − p‖2 ≤ αn‖un − p‖2 + (1− αn)‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)d(zn, Tp)2

≤ αn‖xn − p‖2 + (1− αn)H(Tun, Tp)2

≤ αn‖xn − p‖2 + (1− αn)‖un − p‖2

≤ αn‖xn − p‖2 + (1− αn)(‖xn − p‖2

−‖un − xn‖2 + 2γ‖un − xn‖‖A∗(I − TF2
rn

)Axn‖)

Therefore, we have

(1− αn)‖un − xn‖2 ≤ 2γ‖un − xn‖‖A∗(I − TF2
rn

)Axn‖+ ‖xn − p‖2 − ‖yn − p‖2.

It follows from the condition (i), (3.8) and (3.13), we have

lim
n→∞

‖un − xn‖ = 0. (3.15)

We know that xn → w as n → ∞, thus un → w as n → ∞. It follows from Lemma 2.1 and (3.6),
we have

‖yn − p‖2 = ‖αnun + (1− αn)zn − p‖2

≤ αn‖un − p‖2 + (1− αn)‖zn − p‖2 − αn(1− αn)‖un − zn‖2

= αn‖un − p‖2 + (1− αn)d(zn, Tp)2 − αn(1− αn)‖un − zn‖2

≤ αn‖un − p‖2 + (1− αn)H(Tun, Tp)2 − αn(1− αn)‖un − zn‖2

≤ ‖un − p‖2 − αn(1− αn)‖un − zn‖2

≤ ‖xn − p‖2 − αn(1− αn)‖un − zn‖2.

This implies that

αn(1− αn)‖un − zn‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

≤
(
‖xn − p‖+ ‖yn − p‖

)
‖xn − yn‖.

It follows from the condition (i) and (3.8) that

lim
n→∞

‖un − zn‖ = 0. (3.16)

By Lemma 3.4, we obtain w ∈ F (T ).

Step 5. Show that w ∈ EP (F ).

From un = TF1
rn

(I + γA∗(I − TF2
rn

)A)xn, we have

F1(un, y) +
1
rn
〈y − un, un − xn − γA∗(I − TF2

rn
)Axn〉 ≥ 0



14 W. Cholamjiak

for all y ∈ C, which implies that

F1(un, y) +
1
rn
〈y − un, un − xn〉 −

1
rn
〈y − un, γA∗(I − TF2

rn
)Axn〉 ≥ 0

for all y ∈ C. By Assumption 2.4 (2), we have

1
rni

〈y − uni , uni − xni〉 −
1

rni

〈y − uni , γA∗(I − TF1
rni

)Axni〉 ≥ F1(y, uni)

for all y ∈ C. From lim infn→∞ rn > 0, from (3.12), (3.14) and the Assumption 2.4 (4), we obtain

F1(y, w) ≤ 0

for all y ∈ C. For any 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)w. Since y ∈ C and w ∈ C, yt ∈ C

and hence F1(yt, w) ≤ 0. So, by Assumption 2.4 (1) and (4), we have

0 = F1(yt, yt) ≤ tF1(yt, y) + (1− t)F1(yt, w) ≤ tF1(yt, y)

and hence F1(yt, y) ≥ 0. So F1(w, y) ≥ 0 for all y ∈ C and hence w ∈ EP (F1). Since A is a
bounded linear operator, Axni ⇀ Aw. Then it follows from (3.13) that

TF2
rni

Axni ⇀ Aw (3.17)

as i →∞. By the definition of TF2
rni

Axni , we have

F2(TF2
rni

Axni , y) +
1

rni

〈y − TF2
rni

Axni , T
F2
rni

Axni −Axni〉 ≥ 0

for all y ∈ C. Since F2 is upper semi-continuous in the first argument and (3.17), it follows that

F2(Aw, y) ≥ 0

for all y ∈ C. This shows that Aw ∈ EP (F2). Hence w ∈ Ω.

Step 6. Show that w = v = PΘx1.

Since xn = PCnx1 and Θ ⊂ Cn, we obtain〈
x1 − xn, xn − p

〉
≥ 0 ∀p ∈ Θ. (3.18)

By taking the limit in (3.18), we obtain〈
x1 − w,w − p

〉
≥ 0 ∀p ∈ Θ.

This shows that w = PΘx1 = v.

From Step 4, we obtain that {xn}, {yn} and {un} converge strongly to v = PΘx1. This completes
the proof.
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If Tp = {p} for all p ∈ F (T ), then T satisfies Condition (A). We then obtain the following result:

Theorem 3.6. Let H1, H2 be two real Hilbert space and C ⊂ H1, Q ⊂ H2 be nonempty closed
convex subsets of Hilbert spaces H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator and T : C → K(C) a nonspreading-type multivalued mapping. Let F1 : C × C → R,
F2 : Q × Q → R be bifunctions satisfying Assumtion 2.4 and F2 is upper semi-continuous in
the first argument. Assume that Θ = F (T ) ∩ Ω 6= ∅, where Ω = {z ∈ C : z ∈ EP (F1) and
Az ∈ EP (F2)}. For an initial point x1 ∈ H1 with C1 = C, let {un}, {yn} and {xn} be sequences
defined by 

un = TF1
rn

(I − γA∗(I − TF2
rn

)A)xn,

yn ∈ αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1, ∀n ≥ 1

(3.19)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L) such that L is the spectral radius of A∗A and A∗

is the adjoint of A. Assume that the following conditions hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If Tp = {p} for all p ∈ F (T ), then the sequences {xn}, {yn} and {xn} converge strongly to PΘx1.

Since PT satisfies Condition (A), we also obtain the following result:

Theorem 3.7. Let H1, H2 be two real Hilbert space and C ⊂ H1, Q ⊂ H2 be nonempty closed
convex subsets of Hilbert spaces H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator and T : C → K(C) a multivalued mapping with I−T is demiclosed at 0. Let F1 : C×C →
R, F2 : Q × Q → R be bifunctions satisfying Assumtion 2.4 and F2 is upper semi-continuous in
the first argument. Assume that Θ = F (T ) ∩ Ω 6= ∅, where Ω = {z ∈ C : z ∈ EP (F1) and
Az ∈ EP (F2)}. For an initial point x1 ∈ H1 with C1 = C, let {un}, {yn} and {xn} be sequences
defined by 

un = TF1
rn

(I − γA∗(I − TF2
rn

)A)xn,

yn ∈ αn + (1− αn)PT un,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1, ∀n ≥ 1

(3.20)

where {αn} ⊂ (0, 1), rn ⊂ (0,∞) and γ ∈ (0, 1/L] such that L is the spectral radius of A∗A and A∗

is the adjoint of A. Assume that the following conditions hold:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) lim infn→∞ rn > 0.

If PT is nonspreading multivalued mapping, then the sequences {xn}, {yn} and {xn} converge
strongly to PΘx1.
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Proof. By the same proof as in Theorem 3.5, we have

lim
n→∞

‖un − zn‖ = 0

where zn ∈ PT un. This implies that

d(un, Tun) ≤ d(un, PT un) ≤ ‖un − zn‖ → 0

as n →∞. From I − T is demiclosed at 0, so we obtain the result.

4 Examples and Numerical Results

In this section, we give examples and numerical results for supporting our main theorem.

Example 4.1. Let H1 = H2 = R, C = [−3, 0] and Q = [0,∞). Let F1(u, v) = 2u(v − u) for
all u, v ∈ C and F2(x, y) = x(y − x) for all x, y ∈ Q. Define two mappings A : R → R and
T : C → K(C) by Ax = 3x for all x ∈ R and

Tx =

{
{0}, x ∈ [−2, 2];[
− exp{x + 2}, 0

]
, x /∈ [−2, 2].

Choose αn = rn = n
100n+1 and γ = 1

100 . It is easy to check that F1 and F2 satisfy all conditions in
Theorem 3.5 and T satisfies Condition (A). For each r > 0 and x ∈ C, we divide the process of our
iteration into 6 Steps as follows:

Step 1. Find z ∈ Q such that F2(z, y)+ 1
r 〈y− z, z−Ax〉 ≥ 0 for all y ∈ Q. Noting that Ax = 3x,

we have

F2(z, y) +
1
r
〈y − z, z −Ax〉 ≥ 0 ⇐⇒ z(y − z) +

1
r
〈y − z, z − 3x〉 ≥ 0

⇐⇒ rz(y − z) + (y − z)(z − 3x) ≥ 0

⇐⇒ (y − z)((1 + r)z − 3x) ≥ 0.

By Lemma 2.5, we know that TF2
r Ax is single-valued. Hence z = 3x

1+r .

Step 2. Find s ∈ C such that s = x− γA∗(I − TF2
r )Ax. From Step 1, we have

s = x− γA∗(I − TF2
r )Ax = x− γA∗(Ax− TF2

r Ax)

= x− γ
(
9x− 3(3x)

1 + r

)
= (1− 9γ)x +

3γ

1 + r
(3x).

Step 3. Find u ∈ C such that F1(u, v) + 1
r 〈v − u, u− s〉 ≥ 0 for all v ∈ C. From Step 2, we have

F1(u, v) +
1
r
〈v − u, u− s〉 ≥ 0 ⇐⇒ (2u)(v − u) +

1
r
〈v − u, u− s〉 ≥ 0

⇐⇒ r(2u)(v − u) + (v − u)(u− s) ≥ 0

⇐⇒ (v − u)((1 + 2r)u− s) ≥ 0.
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Similarly, by Lemma 2.5, we obtain u = s
1+2r = (1−9γ)x

1+2r + 9γx
(1+r)(1+2r) .

Step 4. Find yn ∈ αnun + (1 − αn)Tun, where un = (1−9γ)xn

1+2rn
+ 9γxn

(1+rn)(1+2rn) . Then, we have
yn = αnun + (1− αn)zn, where

zn ∈

{
{0}, un ∈ [−2, 2];[
− exp{un + 2}, 0

]
, un /∈ [−2, 2].

Step 5. Find Cn+1 = {z ∈ Cn : ‖yn−z‖ ≤ ‖xn−z‖} where C1 = [−3, 0]. Since ‖yn−z‖ ≤ ‖xn−z‖,
we have

(2z − (yn + xn))(xn − yn) ≤ 0.

We observe the following cases:
Case 1: If xn − yn ≥ 0, then

z ≤ yn + xn

2
.

This implies that C2 = [−3, (y1+x1)/2]∩[−3, 0] and Cn+1 = [−3, (yn+xn)/2]∩[−3, (yn−1+xn−1)/2]
for all n ≥ 2.
Case 2: If xn − yn ≤ 0, then

z ≥ yn + xn

2
.

This implies that C2 = [(y1 + x1)/2, 0] ∩ [−3, 0] and Cn+1 = [(yn + xn)/2, 0] ∩ [(yn−1 + xn−1)/2, 0]
for all n ≥ 2.

Step 6. Compute the numerical results of xn+1 = PCn+1x1. Choosing x1 = −3, we obtain

n un yn Cn xn

1 -2.41483E+00 -1.29552E-01 [-3.00000E+00,0] -3.00000E+00

2 -1.25944E+00 -1.25317E-02 [-1.56478E+00,0] -1.56478E+00

3 -6.34744E-01 -6.32635E-03 [-7.88654E-01,0] -7.88654E-01

4 -3.19913E-01 -3.19115E-03 [-3.97490E-01,0] -3.97490E-01

5 -1.61239E-01 -1.60917E-03 [-2.00341E-01,0] -2.00341E-01

6 -8.12666E-02 -8.11314E-04 [-1.00975E-01,0] -1.00975E-01

7 -4.09596E-02 -4.09012E-04 [-5.08931E-02,0] -5.08931E-02

8 -2.06443E-02 -2.06186E-04 [-2.56511E-02,0] -2.56511E-02

9 -1.04051E-02 -1.03936E-04 [-1.29286E-02,0] -1.29286E-02

10 -5.24437E-03 -5.23913E-05 [-6.51628E-03,0] -6.51628E-03

...
...

...
...

...

50 -6.57171E-15 -6.57040E-17 [-8.16566E-15,0] -8.16566E-15

Table 1. Numerical results of Example 4.1 being randomized in the first time.
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n un yn Cn xn

1 -2.41483E+00 -4.58971E-01 [-3.00000E+00,0] -3.00000E+00

2 -1.39201E+00 -1.38508E-02 [-1.72949E+00,0] -1.72949E+00

3 -7.01558E-01 -6.99227E-03 [-8.71668E-01,0] -8.71668E-01

4 -3.53587E-01 -3.52705E-03 [-4.39330E-01,0] -4.39330E-01

5 -1.78211E-01 -1.77856E-03 [-2.21429E-01,0] -2.21429E-01

6 -8.98208E-02 -8.96713E-04 [-1.11604E-01,0] -1.11604E-01

7 -4.52710E-02 -4.52065E-04 [-5.62502E-02,0] -5.62502E-02

8 -2.28174E-02 -2.27889E-04 [-2.83511E-02,0] -2.83511E-02

9 -1.15004E-02 -1.14876E-04 [-1.42895E-02,0] -1.42895E-02

10 -5.79639E-03 -5.79060E-05 [-7.20219E-03,0] -7.20219E-03

...
...

...
...

...

50 -7.26345E-15 -7.26200E-17 [-9.02519E-15,0] -9.02519E-15

Table 2. Numerical results of Example 4.1 being randomized in the second time.

From Table 1 and Table 2, we see that 0 is the solution in Example 4.1.

Figure 1. Error plots for all sequences {xn} in Table 1 and Table 2.
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