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Turbulent Diffusion in Lower Atmospheric Layers
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New turbulent diffusion model has been considered for the passive impurities transfer in the
turbulent air flow applying the mean field method. Stochastic differential equations have been
obtained for the mean and fluctuating terms of the impurity concentration. They contain ve-
locity pulsation which is a random function of the spatial coordinates and time. Effective
turbulent diffusion coefficient has been obtained containing both molecular and turbulent
diffusion coefficients. This nonstationary statistical characteristic includes the arbitrary cor-
relation function of the velocity pulsations, longitudinal and transverse diffusion coefficients
potential energy of impurity particles and time. Analytical calculations are carried out for the
anisotropic spatial-temporal Gaussian correlation function. Nonstationary effective turbulent
diffusion coefficient has been obtained and a calm case is considered. Numerical calculations
are carried out using the experimental data. Normalized concentration distribution of a pas-
sive impurities in a turbulent wind flow is analyzed at different distances from a pollutant
source and a velocity of an air flow. Globules of an impurity distribution near the pollutant
source are computed. The isolines of a normalized concentration distribution is analyzed nu-
merically in a culm case. New peculiarities have been revealed in a nonstationary case. Isolines
of globules containing passive impurities are elongated along a wind flow. Over time globules
are combined and separate containing different concentrations and linear scales. Globules with
low concentration have big linear scales and short live time.
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1. Introduction

Statistical characteristics of scattered electromagnetic waves in different random
media are widely studied [1, 2] particularly in the ionospheric plasma [3–8]. Inves-
tigation of the diffusion processes caused by turbulence in the lower atmospheric
layers by calculating second order statistical moments is one of the urgent problems.

Currently, there is no single physical and mathematical model that can explain
and take into account all the numerous aspects of the problem of atmospheric dif-
fusion. There are two main approaches to solving the problem of scattering matter
in a moving liquid or gaseous medium depending on certain factors characterizing
the medium and source - this is the theory of gradient transfer (or semi-empirical
theory of diffusion) and statistical theory of diffusion. Semi-empirical theory is
based on the properties of impurity motion relative to coordinate systems fixed in
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space; that is, it is Eulerian. Statistical theory considers diffusion as turbulence in
Lagrange variables. There is a close relationship between these approaches, they
describe the same phenomenon, but their areas of application do not always over-
lap. There are a number of problems of atmospheric diffusion, where consideration
is possible only on the basis of one of these theories. V.V. Kadomtsev’s turbulent
diffusion models were reviewed [9].

From the point of view of practical application, the possibility of comparing
the results of two different approaches to the description of turbulent diffusion
is very useful. It allows to reasonably select the coefficients of the semi-empirical
equation to determine specific problems, to determine in conveying cases the scope
of application of a particular approach, since each of them has advantages and
disadvantages. In particular, in some cases it is rational to apply a combination of
these two approaches.

In view of the emphasis placed on the protection of the atmosphere from pol-
lution by harmful impurities, methods for calculating the scattering of impurities
in the atmosphere are becoming increasingly important, with the help of which
it is possible to assess the level of air pollution by various sources under certain
meteorological conditions [10, 11]. The solution of this problem is due to the consid-
eration of many factors affecting scattering of impurities in the atmosphere. These
include source type, impurity properties, etc.

It is known that mass transfer processes in liquids and gases are carried out by
molecular and convective diffusions. It has been experimentally established that
in turbulent flows, unlike laminar flows, whole groups of molecules characterized
by mixing paths and turbulent viscosity participate in mixing processes. Turbu-
lence contributes to the mixing of different impurities present in the media [12].
The interaction of impurities leads to a temporary evolution of the irregular struc-
ture of the medium. The latter passes in a metastable state by various types of
relaxation processes taking place in it. Inhomogeneities can lead to both velocity
pulsations and a change in the direction of diffusion processes, to the appearance
of local instability, keeping the remaining areas of the system in equilibrium. The
term “impurities” will hereinafter refer to both particles and clusters of molecules
forming a liquid element.

The interaction of impurities occurs in two opposite directions: the desire for
segregation and for normal diffusion [13, 14]. With small Reynolds numbers between
particles making a Brownian movement in a viscous liquid, a weak slowly decreasing
interaction occurs with a distance. The relative displacement of the particle in the
environment of the remaining particles is characterized along with a chaotic, defined
regular part. The joint movement of particles occurs as if there are deterministic
forces between them, depending in general on the shape and distance between
particles. On average, such movement has a selected direction. On the other hand,
small Re numbers correspond to a large region of molecule localization in a paired
interaction. As the Re number increases, the mixing intensity of the molecules
decreases, conditions are created for the accumulation of inhomogeneities. The
alignment of the latter occurs not with the individual movement of individual
molecules, but with the chaotic movement of groups of molecules. Therefore, the
description of turbulent flows is possible taking into account the movement of whole
groups of molecules.

This paper proposes a model describing molecular and turbulent diffusion tak-
ing into account the interaction of diffusing particles. The evolution of impurity
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concentration is described by the integro-differential equation. The solution uses
the Picard iteration method. Based on the expression of the perturbed impurity
concentration, the effect of unstable negative diffusion is explained. The limit value
of the concentration of impurities is determined from which this effect occurs. A
significant role in this is played by the type of potential energy of interaction be-
tween impurity particles. Based on the mean field method, similar to the work of
[15, 16], a general expression of an effective diffusion coefficient for an arbitrary
tensor correlation function of a solenoidal vector velocity field is obtained. Analy-
sis shows that at large values of the Prandtl diffusion number, in a non-stationary
incompressible liquid, the coefficient of turbulent diffusion is anisotropic and in
a complex way depends on the coefficients of molecular diffusion. Expressions of
longitudinal and transverse, relative to flow motion, coefficients of turbulent diffu-
sion are obtained. An expression of effective potential energy is used describing the
interaction of spherical diffusing particles having a potential hole in spatial-wavy
winds at small Reynolds numbers [17].

2. Materials and Methods

Let us consider the passive impurities concentration distribution using the mean
field method [17]. Concentration N(r, t) and velocity V(r, t) of an incompressible
medium satisfy equation

∂N

∂t
+

∂

∂xα
(NVα)−D ∆N = Σ(r, t).

The source of impurity Σ(r, t) is an arbitrary deterministic function of the coor-
dinate and time, D is the coefficient of the molecular diffusion. Submit functions
N and V as a sum of slowly varying and fluctuating terms, which are random
functions of the coordinates and time

N(r, t) = N0(r, t) + n(r, t), V(r, t) = V0 + u(r, t), V0 = const.

Ensemble average of these random functions are taken to be zero < n >=< u >= 0.
The closed set of equations for the mean and fluctuating concentrations (N0 � n)
is

∂N0

∂t
+ V0α

∂N0

∂xα
−D

∂2N0

∂x2
α

= − ∂

∂xα
< nuα > +Σ(r, t),

∂n

∂t
+ V0α

∂n

∂xα
−D

∂2n

∂x2
α

= − ∂

∂xα
< uαN0 > .

Angular brackets denote an ensemble average.Taking into account the initial con-
dition n(k, 0) = 0 we have

n(k, t) = ikβ exp[−g(k)t]

∞∫
−∞

dk′uβ(k− k′, t′)N0(k′, t′)

t∫
0

dt′ exp[g(k)t′],
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where g(k) = ikαV0α + Dk2; α, β = x, y, z. 3D spectral density of the mean con-
centration satisfies the intego-differential equation

∂N0(k, t)
∂t

+ g(k)N0(k, t)

= − < u2 > km

t∫
0

dτ

∞∫
−∞

dk′k′βWmβ(k− k′, τ) exp[−g(k′)τ ]

×N0(k, t− τ) + Σ(k, t).

(1)

Is the arbitrary second rank correlation tensor Wmβ(ρ, τ) of a random velocity field
describing homogeneous and stationary stochastic process? Impurity concentration
substantially depends on a turbulent velocity of an air flow having statistical na-
ture. Represent this tensor as a product of a spatial spectral amplitude and a
fast-decreased temporal function Wmβ(æ, τ) = Wmβ(æ)f(τ),æ = k − k′. If the
mean concentration satisfies the initial condition N0(k, 0) = 0, the equation (1)
can be rewritten as

∂N0(k, t)
∂t

+ ξ(k)N0(k, t) = Σ(k, t), (2)

where ξ(k) = ikαV0α + k2Deff(k),

Deff(k) = D+ < u2 >
km

k2

∞∫
−∞

dk′k′β

∞∫
0

dτWmβ(æ, τ) exp[−g(k′)τ ].

Turbulence has been caused by: concentration gradient of impurities, convec-
tional transfer of inhomogeneities and potential gradient of the field, induced at
the given point by all particles. Mainly wind field determines impurity concentra-
tion distribution. Evolution of the impurity concentration distribution satisfies the
linear intego-differential equation

∂N(r, t)
∂t

+
∂

∂xα
(NVα)−D

∂2N

∂x2
α

=
µ

Λ
∇

{
1 +

∞∑
n=1

1
n!

λn[N (n−1) − 1]∇

} ∞∫
−∞

dr′Π(r− r′)N(r′, t) + Σ(r, t), (3)

where µ is a particle mobility, Π(r− r′) is the potential energy between diffusible
particles locating at points r and r′, Λ is a power of a pollutant source.

We will seek the solution of the equation (3) using the Picard iteration method
N(r, t) = N (0)(r, t) + λN (1)(r, t) + λ2N (2)(r, t) + · · · As a result we obtain the set
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of differential equations for the mean and fluctuation concentration:

∂N0

∂t
+ V0α

∂N0

∂xα
−D

∂2N0

∂x2
α

− µ

Λ
∂2

∂x2
α

∫
dr′Π(r− r′)N0(r′, t)

= − ∂

∂Xα
< nUα > +Υ(r, t),

∂n

∂t
+ V0α

∂n

∂xα
−D

∂2n

∂x2
α

− µ

Λ
∂2

∂x2
α

∫
dr′Π(r− r′)n(r′, t)

= − ∂

∂Xα
< N0uα >

∂

∂xα
(nuα− < nuα >).

Using the incompressibility condition kαuα(k, ω) = 0, the spatial-temporal Fourier
transform for the effective turbulent diffusion coefficient we obtain

Dturb
eff (k, ω) =

1
(2π)4

kmkβ

k2

∞∫
−∞

dk′dω′dρdτL−1(k′, ω′)Wmβ(ρ, τ)

× exp[−i(k− k′)ρ + i(ω − ω′)τ ],

(4)

In the general case spatial-temporal second rank spectral correlation tensor is
[18]

Wαβ(k, ω) = F (k, ω) · δαβ + G(k, ω) · kαkβ + iH(k, ω) · εαβνkν .

F,G and H are functions of the wavenumber and frequency:

F (k, ω) = Ã− 1
k

∂B̃

∂k
, G(k, ω) = − 1

k2

(
∂2B̃

∂2k
− 1

k

∂B̃

∂k

)
, H(k, ω) =

1
k

∂C̃

∂k
.

Bochner’s theorem imposes the restrictions on these functions. The third term does
not contribute to the solenoidal velocity vector field. The pole of the integrand (4)
is ω′ = (k′V0)− ik′2Dturb

eff (k′). Using the residue theory integration yields

Dturb
eff (k, ω) = 2π

kmkβ

k2

∞∫
−∞

dk′Wmβ(æ,Ω),

where æ = k− k′, Ω = ω − (k′V0) + ik′2Dturb
eff (k′). We choose the spherical coor-

dinate system and the spatial-temporal spectral correlation tensor of the velocity
pulsation submit in the form

Wmβ(æ,Ω) =< u2 > (æ2δmβ − æmæβ) · P (æ,Ω, l, T ).

Transversal and longitudinal (with respect to the vector V0 (V0 ‖ Z)) compo-
nents of the effective turbulent diffusion for arbitrary function P (æ,Ω, l, T ) can be
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written as:

Dturb
⊥ (kx,y, ω)

= 2π < u2 >

∞∫
0

dk′k′4
π∫

0

dθ sin θ

2π∫
0

dϕ

[
1− sin2 θ

(
cos2 ϕ
sin2 ϕ

)]
P (æ,Ω, l, T ),

Dturb
‖ (kz, ω) = 2π < u2 >

∞∫
0

dk′k′4
π∫

0

dθ sin3 θ

2π∫
0

dϕP (æ,Ω, l, T ) |k=kz
,

where ϕ and θ are azimuthal and polar angles, respectively; < u2 > is the variance
of the turbulent velocity, < u2 >1/2∼= l/T is the root-mean-square velocity.

Now consider the model of the passive impurities’ propagation and distribution
in the atmosphere using the modify mean field method [16]. Concentration N(r, t)
and the velocity V (r, t) the satisfy stochastic Fokker-Planck equation:

∂N

∂t
+

∂

∂xα
(NVα) = (Dδαβ + Dαβ)

∂2N

∂xα∂xβ
+ Σ(r, t),

where Dαβ is the second rank tensor of the turbulent diffusion.
If a polutant source having power Λ is located at an altitude H above the

Earth surface S(r, t) = q(r) · Q(t) = ΛQ(−t/T )δ(x − H)δ(y)δ(z) and the
wind velocity is directed along the Z axis, using the initial and solenoidal
(kαWαβ(k, t) = kβWαβ(k, t) = 0) conditions, solution of equation (2) describing the
distribution of the mean concentration of a passive impurity can be written as:

N0(r, t) = 2QΛ

∞∫
−∞

dk
cos(kxH)

ξ(k)
{1− exp[−ξ(k)t]} exp(ikr), (5)

Deff(k) = D +
1
4π

< u2 >

D⊥D
1/2
‖

kmkβ

k2

∞∫
−∞

dρGmβ(ρ)
(

ρ2
⊥

D⊥
+

ρ2
z

D‖

)−1/2

× exp

[
−√q

(
ρ2
⊥

D⊥
+

ρ2
z

D‖

)−1/2

+
V0

2D‖
ρz − ikρ

]
.

Here: q = 1
T + V 2

0
4D‖

, ρ⊥ is the transversal wave vector with respect to the V0 air
flow velocity, D⊥ and D‖ are the transversal and longitudinal diffusion coefficients
of the velocity pulsations. Using the Gaussian correlation function

Gmβ(ρ, τ) =< u2 >

[(
1− ρ2

l2

)
δmβ +

ρmρβ

l2

]
exp

(
−ρ2

l2
− τ2

T 2

)



Vol. 28, No. 2, 2024 125

in the polar coordinate system, we obtain

Deff(k) = D +
1
4π

< u2 >

D⊥D‖

∞∫
−∞

dρz

∞∫
0

dρ⊥

2π∫
0

dϕ

(
ρ2
⊥

D⊥
+

ρ2
z

D‖

)−1/2

×


(

1−
ρ2
⊥

l2⊥
− ρ2

z

l2‖

)
− 1

k2

[
√

B(kx cos ϕ + ky sinϕ) +
ρz

l‖
kz

]2


× exp

[
−B − ρ2

z

l2‖
−√q

(
ρ2
⊥

D⊥
+

ρ2
z

D‖

)1/2

+
V0

2D‖
ρz

−i(kxρ⊥ cos ϕ + kyρ⊥ sinϕ + kzρz)

]
,

where B = ρ2
⊥/l2⊥, l‖ and l⊥ are longitudinal and transversal characteristic spatial

scales of the velocity pulsations along and perpendicular to the air flow, respec-
tively. Using the Jacobi-Anger formulae, taking into account a recurrence relation
of the Bessel function and applying the saddle-point method at

(
1 +

V 2
0 T

4D‖

)1/2

� 1 and V0

(
T

D‖

)1/2

� 1

the effective diffusion coefficient can be rewritten as

Deff(k) = D +
1
2

< u2 >

k2

√
π

p

T 1/4

D
3/4
⊥

∞∑
n=−∞

in
∞∫

−∞

dρ⊥ρ
1/2
⊥
{
(1−B)k2Jn(t1)Jn(t2)

+
B

4
k2

xJn(β)
[
Jn−2(t1)− 2Jn(t1) + Jn+2(t1)

]
+

B

4
k2

yJn(t1)

×
[
Jn−2(t2)− 2Jn(t2) + Jn+2(t2)

]}
exp

(
−B − p√

TD⊥
ρ⊥

)
. (6)

Here: p =
(
1 + V 2

0 T
4D‖

)1/2
, B = ρ2

⊥/l2⊥, t1 = kxρ⊥, t2 = kyρ⊥. Using the well-
known relation for the Bessel function J−n(x) = (−1)nJn(x) and the designation
η = (V0l⊥)2/(8D⊥D‖) consider two limit cases.

a) t1 � 1 and t2 � 1.

Deff = D + Rη1/2 exp(η)
[
K3/4(η)−K1/4(η)

]
,

where Kν(x) is the McDonald function, R =
√

2π < u2 > l2⊥/(8D⊥). If ζ < 1 we
yield:

Deff = D + Rη−1/4 = D + Dturb. (7)
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Velocity pulsations increase the effective turbulent diffusion coefficient Deff. It de-
pends on both transversal and longitudinal diffusion coefficients and transversal
characteristic spatial scale ∼ l

3/2
⊥ ; Dturb is inversely proportional to the wind ve-

locity V0. If the velocity of an air flow substantially increases, velocity pulsations
do not give the contribution. If η > 1, Deff = D.

b) t1 � 1 and t2 � 1. Using the asymptotic expression for the Bessel function,
from (6) we obtain

Deff(k) = D +
1

2
√

π

< u2 >

(kl⊥)2

(
D‖

V 2
0 D3

⊥

)1/4 1
(kxky)1/2

∞∫
0

dρ⊥
[
2(kl⊥)2

−ρ2
⊥(4k2

x + 4k2
y + 4k2

z)
]
ρ
−1/2
⊥

[
cos (k−ρ⊥)

+ sin (k+ρ⊥)
]
exp

(
−B − V0√

D‖D⊥
ρ⊥

)
,

(8)

and at η > 1

Deff(k) = D +
< u2 >

V0

(
D‖

D⊥

)1/2 1
(kxky)1/2

,

where k± = kx ± ky. At small-scale velocity pulsations the effective diffusion co-
efficient contains only parameters of a turbulent flow. In the case of large-scale
velocity fluctuations, Deff depends also on the wavelength of wave propagating in
a nonstationary medium i.e., it is inversely proportional to the trasversal wave
number, i.e. k−1

⊥ . Knowledge of Deff allows to calculate the integral (5).
A particular interest, in terms of protection of the atmosphere from pollu-

tion, represents studying propagation of impurity in the atmosphere at abnormal
weather conditions to which, in particular, the calm belongs. In this case, there
is no wind transfer of the impurity, and very high concentrations can be observed
near the source. In areas with a sharply continental climate, there are pollutant
emissions with a vertical length of up to several hundred meters or more [10]. Find
the passive impurity concentration distribution when the turbulent flow rate is
zero, V0 = 0. Using (8) at η1 = l2⊥/(8TD⊥) > 1 applying the saddle-point method,
after some manipulations for the effective diffusion coefficient and the mean con-
centration of a passive impurity we obtain

Deff = D + G0

√
Tη1 exp(η1)

[
K3/4(η1)−K1/4(η1)

]
,

N0(r, t) = 2QΛπ2D−1
eff

[
(x−H)2 + y2 + z2

]−1/2

×
{

1− erf
[
(Defft)−1/2

] (
(x−H)2 + y2 + z2

)}
+(H → −H), ξ(k) = k2Deff.

Here G0 = 2
√

π < u2 > l⊥/
√

D⊥.
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For a small-scale inhomogeneities (k⊥l⊥ � 1), at big Peclets number V0l/D‖ � 1
we obtain:

D∗ =< u2 >
l2⊥
D⊥

η1/2
[
K3/4(η)−K1/4(η)

]
. (9)

In a calm case (V0 = 0) we have:

D0
∗ = G0η1 exp (η1)

[
K3/4(η1)−K1/4(η1)

]
. (10)

Consider different cases of the parameter η. Using the asymptotic formulas of the
Macdonald function from equation (7) it follows, that: at η < 1 velocity pulsations
lead to the increase of the turbulent diffusion coefficient Deff depending on as
the characteristic transverse spatial scale of the velocity pulsation l

3/2
⊥ , as well

as the horizontal (D‖) and transversal (D⊥) diffusion coefficients. Increasing the
wind velocity V0 parameter Deff decreases. If V0 substantially increases, velocity
pulsations do not give the contribution. At η > 1 turbulent diffusion coefficient is
determined mainly by the velocity of a turbulent stream.

At calm meteorological conditions (no impurity transfer by the wind) high con-
centration can be observed near the source. In areas with sharply continental cli-
mate there are calms to vertical extent up to several hundred meters and more
[19].

Substituting (9) and (10) equations into (5) for the normalized turbulent diffusion
coefficient of the passive impurities and in the calm case (V0) we obtain:

Υ =
2π2

D∗z
exp

{
−1

4
V0

D∗z

[
(x + H)2 + y2

]}{
1 +

1
4z2

[
(x + H)2 + y2

]}

−
√

π

2
Γ√
G

[
exp

(
2
√

Gγ
)
· erf

(√
G

t
+
√

γt

)
+ exp

(
2
√

Gγ
)
· erf

(√
G

t
+
√

γt

)

− exp
(
2
√

Gγ
)

+ exp
(
−2
√

Gγ
)]

+ (H → −H), (11)

Υ0 =
2π2

D0
∗

[
(x + H)2 + y2 + z2

]−1/2

×
{

1− erf
[
(D0

∗t)
−1/2left((x + H)2 + y2 + z2

)]
+ (H → −H),

(12)

where erf(x) = 2√
π

x∫
0

dt exp(−t2) is the Gaussian error function,

Γ =
π3/2

2
1

D
3/2
∗

exp
(

zV0

2D∗

)
, G =

1
4D∗

[
(x + H)2 + y2 + z2

]
,

γ =
V 2

0

4D∗
, Υ ≡ N0(r, t)

QΛ
, Υ0 ≡

N0
0 (r, t)
QΛ

.
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The inequality
[
(x + H)2 + y2

]
≤ z2 imposes the restriction on a distance z in

equations (11) and (12). The condition N0
0 (r, t) = 0 is satisfied for arbitrary dis-

tances z in a calm case. In the absence of impurity transfer by wind, very high
concentrations of impurity can be observed near the source.

3. Results

Numerical simulations of the statistical characteristics of pollutant transfer in a
turbulent air flow are carried out using the experimental data [10, 19, 20]. The
height of the source of the impurities eruption is located at an altitude of 100-200
meters. RMS pulsation of the longitudinal velocity component is of the order of√

< u2 > = 0.18÷0.66 m/sec, the Lagrangian spatial and temporal scales are in the
interval l⊥ = (100÷ 180) m, T = (125÷ 300) sec, respectively. The mean velocity
of a wind is in the interval V0 = (1 ÷ 7) m/sec. Transversal turbulent diffusion
coefficient is of the order of D⊥ = (11; 30) m2/sec, longitudinal diffusion coefficient
can be calculated taking into account the data of the experimental measurements
D‖ = nD⊥, n = 15÷ 30.

Figure 1. Dependence of the distribution of the normalized concentration of a passive impurity Υ0 versus
distance Z in stationary (t →∞) calm case V0.

Figure 2. As in Figure 1, at different velocities of a turbulent air flow (see equation (11)).
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Figure 1 shows the normalized passive impurities distribution Υ0 at different
distances Z from a pollutant source in calm (V0 = 0) and stationary (t → ∞)
cases. Parameters: H = 100 m,D⊥ = 11 m2/sec, n = 15, T = 120 sec, l⊥ = 150 m.
Concentration slowly decreases, at a distance 80 m reaches minimum ∼ 10−4 and
after remains constant.

Figure 2 represents concentration distribution at different velocities of a wind:
V0 = (1.2; 1.4; 1.8; 2.0) m/sec. In both cases concentration of a passive impu-
rity decreases with distance. Parameters: H = 180 m,D⊥ = 30 m2/sec, n =
15, T = 180 sec, l⊥ = 150 m, t = 42 hour. 1) At V0 = 1.2 m/sec concentra-
tion reaches maximum 0.06 at Z = 26.45 m and is zero at Z = 130 m; 2) At
V0 = 1.4 m/sec, Υmax = 0.01 at Z = 17.65 m and is zero at Z = 180 m; 3) At
V0 = 1.6 m/sec, Υmax = 0.02 at Z = 12.85 m and is zero at Z = 200 m. Im-
purity concentration decreases exponentially in all cases. The obtained results are
in an agreement with [21] in the presence and absence of a fog at an altitude of
H = 100 m.

Figure 3. Globule near the source at H = 120 m, V0 = 1.0 m/sec, t = (100÷ 500) sec.

Figure 4. Globule near the source at H = 180 m, V0 = 1.2 m/sec, t = (100÷ 500) sec.

Figures 3 and 4 represents the evaluation of an impurity globules near the source
in a time interval t = (100 ÷ 500) sec. The source of pollution is at an altitude
H = 120 meters from the surface of the Earth (see Figure 3) at wind velocity
V0 = 1.0 m/sec and H = 180 m (see Figure 4) at V0 = 1.2 m/sec. In all figures
impurity concentrations are indicated on the curves.
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Figure 5. Isolines of the impurity concentrations in a calm case.

Figure 5 illustrates isolines of a normalized impurity concentration distribution
Σ0 for a calm case (V0) at stationary (t → ∞) (left figure) and nonstationary
(t = 10 sec) (right figure) cases in the Y OZ plane. Parameters: H = 180 m,D⊥ =
22 m2/sec, n = 15, T = 110 sec. In a stationary case (no wind), the so-called
calm case, the isolines of globules have a form of concentration circles. Globules
with lower impurity concentrations correspond to large radius circles. Increasing
concentrations of impurities, radius of isolines circles decreases.

Figure 6. Evaluation of impurity globules at wind velocities of V0 = 1.2 m/sec (left figure) and for
V0 = 1.9 m/sec (right figure).

Figure 6 illustrates the globules deformation of an impurity concentration dis-
tribution using equation (12) from source to 100 meters at different wind speeds
V0 = 1.2, 1.9 m/sec Increasing a velocity of an airflow, the isolines of globules
deform and stretch along the wind direction. Parameters of the Figures 7–8:
H = 200 m,T = 18 sec, n = 20, D⊥ = 35 m2/sec.

Table 1. Globules formation parameters
Concentration

Υ

Time of
creation

sec

Time of
disappearance

sec

Lifetime

sec

Initial
coordinates

of the
globule

formation
m

Diameter
of the

globules

m
0.004 700 800 100 900 100
0.003 650 900 250 850 130
0.002 590 870 280 680 180
0.001 475 500 25 480 200
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Figure 7. Evolution of an isolines corresponding to the passive impurity concentration in a nonstationary
case at V0 = 1 m/sec in a time interval t = 100÷ 450 sec.

Figure 8. As on Figures 7 at time interval t = 500÷ 600 sec.

Numerical simulation of the normalized turbulent diffusion coefficient is carried
out in a non-stationary case. Globules of the passive impurities with different con-
centrations and sizes carried by wind are constantly changing. In the vicinity of a
source, these globules stretch along the wind direction. At some distance from a
source, some globules with a large concentration are so elongated that new glob-
ules appear inside them. As a result, their concentration increases, impurities break
off from the main stream and continue to move independently along the stream,
changing their original shape. After some time, globules are disappeared due to
diffusion. The lifetime of globules depends on the concentration of impurities and
on the size. Figures defining the evolution of isolines of globules with different
concentrations of impurities and sizes are given as illustrations.

4. Conclusions

The paper proposes a new statistical model of the turbulent diffusion in the lower
atmospheric layers, based on the Picard and the mean field method. An anisotropic
effective turbulent diffusion coefficient is obtained for an arbitrary second rank cor-
relation tensor of a solenoidal velocity vector field which is a random function of
spatial coordinates and time. Longitudinal and transverse effective diffusion coef-
ficients contain molecular diffusion, interaction between impurities and diffusion
coefficients in two mutually perpendicular directions. The relationship between
these coefficients has been established experimentally. Particular attention is paid
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to the effective potential energy between interactive impurities. Its spectral func-
tion has a hole at small Reynolds numbers that can lead to a new effect, so-called
turbulent diffusion instability [22].

Numerical calculations are carried out to study the formation and evolution
of globules of different concentrations and linear sizes. In a calm case isolines of
globules having form of concentric circles, globules with higher concentrations are
located near the source of impurities eruption than globules with lower concentra-
tions. In a non-stationary case, globules with various concentrations move towards
the direction of a wind. Globules with a small concentration of impurities have large
linear dimensions and a short lifetime. Over time, shapes of the globules isolines
are distorted, they stretch towards the wind speed, sometimes the globules merge
and they begin to move independently along the flow. The lifetime of globules with
a low concentration of impurities is less than a globule with a higher concentration.

Investigation of these processes is an urgent problem in modern ecology aimed
at combating atmospheric pollution, meteorology and atmospheric physics.
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