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In (0, 0) approximation of hierarchical models of piezoelectric transversely isotropic cusped
bars we consider static and oscilation problems. We analyze peculiarities of nonclassical setting
boundary conditions.
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Preface

The present paper is devoted to static and oscillation problems of hierarchical
models of piezoelectric transversely isotropic cusped bars in (0, 0) approximation.
A special attention is given to analysis peculiarities of nonclassical setting bound-
ary conditions (BCs). Namely, the criteria are established when on one end or on
both ends of the bar no data need be prescribed. Weighted BCs are set as well On
the face surfaces of the bar under consideration stress vectors and outward normal
components of the electric displacement vectors are prescribed, while at the ends
of the bar all the admissible [in sense of well posedness of boundary value prob-
lems(BVPs)] BCs, including mixed ones, with respect to weighted (0, 0) moments of
the components of the mechanical displacement vectors and electric potential, and
(0, 0) moments of the components of the stress and electric displacement vectors
are prescribed.
The paper is organized as follows. In Section 1 we compile auxiliary materials

concerning geometry of cusped, in general, prismatic bars with rectangular cross-
sections and double mathematical moments of functions. In section 2 we briefly
sketch field equations of the transversaly isotropic elastic piezoelectric materials. In
Section 3 we derive governing equations of (0, 0) hierarchical model. In Section 4 we
deduce governing equations of one-dimensional particular case of three-dimensional
model. In Section 5 we study BVPs which are solved in the explicit forms. In Section
6 mechanical interpretation of results of analysis of peculiarities of setting BCs for
cusped bars is given. In Section 7 we make some bibliographical remarks.
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1. Introductory section

Let the closure of a domain of R3, occupied by a piezoelectric elastic bar V with
rectangular cross-sections (see [1], [2]) be:

V :=
{
(x1, x2, x3) ∈ R3 : 0 ≤ x3 ≤ L;

(−)

hα(x3) ≤ xα ≤
(+)

hα(x3),

α = 1, 2; L = const
}

(1.1)

with

2hα(x3) :=
(+)

hα(x3)−
(−)

hα(x3) > 0, 0 < x3 < L,

2hα(0) ≥ 0, 2hα(L) ≥ 0, hα ∈ C([0, L]) ∩ C1(]0, L[), α = 1, 2.

(1.2)

C([0, L]) and C1(]0, L[) denote classes of continuous and continuously differentiable
functions on the indicated intervals, respectively. Let 2h1 and 2h2 conventionally
be the thickness and the width of the bar and their maxima be significantly less
than the length L of the bar (see Figure 1.1).

Figure 1.1. An example of a cusped prismatic bar with rectangular cross-sections

Since

x1 =
(±)

h1 (x3) and x2 =
(±)

h2 (x3) (1.3)

are the face surfaces, clearly,
[
(
(±)
να )i, α = 1, 2, i = 1, 2, mean the projections of the
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normals
(±)
να to the face surfaces

(±)

hα on xi-axis
]

(
(±)
ν1

)
1
=

±1√
1 + (

(±)

h1,3)2

= cos(
(±)
ν1 , x1), (1.4)

(
(±)
ν1

)
2
=

∓
(±)

h1,2√
1 + (

(±)

h1,3)2

= cos(
(±)
ν1 , x2) = 0 since

(±)

h1,2 = 0,

(
(±)
ν1

)
3
=

∓
(±)

h1,3√
1 + (

(±)

h1,3)2

= cos(
(±)
ν1 , x3),

(1.5)

whence, in view of (1.2)-(1.5),

±1 =

√
1 + (

(±)

h1,3 )2
(
(±)
ν1

)
1
,

0 = ∓
(±)

h1,2 =

√
1 + (

(±)

h1,3 )2
(
(±)
ν1

)
2
,

∓
(±)

h1,3 =

√
1 + (

(±)

h1,3 )2
(
(±)
ν1

)
3
;

(1.6)

(
(±)
ν2

)
1
=

∓
(±)

h2,1√
1 + (

(±)

h2,3)2

= 0 since
(±)

h2,1 = 0, (1.7)

(
(±)
ν2

)
2
=

±1√
1 + (

(±)

h2,3 )2

,
(
(±)
ν2

)
3
=

∓
(±)

h2,3√
1 + (

(±)

h2,3 )2

, (1.8)

hence, by virtue of (1.2), (1.3), (1.7), (1.8),
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0 = ∓
(±)

h2,1 =

√
1 + (

(±)

h2,3)2
(
(±)
ν2

)
1
,

±1 =

√
1 + (

(±)

h2,3)2
(
(±)
ν2

)
2
, (1.9)

∓
(±)

h2,3 =

√
1 + (

(±)

h2,3)2
(
(±)
ν2

)
3
.

Note, that also geometrically (
(±)
να )β = 0, α ̸= β, α, β = 1, 2.

Let further

f(x1, x2, x3) ∈ C1(V ),

and at points x3, where both the thickness and the width of the bar do not vanish,
i.e. the area of the cross-section does not vanish, we define (0, 0) double moment
of the function f and its first derivatives as follows:

f00(x3) :=

(+)

h1 (x3)∫
(−)

h1 (x3)

(+)

h2 (x3)∫
(−)

h2 (x3)

f(x1, x2, x3)dx1dx2, (1.10)

3f00(x3) :=

(+)

h1 (x3)∫
(−)

h1 (x3)

(+)

h2 (x3)∫
(−)

h2 (x3)

f,3(x1, x2, x3)dx1dx2 =

(+)

h1 (x3)∫
(−)

h1 (x3)

dx1

[ ∂

∂x3

(+)

h2 (x3)∫
(−)

h1 (x3)

f(x1, x2, x3)dx2

−f(x1,
(+)

h2 , x3)
(+)

h2,3 + f(x1,
(−)

h2 , x3)
(−)

h2,3

]

= f00,3(x3)−

(+)

h2 (x3)∫
(−)

h2 (x3)

f(
(+)

h1 , x2, x3)dx2
(+)

h1,3 +

(+)

h2 (x3)∫
(−)

h2 (x3)

f(
(−)

h1 , x2, x3)dx2
(−)

h1,3

−

(+)

h1 (x3)∫
(−)

h1 (x3)

f(x1
(+)

h2 , x3)dx1
(+)

h2,3 +

(+)

h1 (x3)∫
(−)

h1 (x3)

f(x1,
(−)

h2 , x3)dx1
(−)

h2,3

= f00,3(x3) +
(3)

f (x3), (1.11)

where
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(3)

f (x3) := −

(+)

h2 (x3)∫
(−)

h2 (x3)

f(
(+)

h1 , x2, x3)dx2
(+)

h1,3 +

(+)

h2 (x3)∫
(−)

h2 (x3)

f(
(−)

h1 , x2, x3)dx2
(−)

h1,3

−

(+)

h1 (x3)∫
(−)

h1 (x3)

f(x1
(+)

h2 , x3)dx1
(+)

h2,3 +

(+)

h1 (x3)∫
(−)

h1 (x3)

f(x1,
(−)

h2 , x3)dx1
(−)

h2,3, (1.12)

1f00(x3) :=

(+)

h1 (x3)∫
(−)

h1 (x3)

(+)

h2 (x3)∫
(−)

h2 (x3)

f,1 (x1, x2, x3)dx1dx2

=

(+)

h2 (x3)∫
(−)

h2 (x3)

[
f
((+)

h1 , x2, x3

)
− f

((−)

h1 , x2, x3

)]
dx2 =:

(1)

f (x3), (1.13)

2f00(x3) :=

(+)

h1 (x3)∫
(−)

h1 (x3)

(+)

h2 (x3)∫
(−)

h2 (x3)

f,2 (x1, x2, x3)dx1dx2

=

(+)

h1 (x3)∫
(−)

h1 (x3)

[
f
(
x1,

(+)

h2 , x3

)
− f

(
x2,

(−)

h2 , x3

)]
dx1 =:

(2)

f (x3). (1.14)

At the point x3, where the area of the cross-section vanishes, the (0, 0) double
moment we define as limit of the (0, 0) double moments from points, where the
area of cross-sections do not vanish.

2. Field equations

Let us now consider the transversely isotropic elastic piezoelectric material in the
case when the poling axis coincides with one of the material symmetry axes [3]. Let
it be x3-axis. A material behavior is said to be transversely isotropic if it is invariant
with respect to an arbitrary rotation about a given axis. This material behavior
is of special importance in the modelling of fibre-reinforced composite materials
with a coordinate axis in the fibre direction and assumed isotropic in cross-sections
orthogonal to fibre direction [4] (in our case to poling axis as well, since in the case
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under consideration they coincide, see Figures 2.1, 2.2). The transverse isotropic
model is also suitable for biological applications because it adequately describes
the elastic properties of bundled fibers aligned in one direction [5] (see also [6]).

Figure 2.1. Transverselly isotropic material
with the fibers parallel to x3-axis

Figure 2.2. A bundle of fiber aligned parallel
to x3-axis

It is well-known [3] that the electric field that develops in piezoelectrics can be
assumed to be quasi-static because the velocity of the elastic waves is much smaller
than the velocity of electromagnetic waves. Therefore, the magnetic field due to
the elastic waves is negligible and the vector of magnetic induction B ≈ 0. This
fact implies that

∂B

∂t
≈ 0.

So one of Maxwell’s equations of electrodynamics becomes

rotE =
∂B

∂t
≈ 0,

hence the vector of the electric field

E = −gradχ,

where χ is the electric potential.
Consequently, considering transversely isotropic piezoelectric continuum, it will

be based on the governing equations of elastodynamics in the case of small de-
formations and quasi-electrostatic fields. Note that piezoelectric materials show in
most cases a crystal structure with a symmetry of hexagonal 6 mm class. In the
case when the poling axis coincides with one of the material symmetry axes these
materials become transversely isotropic. Restricting to the case of time-harmonic
motion with frequency o, i.e., all the sought quantities, s.c. free members of gov-
erning equations, and boundary data are represented as the products of eiot and
of the same quantities (to avoid redundant indices and symbols we leave the same
notation) depending only on the space variables, we get the following governing
equations (see [7], [3], and also [8], [9])
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Xij,j + ρo2ui = −Φi, i = 1, 3 (2.1)

(note that the motion equation in the general dynamical case has the form

Xij,j − ρ
∂2ui
∂t2

= −Φi, i = 1, 3
)
;

Dj,j = fe; (2.2)

eij =
1

2
(ui,j + uj,i), i, j = 1, 3; (2.3)

Ei = −χ,i, i = 1, 3; (2.4)



X11

X22

X33

X23

X31

X12

D1

D2

D3


= C



e11
e22
e33
2e23
2e31
2e12
E1

E2

E3


(2.5)

with (see [3])

C :=



E1111 E1122 E1133 0 0 0 0 0 p311
E1122 E1111 E1133 0 0 0 0 0 p311
E1133 E1133 E3333 0 0 0 0 0 p333

0 0 0 E2323 0 0 0 p113 0
0 0 0 0 E2323 0 p113 0 0
0 0 0 0 0 1

2
(E1111 − E1122) 0 0 0

0 0 0 0 p113 0 −ς11 0 0
0 0 0 p113 0 0 0 −ς11 0

p311 p311 p333 0 0 0 0 0 −ς33


, (2.6)

where Xij and eij are the mechanical stress and strain second rank tensors, ui
are the mechanical displacements, Φi are components of the volume force, Dj are
components of the vector of electric displacement, ρ is the mass density, fe is the
free electric volume charge, Eijkl are the elastic stiffness constants, pijk are the
piezoelectric constants, ςij are the dielectric permittivity constants.
From (2.5), (2.6) we have

X11 = E1111e11 + E1122e22 + E1133e33 − p311E3, (2.7)
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X22 = E1122e11 + E1111e22 + E1133e33 − p311E3, (2.8)

X33 = E1133e11 + E1133e22 + E3333e33 − p333E3, (2.9)

X32 = X23 = 2E2323e23 − p113E2, X13 = X31 = 2E2323e31 − p113E1, (2.10)

X21 = X12 = (E1111 − E1122)e12, (2.11)

D1 = 2p113e13 + ς11E1, D2 = 2p113e23 + ς11E2, (2.12)

D3 = p311e11 + p311e22 + p333e33 + ς33E3. (2.13)

The following reciprocal symmetries hold

Eijkl = Ejikl = Eklij , pijk = pikj , ςij = ςji.

In the case of transversely isotropic solids it is known that [10]

E1111 > |E1122|, (E1111 + E1122)E3333 > 2E2
1133, E2323 > 0,

ς11 > 0, ς33 > 0,

i.e.,

E1111 + E1122 > 0

and

E3333 >
2E2

1133

E1111 + E1122
> 0.

3. Construction of (0, 0) hierarchical model

Let

(ui, χ)(x1, x2, x3, t) ∼=
1

4h1h2
(ui00, χ00)(x3, t) =:

1

4
(vi00, χ̃00)(x3, t). (3.1)

Let further constitutive coefficients depend only on x3.

After integrating on ]
(−)

h1 ,
(+)

h2 [×]
(−)

h1 ,
(+)

h2 [ for fixed x3 ∈ [0, L] [see (1.1)],
(i) from (2.1), taking into account (1.10), (1.11), (1.13), (1.14), we obtain (on the
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face surfaces we assume prescribed stress vectors)

Xi300,3 + ρo2ui00 = −Φi00 −
3∑

j=1

(j)

Xij , i = 1, 3; (3.2)

(ii) from (2.2) taking into account (1.10), (1.11), (1.13), (1.14), we obtain (on the
face surfaces we assume prescribed electric displacements)

D300,3 = fe00 −
3∑

j=1

(j)

Dj ; (3.3)

(iii) from (2.3), taking into account (1.10), (1.11), (1.13), (1.14), because of (3.1)
[as values of ui(x1, x2, x3, t) and χ(x1, x2, x3, t) on the face surfaces we take the
approximate values (3.1)], we have

eαα00 =
(α)
uα ≡ 0, α = 1, 2, (3.4)

e3300 = u300,3 +
(3)
u3 = (h1h2v300),3−

u300
4h1h2

(2h22h1,3 + 2h12h2,3) = h1h2v300,3,(3.5)

e3200 = e2300 =
1

2
(u200,3 +

(3)
u2 +

(2)
u3)

=
1

2

[
(h1h2v200),3−

u200
4h1h2

(h1h2),3+0
]
=

1

2
h1h2v200,3,

(3.6)

e1300 = e3100 =
1

2
(u100,3 +

(3)
u1 +

(1)
u3) =

1

2
h1h2v100,3, (3.7)

e2100 = e1200 =
1

2
(
(2)
u1 +

(1)
u2) ≡ 0, (3.8)

(iv) from (2.4), taking into account (1.10), (1.11), (1.13), (1.14), we have

Eα00 = 0, α = 1, 2. (3.9)

E300 = −h1h2χ̃300,3. (3.10)

Substituting (3.4)-(3.10) into (2.7)-(2.13), we get

X1100 = E1133h1h2v300,3 + p311h1h2χ̃00,3, (3.11)

X2200 = E1133h1h2v300,3 + p311h1h2χ̃00,3, (3.12)

X3300 = E3333h1h2v300,3 + p333h1h2χ̃00,3, (3.13)

X3200 = X2300 = E2323h1h2v200,3, (3.14)
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X1300 = X3100 = E2323h1h2v100,3, (3.15)

X2100 = X1200 = 0, (3.16)

D100 = p113h1h2v100,3, (3.17)

D200 = p113h1h2v200,3, (3.18)

D300 = p333h1h2v300,3 − ς33h1h2χ̃00,3. (3.19)

If we substitute (3.13)-(3.15) and (3.19) into (3.2) and (3.3), respectively, we derive

(E2323h1h2vα00,3),3+ρo2h1h2vα00 = −Φα00 −
3∑

j=1

(j)

Xαj , α = 1, 2, (3.20)

(E3333h1h2v300,3),3+(p333h1h2χ̃00,3),3+ρo2h1h2v300 = −Φ300 −
3∑

j=1

(j)

X3j ,(3.21)

(p333h1h2v300,3),3−(ς33h1h2χ̃00,3),3= fe00 −
3∑

j=1

(j)

Dj , (3.22)

where

3∑
j=1

(j)

Xij (3.23)

=

(+)

h2∫
(−)

h2

[√
1 + (

(+)

h1,3)2X(+)
ν1 i

(
(+)

h1 , x2, x3, t) +

√
1 + (

(−)

h1,3)2X(−)
ν1 i

(
(−)

h1 , x2, x3, t)
]
dx2

+

(+)

h1∫
(−)

h1

[√
1 + (

(+)

h2,3)2X(+)
ν2 i

(x1,
(+)

h2 , x3, t) +

√
1 + (

(−)

h2,3)2X(−)
ν2 i

(x1,
(−)

h2 , x3, t)
]
dx1,

3∑
j=1

(j)

Dj =

(+)

h2∫
(−)

h2

[√
1 + (

(+)

h1,3)2D(+)
ν1

(
(+)

h1 , x2, x3, t) (3.24)

+

√
1 + (

(−)

h1,3)2D(−)
ν1

(
(−)

h1 , x2, x3, t)
]
dx2

+

(+)

h1∫
(−)

h1

[√
1 + (

(+)

h2,3)2D(+)
ν2

(x1,
(+)

h2 , x3, t) +

√
1 + (

(−)

h2,3)2D(−)
ν2

(x1,
(−)

h1 , x3, t)
]
dx1,
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where D(±)
να

:= Di(
(±)
να )i, α = 1, 2, mean the projections of the vector of electric

displacement D := (D1, D2, D3) on the directions
(±)
να .

Indeed,

(1)

Xi1 =

(+)

h2∫
(−)

h2

[
Xi1(

(+)

h1 , x2, x3, t)−Xi1(
(−)

h1 , x2, x3, t)
]
dx2,

(2)

Xi2 =

(+)

h1∫
(−)

h1

[
Xi2(x1,

(+)

h2 , x3, t)−Xi2(x1,
(−)

h2 , x3, t)
]
dx1,

(3)

Xi3 = −

(+)

h2∫
(−)

h2

Xi3(
(+)

h1 , x2, x3, t)dx2
(+)

h1,3 +

(+)

h2∫
(−)

h2

Xi3(
(−)

h1 , x2, x3, t)dx2
(−)

h1,3

−

(+)

h1∫
(−)

h1

Xi3(x1,
(+)

h2 , x3, t)dx1
(+)

h2,3 +

(+)

h1∫
(−)

h1

Xi3(x1,
(−)

h2 , x3, t)dx1
(−)

h2,3.

Therefore, by virtue of (1.6), (1.9),

3∑
j=1

(j)

Xij =

(+)

h2∫
(−)

h2

[
Xi1(

(+)

h1 , x2, x3, t)(
(+)
ν1 )1

√
1 + (

(+)

h1,3)2

+Xi1(
(−)

h1 , x2, x3, t)(
(−)
ν1 )1

√
1 + (

(−)

h1,3)2 +Xi2(
(+)

h1 , x2, x3, t)(
(+)
ν1 )2

√
1 + (

(+)

h1,3)2

+Xi2(
(−)

h1 , x2, x3, t)(
(−)
ν1 )2

√
1 + (

(−)

h1,3)2 +Xi3(
(+)

h1 , x2, x3, t)(
(+)
ν1 )3

√
1 + (

(+)

h1,3)2

+Xi3(
(−)

h1 , x2, x3, t)(
(−)
ν1 )3

√
1 + (

(−)

h1,3)2]dx2

+

(+)

h1∫
(−)

h1

[
Xi1(x1,

(+)

h2 , x3, t)(
(+)
ν2 )1

√
1 + (

(+)

h2,3)2

+Xi1(x1,
(−)

h2 , x3, t)(
(−)
ν2 )1

√
1 + (

(−)

h2,3)2 +Xi2(x1,
(+)

h2 , x3, t)(
(+)
ν2 )2

√
1 + (

(+)

h2,3)2



46 Bulletin of TICMI

+Xi2(x1,
(−)

h2 , x3, t)(
(−)
ν2 )2

√
1 + (

(−)

h2,3)2

+Xi3(x1,
(+)

h2 , x3, t)(
(+)
ν2 )3

√
1 + (

(+)

h2,3)2

+Xi3(x1,
(−)

h2 , x3, t)(
(−)
ν2 )3

√
1 + (

(−)

h2,3)2]dx1

=

(+)

h2∫
(−)

h2

[√
1 + (

(+)

h1,3)2X(+)
ν1 i

(
(+)

h1 , x2, x3, t) +

√
1 + (

(−)

h1,3)2X(−)
ν1 i

(
(−)

h1 , x2, x3, t)
]
dx2

+

(+)

h1∫
(−)

h1

[√
1 + (

(+)

h2,3)2X(+)
ν2 i

(x1,
(+)

h2 , x3, t) +

√
1 + (

(−)

h2,3)2X(−)
ν2 i

(x1,
(−)

h2 , x3, t)
]
dx1,

i = 1, 3,

since

X(±)
ν2 i

(x1,
(±)

h2 , x3, t) = Xji(
(±)
ν2 )j , i = 1, 3, (3.25)

X(±)
ν1 i

(
(±)

h1 , x2, x3, t) = Xji(
(±)
ν1 )j , i = 1, 3. (3.26)

We similarly derive (3.24).

Remark 1 : Note that in the general dynamical case the governing system has
the form

(E2323h1h2vα00,3),3−ρh1h2
∂2vα00
∂t2

= −Φα00 −
3∑

j=1

(j)

Xαj , α = 1, 2,

(E3333h1h2v300,3),3+(p333h1h2χ̃00,3),3−ρh1h2
∂2v300
∂t2

= −Φ300 −
3∑

j=1

(j)

X3j ,

(p333h1h2v300,3),3−(ς33h1h2χ̃00,3),3= fe00 −
3∑

j=1

(j)

Dj .
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4. One-dimensional case

In the present section we consider a piezoelectric elastic infinite layer (see Figures
2.1, 2.2)

Ṽ := {(x1, x2, x3) ∈ R3 : 0 ≤ x3 ≤ L, −∞ < xα < +∞, α = 1, 2}

with the thickness L = const.
Let all the quantities of three-dimensional model under consideration depend

only on x3 ∈]0, L[, then from (2.1)-(2.4), (2.7)-(2.13) it follows that

Xi3,3 + ρo2ui = Φi, i = 1, 3, (4.1)

D3,3 = fe, (4.2)

eαβ = 0, α, β = 1, 2; e33 = u3,3, e23 =
1

2
u2,3, e31 =

1

2
u1,3, (4.3)

Eα = 0, E3 = −χ,3, (4.4)

and, with regard to (4.3), (4.4),

X11 = E1133u3,3 − p311E3, (4.5)

X22 = E1133u3,3 − p311E3, (4.6)

X33 = E3333u3,3 − p333E3, (4.7)

X23 = E2323u2,3, (4.8)

X31 = E2323u1,3, (4.9)

X12 = 0, (4.10)

D1 = p113u1,3, (4.11)

D2 = p113u2,3, (4.12)

D3 = p333u3,3 + ς33E3. (4.13)

Substituting (4.5)-(4.10) into (4.1) we have

(E2323u1,3),3 + ρo2u1 = −Φ1, (4.14)

(E2323u2,3),3 + ρo2u1 = −Φ2, (4.15)
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taking into account (4.4),

(E3333u3,3),3 − (p333E3),3 + ρo2u3 = −Φ3, (4.16)

If we substitute (4.13) into (4.2) we get

(p333u3,3),3 + (ς33E3),3 = fe. (4.17)

We rewrite (4.16) and (4.17), by virtue of (4.4), as follows

(E3333u3,3),3 + (p333χ,3),3 + ρo2u3 = −Φ3 (4.18)

and

(p333u3,3),3 − (ς33χ,3),3 = fe, (4.19)

respectively.

5. Boundary value problems

Let us consider the static case. Then from (3.20)-(3.22), assuming o = 0, we get
the following governing system

(E2323h1h2vα00,3),3 = −Φα00 −
3∑

j=1

(j)

Xαj , α = 1, 2, (5.1)

(E3333h1h2v300,3),3 + (p333h1h2χ̃00,3),3 = −Φ300 −
3∑

j=1

(j)

X3j , (5.2)

(p333h1h2v300,3),3 − (ς33h1h2χ̃00,3),3 = fe00 −
3∑

j=1

(j)

Dj . (5.3)

Equations (5.1) are independent of each other and of system (5.2), (5.3). Their
general solutions have the form

vα00(x3) = −
x3∫

L∗

(E2323h1h2)
−1(τ)dτ

τ∫
L∗

[Φα00(t) +

3∑
j=1

(j)

Xαj(t)]dt

+c2α + c1α

x3∫
L∗

(E2323h1h2)
−1(τ)dτ, α = 1, 2, x3 ∈]0, L[, (5.4)

L∗, c1α, c
2
α = const, L∗ ∈]0, L[,
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provided the integrals exist; e.g., they exist if integrands are continuous on [0, L].
Since we allow

E2323h1h2

∣∣∣
x3=0,L

= 0,

the integrals may exist as improper ones for x3 → 0+, L−, in general.

Statement 5.1. If

L∗∫
0

(E2323h1h2)
−1(τ)dτ < +∞ (5.5)

and

L∫
L∗

(E2323h1h2)
−1(τ)dτ < +∞, (5.6)

then the BVP (Problem D) under BCs

vα00(0) = cα0 , cα0 = const, α = 1, 2, (5.7)

and

vα00(L) = cαL, cαL = const, α = 1, 2, (5.8)

for solutions vα00 ∈ C0[0, L], E2323h1h2vα00,3 ∈ C1(]0, L[) of equations (5.1) is well

posed. Unique explicit solutions have the form (5.4). Constants cβα, α, β = 1, 2, we
easily calculate from BCs (5.7), (5.8).

Statement 5.2. If E2323h1h2vα00,3 ∈ C1([0, L]), then a mixed weighted BVP is
well-posed when either BCs (5.7) or BCs (5.8) are replaced by BCs

lim
x3→0+

X3α00(x3) = lim
x3→0+

(E2323h1h2vα00,3)(x3) = dα0 , dα0 = const, α = 1, 2,

(5.9)
or

lim
x3→L−

X3α00(x3) = lim
x3→L−

(E2323h1h2vα00,3)(x3) = dαL, dαL = const, α = 1, 2,

(5.10)
respectively.

Constants c1α we easily find from the weighted Neumann BCs (5.9), (5.10), while
constants c2α we easily calculate from the Dirichlet conditions (5.7), (5.8). Namely,
under BCs (5.7), (5.10),

c1α = dαL +

L∫
L∗

[Φα(t) +

3∑
i=1

(j)

Xαj(t)]dt, α = 1, 2, (5.11)
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c2α = cα0 +

0∫
L∗

(E2323h1h2)
−1(τ)dτ

τ∫
L∗

[Φα(t) +

3∑
j=1

(j)

Xαj(t)]dt

−
{
dαL +

L∫
L∗

[Φα(t) +

3∑
j=1

(j)

Xαj(t)]dt
} 0∫
L∗

(E2323h1h2)
−1(τ)dτ, α = 1, 2; (5.12)

under BCs (5.8), (5.9) we similarly calculate cβα, α, β = 1, 2.
It is easily seen from (5.4) that on both the ends of the bar we can not set the

weighted Neumann conditions, since after differentiation disappears c2α, α = 1, 2,
and by two constants c1α, α = 1, 2, we are not able to satisfy four BCs.
The above mixed BVP will be called the Dirichlet – Weighted Neumann Problem.

Statement 5.3. If (5.5) is fulfilled but

L∫
L∗

(E2323h1h2)
−1(τ)dτ = +∞, (5.13)

then the BVP (Problem E) under BCs (5.7) and condition (“O” is the Landau
symbol)

vα00(x3) = O(1); x3 → L−, α = 1, 2, (5.14)

for bounded, solutions vα00 ∈ C([0, L[), E2323h1h2vα00,3 ∈ C1(]0, L[ of equations
(5.1) is well posed. Unique explicit solutions have the form (5.4), where c1α = 0,
α = 1, 2 (otherwise solutions will be unbounded and some conditions of vanishing
of Φα, X(±)

να

as x2 → L− are required as well), while c2α, α = 1, 2, we easily

calculate from BCs (5.7). If E2323h1h2vα00,3 ∈ C(]0, L]), (5.14) we can replace by
the weighted Neumann BCs (5.10).

We analogously prove the following

Statement 5.4 If (5.6) is fulfilled but

L∗∫
0

(E2323h1h2)
−1(τ)dτ = +∞, (5.15)

then the BVP (Problem E) under BCs (5.8) and

vα00(x3) = O(1); x3 → 0+, α = 1, 2, (5.16)

for bounded solutions vα00 ∈ C([0, L]), E2323h1h2v300,3 ∈ C1(]0, L[) of equations
(5.1) is well posed. If E2323h1h2vα00,3 ∈ C([0, L[), (5.16) we can replace by the
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weighted Neumann BCs (5.9).

We solve all the BVPs in the explicit forms (5.4). Here we omit simple calculations

of constants cβα, αβ = 1, 2.
Now we proceed to studing of system (5.2), (5.3). Let

p333(x3) = Kς33(x3), K = const. (5.17)

If p333 and ς33 are constants, such a constant K always exists.
Multiplying (5.3) by K and summing the obtained equation and equation (5.2),

by virtue of (5.17), we get

[(E3333 +Kp333)h1h2v300,3],3 = −Φ3 −
3∑

j=1

(j)

X3j +K(fe00 −
3∑

j=1

(j)

Dj), (5.18)

which contains only one unknown function v300 and we investigate BVPs for equa-
tion (5.18) similarly to equations (5.1). After having the solutions v300(x3) of BVPs
in the explicit forms, we substitute them into (5.3) and obtain the following equa-
tion

(ς33h1h2χ̃00,3),3 = (p333h1h2v300,3),3 − fe00 +

3∑
j=1

(j)

Dj (5.19)

with respect to χ̃00(x3) with the known right-hand side. We investigate BVPs for
equation (5.19) similarly to equations (5.1) and construct their solutions in the
explicit form.
Here we confine ourselves to formulation of statements concerning well posed

BVPs for system (5.2), (5.3), which we have reduced to successive consideration of
equation (5.18) and equation (5.19).
Peculiarities of setting BCs for v300 and χ̃00 depend on the conditions:

L∗∫
0

[(E3333 +Kp333)h1h2]
−1(τ)dτ < +∞, (5.20)

L∗∫
0

[(E3333 +Kp333)h1h2]
−1(τ)dτ = +∞, (5.21)

L∫
L∗

[(E3333 +Kp333)h1h2]
−1(τ)dτ < +∞, (5.22)
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L∫
L∗

[(E3333 +Kp333)h1h2]
−1(τ)dτ = +∞, (5.23)

L∗∫
0

(ς33h1h2)
−1(τ)dτ < +∞, (5.24)

L∗∫
0

(ς33h1h2)
−1(τ)dτ = +∞, (5.25)

L∫
L∗

(ς33h1h2)
−1(τ)dτ < +∞, (5.26)

L∫
L∗

(ς33h1h2)
−1(τ)dτ = +∞. (5.27)

Statement 5.5. If (5.20), (5.22), (5.24), and (5.26) are fulfilled, then Problem D
for system (5.2), (5.3) under BCs

v300(0) = c30, c30 = const, (5.28)

χ̃00(0) = c40, c40 = const, (5.29)

v300(L) = c3L, c3L = const, (5.30)

χ̃00(L) = c4L, c4L = const, (5.31)

in the class of functions v300, χ̃00 ∈ C[0, L],

(E3333 +Kp333)h1h2v300,3, ς33h1h2χ00,3 ∈ C1(]0, L[), (5.32)
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is well posed.

Statement 5.6. If either

(E3333 +Kp333)h1h2v300,3), ς33h1h2χ00,3 ∈ C1([0, L[)

or

(E3333 +Kp333)h1h2v300,3, ς33h1h2χ00,3 ∈ C1(]0, L]),

then the Dirichlet – weighted Neumann problem for system (5.2), (5.3) is well
posed when either BCs (5.28), (5.29) {provided (5.22), (5.26) are fulfilled and v300,
χ00 ∈ C(]0, L])} or (5.30), (5.31) {provided (5.20), (5.24) are fulfilled and v300,
χ00 ∈ C([0, L[)} are replaced by BCs

lim
x3→0+

[(E3333 +Kp333)h1h2v300,3](x3) = d30, d30 = const, (5.33)

lim
x3→0+

(ς33h1h2χ00,3(x3) = d40, d40 = const, (5.34)

and

lim
x3→L−

[(E3333 +Kp333)h1h2v300,3](x3) = d3L, d3L = const, (5.35)

lim
x3→L−

(ς33h1h2χ00,3(x3) = d4L, d4L = const, (5.36)

respectively.

Statement 5.7. If (5.20), (5.24), (5.23), (5.27) are fulfilled, then Problem E for
system (5.2), (5.3) under BCs (5.28), (5.29) and conditions

v300(x3) = O(1), x3 → L−, (5.37)

χ̃00(x3) = O(1), x3 → L−, (5.38)

in the class of bounded functions

v300, χ̃00 ∈ C0([0, L[)

with (5.32) are well posed.
If

(E3333 +Kp333)h1h2v300,3, ς33h1h2χ̃00,3 ∈ C(]0, L]),
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conditions (5.37), (5.38) we can replace by the weighted Neumann BCs (5.35),
(5.36).

Statement 5.8. If (5.21), (5.25), (5.22), (5.26) are fulfilled, then Problem E for
system (5.2), (5.3) under BCs (5.30), (5.31) and

v300(x3) = O(1), x3 → 0+, (5.39)

χ̃00(x3) = O(1), x3 → 0+, (5.40)

in the class of bounded functions

v300, χ̃00 ∈ C(]0, L])

with (5.32) are well posed.
If

(E3333 +Kp333)h1h2v300,3; ς33h1h2χ̃00,3 ∈ C([0, L[),

we can replace conditions (5.39), (5.40) by the weighted Neumann BCs (5.33),
(5.34).

In the last case from (5.18), clearly

v300(x3) = −
x3∫

L∗

[(E3333 +Kp333)h1h2]
−1(τ)dτ

τ∫
L∗

{
Φ3(t) +

3∑
j=1

(j)

Xj(t)

−K
[
feoo(t)−

3∑
j=1

(j)

Dj(t)
]}

dt+ c13

x3∫
L∗

[(E3333 +Kp333)h1h2]
−1(τ)dτ + c23 (5.41)

After integration from (5.19) we obtain

ς33h1h2χ̃00,3 = p333h1h2v300,3 +

x3∫
L∗

( 3∑
j=1

(j)

Dj −feoo

)
(t)dt+ c14. (5.42)

Hence

χ̃00,3 = ς−1
33 p333v300,3 + (ς33h1h2)

−1(x3)

x3∫
L∗

( 3∑
j=1

(j)

Dj −feoo

)
(t)dt

+c14(ς33h1h2)
−1(x3)
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and

χ̃00 =

x3∫
L∗

ς−1
33 (τ)p333(τ)

dv300
dτ

dτ

+

x3∫
L∗

(ς33h1h2)
−1(τ)

τ∫
L∗

( 3∑
j=1

(j)

Dj −feoo

)
(t)dt+ c14

x3∫
L∗

(ς33h1h2)
−1(τ)dτ + c24. (5.43)

After differentiation of to (5.41), we have

v300,3 = −[(E3333 +Kp333)h1h2]
−1(x3)

x3∫
L∗

{
Φ3(t) +

3∑
j=1

(j)

Xj

−K
[
feoo(t)−

3∑
j=1

(j)

Dj(t)
]}

dt+ c13[(E3333 +Kp333)h1h2]
−1(x3). (5.44)

Substituting (5.44) into (5.43), we get

χ̃00 = −
x3∫

L∗

〈
ς−1
33 (τ)p333(τ)[(E3333 +Kp333)h1h2]

−1(τ)

τ∫
L∗

{Φ3(t)

+

3∑
j=1

(j)

Xj(t)−K
[
feoo(t)−

3∑
j=1

(j)

Dj(t)
]}

dt

−c13ς
−1
33 (τ)p333(τ)[(E3333 +Kp333)h1h2]

−1(τ)
〉
dτ

+

x3∫
L∗

(ς33h1h2)
−1(τ)dτ

τ∫
L∗

( 3∑
j=1

(j)

Dj −feoo

)
(t)dt+ c14

x3∫
L∗

(ς33h1h2)
−1(τ)dτ + c24. (5.45)

We omit simple but long calculation of constants cβ3 , c
β
4 , β = 1, 2,, from the

corresponding BCs.
Clearly, we easily formulate statements similar to above statements 5.5-5.8 under

the following BCs:
(i) (5.28), (5.40), (5.30), (5.31);
(ii) (5.28), (5.29), (5.37), (5.31);
(iii) (5.28), (5.29), (5.30), (5.38);
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(iv) (5.39), (5.29), (5.30), (5.31);
(v) (5.39), (5.29), (5.37), (5.31);
(vi) (5.39), (5.29), (5.30), (5.38);
(vii) (5.39), (5.40), (5.30), (5.38);
(viii) (5.33), (5.29), (5.30), (5.36), etc.
All the above BVPs we solve in the explicit forms.

Remark 2 : If we compare equations (3.20) for α = 1, 2 with (4.14) and (4.15),
respectively, and equations (3.21) and (3.22) with equations (4.18) and (4.19),
respectively, we easily see that system (4.14), (4.15), (4.18), (4.19) and system
(3.20)-(3.22) coincide if we remove h1h2 in the left-hand sides and sums in the
right-hand sides of equations (3.20)-(3.22) and replace vi00 and Φi00, i = 1, 3, by
ui and Φi, i = 1, 3, respectively. Thus all results obtained in the present section
concerning equations (3.20)-(3.22) with o = 0, i.e. in the static case, we easily
reformulate for equations (4.14), (4.15), (4.18), (4.19), with o = 0.

Let us now consider the particular case of cusped, in general, prismatic piezo-
electric prismatic bars with

E2323h1h2 = E0x
κ1

3 (L− x3)
δ1 , E0 = const > 0, κ1, δ1 = const ≥ 0; (5.46)

E3333h1h2 = Ê0x
κ̂1

3 (L− x3)
δ̂1 , Ê0 = const > 0, κ̂1, δ̂1 = const ≥ 0; (5.47)

p333h1h2 = p0x
κ2

3 (L− x3)
δ2 , p0 = const > 0, κ2, δ2 = const ≥ 0; (5.48)

ς33h1h2 = ς0x
κ3

3 (L− x3)
δ3 , ς0 = const > 0, κ3, δ3 = const ≥ 0; (5.49)

E2323 = Ẽ0x
κ̃1

3 (L− x3)
δ̃1 , Ẽ0 = const > 0, κ̃1, δ̃1 = const ≥ 0; (5.50)

E3333 =
˜̂
E0x

˜̂κ1

3 (L− x3)
˜̂
δ1 ,

˜̂
E0 = const > 0, ˜̂κ1, ˜̂δ1 = const ≥ 0; (5.51)

p333 = p̃0x
κ̃2

3 (L− x3)
δ̃2 , p̃0 = const > 0, κ̃2, δ̃2 = const ≥ 0; (5.52)

ς33 = ς̃0x
κ̃3

3 (L− x3)
δ̃3 , ς̃0 = const > 0, κ̃3, δ̃3 = const ≥ 0; (5.53)

hα = h0αx
κα
4

3 (L− x3)
δα4 , h0α = const > 0, κα4 , δ

α
4 = const ≥ 0, (5.54)

α = 1, 2.

Then

E0 = Ẽ0h
0
1h

0
2, κ1 = κ̃1 + κ14 + κ24, δ1 = δ̃1 + δ14 + δ24 ; (5.55)

Ê0 =
˜̂
E0h

0
1h

0
2, κ̂1 = ˜̂κ1 + κ14 + κ24, δ̂1 =

˜̂
δ1 + δ14 + δ24 ; (5.56)

p333 = p0h
0
1h

0
2, κ2 = κ̃2 + κ14 + κ24, δ2 = δ̃2 + δ14 + δ24 ; (5.57)

ς33 = ς0h
0
1h

0
2, κ3 = κ̃3 + κ14 + κ24, δ3 = δ̃3 + δ14 + δ24 . (5.58)

In this case, on account of (5.46)-(5.58), we express criteria (5.5), (5.6), (5.13),
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(5.15), (5.20)-(5.27) of the well posedness of BVPs by means of exponents καm, δαm,
α = 1, 2, m = 1, 4. Namely, it follows that

κ1 = κ̃1 + κ14 + κ24 < 1 (5.59)

from (5.5), (5.46), (5.55);

δ1 = δ̃1 + δ14 + δ24 < 1 (5.60)

from (5.6), (5.46), (5.55);

δ1 = δ̃1 + δ14 + δ24 ≥ 1 (5.61)

from (5.13), (5.46), (5.55);

κ1 = κ̃1 + κ14 + κ14 ≥ 1 (5.62)

from (5.15), (5.46), (5.55);

max{κ̂1 = ˜̂κ1 + κ14 + κ24, κ2 = κ̃2 + κ14 + κ24} < 1 (5.63)

from (5.20), (5.47), (5.48), (5.56), (5.57);

min{κ̂1, κ2} ≥ 1 or κ̂1 < 1, κ2 ≥ 1 or κ̂1 ≥ 1, κ2 < 1 (5.64)

from (5.21), (5.47), (5.48), (5.56), (5.57);

max{δ̂1 =
˜̂
δ1 + κ14 + κ24, δ2 = δ̃2 + κ14 + κ24} < 1 (5.65)

from (5.22), (5.47), (5.48), (5.56), (5.57);

min{δ̂1, δ2} ≥ 1 or δ̂1 < 1, δ2 ≥ 1 or δ̂1 ≥ 1, δ2 < 1 (5.66)

from (5.23), (5.47), (5.48), (5.56), (5.57);

κ3 = κ̂3 + κ14 + κ24 < 1 (5.67)

from (5.24), (5.49), (5.58);

κ3 = κ̂3 + κ14 + κ24 ≥ 1 (5.68)

from (5.25), (5.49), (5.58);

δ3 = δ̂3 + δ14 + δ24 < 1 (5.69)

from (5.26), (5.49), (5.58);

δ3 = δ̂3 + δ14 + δ24 ≥ 1 (5.70)
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from (5.27), (5.49), (5.58);
So, for the case (5.50)-(5.54) in statements 5.1-5.8 conditions (5.5), (5.6), (5.13),

(5.15), (5.20)-(5.27) we replace by (5.59)-(5.70), respectively.
κα4 and δα4 , α = 1, 2, specify geometry of tapering at the cusped ends x3 = 0

and x3 = L, respectively (see Figures 5.1-5.3, where some examples of longitudinal

sections by the plane x2 = 0 (or x1 = 0) of the cusped bars are shown.
(±)

T 1(2)

are tangents at the point O to the curves obtained by longitudinal sections by the

above plane of the face surfaces x3 =
(±)

h1(2)(x3); we have the similar picture at the
end x3 = L of the bar depending on δα4 , α = 1, 2).

Figure 5.1. 0 < κ1
4(κ

2
4) < 1 Figure 5.2. κ1

4(κ
2
4) = 1 Figure 5.3. κ1

4(κ
2
4) > 1

Remark 3 : We now come back to time-harmonic motion. We consider as an
example BVPs for equation (3.20). For the sake of simplicity we assume

Φα00 ≡ 0, X
(j)
αj ≡ 0, α = 1, 2. j = 1, 3.

Let further

κ̃1 = 0, δ̃1 = 0, δα4 = 0

in (5.50), (5.54) and

h0 := h01h
0
2, κ4 := κ14 + κ24, ρ = ρ0x

κ4

3 .

Then from (3.20) we ontain the following Euler equation

x23vα00,33 + κ4x3vα00,3 + Ẽ−1
0 h−1

0 ρ0o
2vα00 = 0, α = 1, 2 (5.71)

Introducing new independent variable

t = lnx3 (x3 = et), (5.72)

we rewrite (5.71) as

d2vα00
dt2

+ (κ4 − 1))
dvα00
dt

+ Ẽ−1
0 h−1

0 ρ0o
2vα00 = 0, α = 1, 2 (5.73)
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The characteristic algebraic equation of equation (5.73) has the form

λ2 + (κ4 − 1)λ+ Ẽ−1
0 h−1

0 ρ0o
2 = 0.

Its solutions are

(±)

λ =
1− κ4 ±

√
D

2

for D > 0, i.e., o2 <
(κ4 − 1)2Ẽ0h0

4ρ0
; (5.74)

λ =
(±)

λ =
1− κ4

2

for D = 0, i.e., o2 =
(κ4 − 1)2Ẽ0h2

4ρ0
; (5.75)

(±)

λ =
1− κ4 ± i

√
−D

2
=: α± iβ

for D < 0, i.e., o2 >
(κ4 − 1)2Ẽ0h0

4ρ0
. (5.76)

where the discriminant

D = (κ4 − 1)2 − 4Ẽ−1h−1
0 ρ0o

2 (5.77)

and

(κ4 − 1)2Ẽ0h0
4ρ0

{
> 0 if κ4 ̸= 1,
= 0 if κ4 = 1.

(5.78)

Correspondingly, we have the general solutions of equation (5.73) in the form of

vα00 = C1e
(+)

λ t + C2e
(−)

λ t for D > 0, (5.79)

vα00 = C1e
λt + C2te

λt for D > 0, (5.80)

vα00 = C1e
αt cos(βt) + C2e

αt sin(βt) for D < 0, (5.81)

C1 and C2 are arbitrary constants.



60 Bulletin of TICMI

Substituting (5.72) into (5.78)-(5.80) we get the general solutions of equation
(5.71) in the following forms

vα00 = C1x
(+)

λ
3 + C2x

(−)

λ
3 for D > 0, (5.82)

vα00 = C1x
λ
3 + C2x

λ
3 lnx3 for D > 0, (5.83)

vα00 = C1x
α
3 cos(β lnx3) + C2x

α
3 sin(β lnx3) for D < 0, (5.84)

respectively.
Let us now analyze which BCs can be satisfied by means of solutions (5.81)-

(5.83).
From (5.81)-(5.83), taking into account (5.74)-(5.76), it is easily seen that:

(i) the Dirichlet type BVP [see BCs (5.7), (5.8)] is well posed

if 0 ≤ κ4 = 1−
√
D for D > 0,

a unique solution has the form

vα00(x3) = L−
(+)

λ (cαL − cα0 )x
(+)

λ
3 + cα0 ;

(ii) the Keldysh type BVP [see BCs (5.16), (5.8)] in the class of bounded functions
is well posed

if 1−
√
D < κ4 ≤ 1 +

√
D for D > 0,

a unique solution has the form

vα00 = L−
(+)

λ cαLx
(+)

λ
3

and has a unique solution up to the summand

C1

[
cos(β lnx3)− cot(β lnL) sin(β lnx3)

]
{
or C2

[
sin(β lnx3)− tan(β lnL) cos(β lnx3)

]}
C1 (or C2) is an arbitrary constant,

if κ4 = 1 for D < 0;

(iii) the Keldysh type BVP [see BC (5.8)] in the class of unbounded as x3 → 0+
functions is solvable

if κ4 > 1 +
√
D for D > 0
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and

if κ4 > 1 for D = 0 and D < 0

and a solution is defined up to the summand

C1

(
x

(+)

λ
3 − L

(+)

λ −
(−)

λ x
(−)

λ
3

)
, C1x

λ
3

(
1− lnx3

lnL

)
, and

C1x
α
3

[
cos(β lnx3)− cot(β lnL) sin(β lnx3)

]
,

C1 is an arbitrary constant [or

C2

(
x

(−)

λ
3 − L

(−)

λ −
(+)

λ x
(+)

λ
3

)
, C2x

λ
3

(
ln

x3
L

)
, and

C2x
α
3

[
sin(β lnx3)− tan(β lnL) cos(β lnx3)

]
,

C2 is an arbitrary constant], respectively;

(iv) If 0 ≤ κ4 = 1 −
√
D for D > 0, then the Dirichlet-weighted Neumann mixed

BVP [see BCs (5.9, 5.8] is well posed. In the case under consideration BC (5.9) has
the following form

lim
x3→0+

X3α00 = lim
x3→0+

(E0h0x
κ4

3 vα00,3)(x3) = dα
0 , α = 1, 2.

A unique solution looks like

vα00 =
√
D

−1
E−1

0 h−1
0 dα

0 (x
√
D

3 − L
√
D) + cαL

We investigate BVPs for system (3.21), (3.22) and the system corresponding to
the case (5.46)-(5.54) in the same way and construct solutions in the explicit forms.

6. Mechanical interpretations

We first note that

Xαα00 = E1133h1h2v300,3 + p311h1h2χ̃00,3, α = 1, 2,

X3300 = E3333h1h2v300,3 + p333h1h2χ̃00,3,

are the integrated total stress tensor components, depending on electric and me-
chanical displacements;

X3200 = X2300 = E2323h1h2v200,3,
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X1300 = X3100 = E2323h1h2v100,3,

X2100 = X1200 = 0

are the integrated mechanical stress tensor components depending on mechanical
displacement and independing of electric displacements;

1

4h1h2

(
X3200 = X2300, X1300 = X3100, X1200 = 0

)
(x3, t)

are the mechanical stresses in (0, 0) model, while

1

4h1h2

(
Xαα00, X3300

)
, α = 1, 2

are the total stress tensor components in (0, 0) model;

ui =
1

4
vi00(x3, t), i = 1, 3,

are the displacement vector components in (0, 0) model;

Di =
1

4h1h2
Di00(x3, t), i = 1, 3,

are the electric displacement vector components in (0, 0) model;

χ =
1

4
χ̃00(x3, t), i = 1, 3,

is the electric potential in (0, 0) model;

Ei =
1

4h1h2
Ei00(x3, t), i = 1, 3,

are the electric field vector components in (0, 0) model.

Problem 6.1 Let at the end x3 = 0 of the bar BCs (5.9) and

X3300(0) = lim
x3→0+

(
E3333h1h2v300,3 + p333h1h2χ̃00,3

)
= d30, (6.1)

D300(0) = lim
x3→0+

(
p333h1h2v300,3 − ς33h1h2χ̃00,3

)
= d̃30, (6.2)

along with BCs (5.8), (5.30), (5.31) at another end x3 = L of the bar are prescribed,
provided (5.6), (5.22), (5.26) hold. Clearly, by virtue of (5.17),

X3300(0) +KD300(0) = lim
x3→0+

(
E3333h1h2v300,3 +Kp333h1h2v300,3

)
= d30 +Kd̃30.

(6.3)
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Solution of Problem 6.1. We first find solution v300 of equation (5.18) under
BC (6.3) (see Statement 5.6). We substitute the solution obtained into the right-
hand side of equation (5.19) and into BC (6.2). Therefore, from the last we get the
following BC for χ̃00:

lim
x3→0+

ς33h1h2χ̃00,3 = lim
x3→0+

p333h1h2v300,3 − d̃30 (6.4)

with known

lim
x3→0+

p333h1h2v300,3.

Note that now the right-hand side of equation (5.19) is known as well. Solving
the last BVP, taking into account BC (5.31), we thus construct χ̃00. Clearly, con-
structed v300 and χ̃00 satisfy (6.4). Therefore (6.2) is valid. Substracting from (6.3)
multiplied by K (6.2), we conclude that (6.1) is valid.
Adding explicit solutions vα00, constructed in Statement 5.2, we arrive at the

explicit solution of the BVP when at the end x3 = L of the bar the mechanical
displacements ui =

1
4vi00, i = 1, 3 and electric potential χ = 1

4
χ̃00 are prescribed,

while at the end x3 = 0 (0, 0) moment D300 of the electric displacement D3 and
(0, 0) moments X3i00, i = 1, 3, of the stress vector (X31, X32, X33) [which in the
case of the cusped end is concentrated along the segment (if either 2h1(0) = 0,
2h2(0) ̸= 0 or 2h1(0) ̸= 0, 2h2(0) = 0) or at the point x3 = 0 (if 2h1(0) = 0,
2h2(0) = 0) force] are prescribed.

Remark 4 : Applying Statement 5.1 and Statement 5.5, we construct the explicit
solution of BVP for the system (5.1)-(5.3) when at the ends x3 = 0 and x3 = L
of the bar displacements ui =

1
4vi00, i = 1, 3, and electric potential χ = 1

4
χ̃00 are

prescribed.

We solve similarly other well posed BVPs and give corresponding mechanical
interpretation (meaning).

Remark 5 : Since equations (5.1)-(5.3) contain the product h1h2, characterizing
tapering of the ends of the cusped bars with the rectangular cross-sections, and
the constitutive coefficients

E2323, E3333, p333, ς33

only as products

E2323h1h2, E3333h1h2, p333h1h2, ς33h1h2,

the peculiarities of setting BCs caused by the cusped ends of the bar, provided the
constitutive coefficients are constants, we may attain for the bar of the constant
cross-section by appropriate choice of the variable constitutive coefficients and
vice versa. In other words, in the case of bars of the constant cross-section we
may achieve the intrinsic effect of peculiarities of setting BCs for cusped bars by
appropriate selection of the non-homogeneous material.
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Remark 6 : In the case of the infinite layer considered in Section 4 the stress-
strain state along every fiber parallel to x3-axis is the same.

7. Some bibliographical remarks

Section 1. contains well-known materials on geometry of cusped, in general, pris-
matic bars with rectangular cross-sections and on double mathematical moments
of functions. For more details in this connection we refer to [1], [2], [11], [12].

Section 2. For the basics of piezoelectricity see, e.g., [13]-[15], [8], [9]; from the
physical point of view see, e.g., a review in [3] and the references given there.

Section 3. For I. Vekua’s dimension reduction method of constructing of differen-
tial hierarchical models for elastic shells and plates and its generalization for elastic
bars see [16], [1], [2], [17]-[19]; for hierarchical models of piezoelectric viscoelastic
Kelvin-Voight, in particular cusped, prismatic shells see [7]; piezoelectric plates are
studied in [20]-[35]; (0, 0) hierarchical model of similarly constructed differential hi-
erarchical models for piezoelectric bars is presented and investigated in the present
paper in the case of piezoelectric transversely isotropic, in particular cusped, bars
(see, sections 3, 5, 6); piezoelectric bars and beams are studied in [36]-[42].

8. Conclusions

(1) Differential hierarchical (0, 0) model for the transversely isotropic elastic
piezoelectric bar in the case when the poling axis coincides with one of the
material symmetry axis is constructed. In the case of cusped bars peculiari-
ties of non-classical, in general, setting of BCs are fully investigated and all
the Dirichlet, the Keldysh, the weighted, and the mixed BVPs are solved
in the explicit form. Using a generalization of I. Vekua’s dimension reduc-
tion method (see [16], [12], [2]), (N1, N2) hierarchical models (Nα = 0, 1, ...,
α = 1, 2) can be constructed and investigation of similar to (0, 0) model
non-classical BVPs can be carried out.

(2) Depending on the character of tapering of the bar, at the cusped end dis-
placements and electric potential may be prescribed or not. In the last case
we have no BCs at such an end of the bar.

(3) Forces applied at cusped ends of the bars are concentrated either at a line or
at a point forces depending on that the cross-section of the bar degenerates
into a segment of the line or into the point.

(4) Since governing equations contain the product h1h2, characterizing tapering
of the ends of the cusped bars with the rectangular cross-sections, and the
constitutive coefficients

E2323, E3333, p333, ς33

only as products

E2323h1h2, E3333h1h2, p333h1h2, ς33h1h2,

the peculiarities of setting BCs caused by the cusped ends of the bar, pro-
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vided the constitutive coefficients are constants, we may attain for the bar of
the constant cross-section by appropriate choice of the variable constitutive
coefficients and vice versa. In other words, in the case of bars of the constant
cross-section we may achieve the intrinsic effect of peculiarities of setting
BCs for cusped bars by appropriate selection of the non-homogeneous ma-
terial.

(5) As far as the constitutive coefficients are functions of x3, in general (in
particular, power functions), the elastic piezo-electric bars under consid-
eration are functionally graded ones (for elastic orthotropic and isotropic
functionally graded beams see, e.g., [6]).
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