Characterization of (n, m)-Jordan Homomorphisms

Abbas Zivari-Kazempour

Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran (Received April 17, 2018; Revised June 23, 2019; Accepted June 24, 2019)

Let $n \in \mathbb{N}, m \in \mathbb{Z} \setminus \{0\}$. In this paper among other things, under special hypotheses, we prove that every (n, m)-Jordan homomorphism between Banach algebras \mathcal{A} and \mathcal{B} is a (n, m)-homomorphism.

Keywords: (n, m)-homomorphisms, (n, m)-Jordan homomorphisms, Weakly commutative. AMS Subject Classification: 46L05, 46H25.

1. Introduction

Let $n \in \mathbb{N}$, \mathcal{A} and \mathcal{B} be complex Banach algebras and let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an *n*-homomorphism if for all $a_1, a_2, ..., a_n \in \mathcal{A}$,

$$\varphi(a_1a_2...a_n) = \varphi(a_1)\varphi(a_2)...\varphi(a_n).$$

The concept of an n-homomorphism was studied for complex algebras in [7] and [3].

Herstein in [8] introduced the notion of *n*-Jordan homomorphisms. A linear map φ between Banach algebras \mathcal{A} and \mathcal{B} is called an *n*-Jordan homomorphism if

$$\varphi(a^n) = \varphi(a)^n, \quad a \in \mathcal{A}.$$

A 2-homomorphism (2-Jordan homomorphism) is called simply a homomorphism (Jordan homomorphism).

It is clear that every *n*-homomorphism is an *n*-Jordan homomorphism, but in general the converse is false. There are some examples of *n*-Jordan homomorphisms which are not *n*-homomorphisms. For n = 2, it is proved in [9] that some Jordan homomorphism on the polynomial rings can not be homomorphism.

Herstein in [8] proved the following theorem.

Theorem 1.1: If φ is a Jordan homomorphism of a ring R onto a prime ring R' of characteristic deferent from 2 and 3, then either φ is a homomorphism or an anti-homomorphism.

Email: zivari@abru.ac.ir, zivari6526@gmail.com

It is shown in [4] that every *n*-Jordan homomorphism between two commutative Banach algebras is an *n*-homomorphism for $n \in \{2, 3, 4\}$, and this result extended to the case n = 5 in [5]. For the case that $n \in \mathbb{N}$ is an arbitrary, Lee in [10] and Gselmann in [6] generalized this result. This challenge is solved in [2] by the different methods which are used in [6] and [10]. For the non-commutative case, Zelazko in [12] presented the following result (see also [11]).

Theorem 1.2: Suppose that \mathcal{A} is a Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then each Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism.

Later, this result was proved in [14] for 3–Jordan homomorphism with the extra condition that the Banach algebra \mathcal{A} is unital, and it is extended for all $n \in \mathbb{N}$ in [1]. Some significant results concerning Jordan homomorphisms and their automatic continuity on Banach algebras are obtained by the author in [13], [15] and [16].

Let $m \in \mathbb{Z} \setminus \{0\}$, let \mathcal{A} and \mathcal{B} be complex algebras and let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an (n, m)-homomorphism if for all $a_1, a_2, ..., a_n \in \mathcal{A}$,

$$\varphi(a_1a_2...a_n) = m\varphi(a_1)\varphi(a_2)...\varphi(a_n),$$

and it is called an (n, m)-Jordan homomorphism if

$$\varphi(a^n) = m\varphi(a)^n, \qquad a \in \mathcal{A}$$

Clearly (n, 1)-homomorphism and (n, 1)-Jordan homomorphism coincide with the classical definitions of *n*-homomorphism and *n*-Jordan homomorphism, respectively.

Note that every *n*-Jordan homomorphism is not necessary (n, m)-Jordan homomorphism for $m \neq 1$, for example, consider the identity map. Also every (n, m)-Jordan homomorphism is not necessary *n*-Jordan homomorphism for $m \neq 1$. For example, define $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ by $\varphi(x) = \frac{1}{2}x$. Then φ is not *n*-Jordan homomorphism, but for $m = 2^{(n-1)}$ it is (n, m)-Jordan homomorphism.

Example 1.3 Let

$$\mathcal{A} = \left\{ \begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix} : \quad X, Y \in M_2(\mathbb{C}) \right\},\$$

and define $\varphi : \mathcal{A} \longrightarrow \mathcal{A}$ by

$$\varphi(\begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}) = \frac{1}{k} \begin{bmatrix} X & 0 \\ 0 & Y^T \end{bmatrix},$$

for each $k \in \mathbb{N}$. Then for all $U \in \mathcal{A}$, we have

$$\varphi(U^n) - k^{(n-1)}\varphi(U)^n = \frac{1}{k} \begin{bmatrix} X^n & 0\\ 0 & (Y^n)^T \end{bmatrix} - k^{(n-1)} \frac{1}{k^n} \begin{bmatrix} X^n & 0\\ 0 & (Y^T)^n \end{bmatrix} = 0.$$

Thus, φ is (n,m)-Jordan homomorphism for $m = k^{(n-1)}$, but φ is not (n,m)-homomorphism.

In this paper, we prove that every (3, m)-Jordan homomorphism φ from unital Banach algebra \mathcal{A} into Banach algebra \mathcal{B} is (3, m)-homomorphism if either:

- (1) \mathcal{B} is semisimple and commutative, or
- (2) \mathcal{A} and \mathcal{B} are weakly commutative.

2. Main Results

For m = 1, the following result is Theorem 1.2, and for m = -1 it is Lemma 2.1 of [14].

Theorem 2.1: Every (2, m)-Jordan homomorphism φ from Banach algebra \mathcal{A} into \mathbb{C} is a (2, m)-homomorphism.

Proof: Suppose that φ is (2, m)-Jordan homomorphism. Then $\varphi(a^2) = m\varphi(a)^2$, for all $a \in \mathcal{A}$. Replacing a by a + b, we get

$$\varphi(ab+ba) = 2m\varphi(a)\varphi(b), \qquad (a, b \in \mathcal{A}). \tag{1}$$

Replacing a by a^2 in (1), we have

$$\varphi(a^2b + ba^2) = 2m^2\varphi(a)^2\varphi(b), \qquad (a, b \in \mathcal{A}).$$
(2)

Taking b = ab + ba in (1), we see that

$$\varphi(a(ab+ba)+(ab+ba)a) = 2m\varphi(a)\varphi(ab+ba),$$

and hence by (1),

$$\varphi(a^2b + 2aba + ba^2) = 4m^2\varphi(a)^2\varphi(b). \tag{3}$$

Subtraction (2) from (3), gives

$$\varphi(aba) = m^2 \varphi(a)^2 \varphi(b). \tag{4}$$

Fix $a \in \mathcal{A}$ and $b \in \mathcal{A}$ arbitrarily, and put

$$2t = \varphi(ab - ba). \tag{5}$$

It follows from (1) and (5) that

$$\varphi(ab) - t = m\varphi(a)\varphi(b), \qquad \varphi(ba) + t = m\varphi(a)\varphi(b).$$
 (6)

By (4), (5) and (6),

$$\begin{split} 4t^2 &= \varphi(ab - ba)^2 = \frac{1}{m} \varphi[(ab - ba)^2] \\ &= \frac{1}{m} \varphi[(ab)^2 + (ba)^2 - ab^2a - ba^2b] \\ &= [\varphi(ab)^2 + \varphi(ba)^2] + \frac{-1}{m} [m^2 \varphi(a)^2 \varphi(b^2) + m^2 \varphi(b)^2 \varphi(a^2)] \\ &= [t + m\varphi(a)\varphi(b)]^2 + [-t + m\varphi(a)\varphi(b)]^2 - [2m^2 \varphi(a)^2 \varphi(b)^2] \\ &= 2t^2. \end{split}$$

Hence t = 0, which proves $\varphi(ab) = \varphi(ba)$. Therefore by (1), $\varphi(ab) = m\varphi(a)\varphi(b)$, and the proof is complete.

Corollary 2.2: Suppose that \mathcal{A} is a Banach algebra and \mathcal{B} is a semisimple commutative Banach algebra. Then each (2,m)-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a (2,m)-homomorphism.

Lemma 2.3: Let \mathcal{A} be a unital Banach algebra with unit e and let $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be a non-zero (3,m)-Jordan homomorphism. Then $\varphi(e) \neq 0$.

Proof: Let φ be non-zero (3, m)-Jordan homomorphism, then $\varphi(a^3) = m\varphi(a)^3$, for all $a \in \mathcal{A}$. Replacing a by a + b, we get

$$\varphi(ab^2 + b^2a + a^2b + ba^2 + aba + bab) = m(3\varphi(a)^2\varphi(b) + 3\varphi(a)\varphi(b)^2), \quad (7)$$

and replacing b by -b in (7), we obtain

$$\varphi(ab^2 + b^2a - a^2b - ba^2 - aba + bab) = m(-3\varphi(a)^2\varphi(b) + 3\varphi(a)\varphi(b)^2).$$
(8)

By (7) and (8) we obtain

$$\varphi(ab^2 + b^2a + bab) = 3m\varphi(a)\varphi(b)^2, \quad (a, b \in \mathcal{A}).$$
(9)

Now assume that $\varphi(e) = 0$ and take b = e in (9), then it follows that $\varphi(a) = 0$, for all $a \in \mathcal{A}$, which is a contradiction.

Lemma 2.4: Let φ be a non-zero $(3, m^2)$ -Jordan homomorphism from unital Banach algebra \mathcal{A} into \mathbb{C} . Then either φ is (2, m)-Jordan or (2, -m)-Jordan homomorphism.

Proof: By assumption for all $a \in \mathcal{A}$,

$$\varphi(a^3) = m^2 \varphi(a)^3. \tag{10}$$

Replacing a by a + e in (10), to obtain

$$\varphi(a^2 + a) = m^2(\varphi(e)^2\varphi(a) + \varphi(e)\varphi(a)^2).$$

Replacing a by e in (10), we get $\varphi(e) = m^2 \varphi(e)^3$. By above Lemma $\varphi(e) \neq 0$, therefore $\varphi(e) = \frac{1}{m}$ or $\varphi(e) = \frac{-1}{m}$. If $\varphi(e) = \frac{1}{m}$, then by the above equation we get

$$\varphi(a^2) = m\varphi(a)^2,$$

hence φ is (2, m)-Jordan. Similarly, we have

$$\varphi(a^2) = -m\varphi(a)^2,$$

if $\varphi(e) = \frac{-1}{m}$. Thus, φ is (2, -m)-Jordan.

The next result, which is the main one in the paper, characterizes $(3, m^2)$ –Jordan homomorphisms.

Theorem 2.5: Suppose that \mathcal{A} is a unital Banach algebra and \mathcal{B} is a semisimple commutative Banach algebra. Then each $(3, m^2)$ -Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a $(3, m^2)$ -homomorphism.

Proof: We first assume that $\mathcal{B} = \mathbb{C}$ and let $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be $(3, m^2)$ -Jordan homomorphism, then by Lemma 2.4, φ is either (2, m)-Jordan or (2, -m)-Jordan homomorphism. If φ is (2, m)-Jordan, then by Theorem 2.1 it is (2, m)-homomorphism and so it is $(3, m^2)$ -homomorphism. If φ is (2, -m)-Jordan, then by Theorem 2.1 it is (2, -m)-homomorphism. That is, for all $a, b \in \mathcal{A}$,

$$\varphi(ab) = -m\varphi(a)\varphi(b)$$

Therefore

$$\varphi(abc) = -m\varphi(a)\varphi(bc) = -m\varphi(a)[-m\varphi(b)\varphi(c)] = m^2\varphi(a)\varphi(b)\varphi(c),$$

for all $a, b, c \in \mathcal{A}$. Hence, φ is $(3, m^2)$ -homomorphism. Now suppose \mathcal{B} is arbitrary semisimple and commutative. Let $\mathfrak{M}(\mathcal{B})$ be the maximal ideal space of \mathcal{B} . We associate with each $f \in \mathfrak{M}(\mathcal{B})$ a function $\varphi_f : \mathcal{A} \longrightarrow \mathbb{C}$ defined by

$$\varphi_f(a) := f(\varphi(a)), \qquad (a \in \mathcal{A}).$$

Pick $f \in \mathfrak{M}(\mathcal{B})$ arbitrary. It is easy to see that φ_f is a $(3, m^2)$ -Jordan homomorphism, so by the above argument it is a $(3, m^2)$ -homomorphism. Thus by the definition of φ_f we have

$$f(\varphi(abc)) = m^2 f(\varphi(a)) f(\varphi(b)) f(\varphi(c)) = f(m^2 \varphi(a) \varphi(b) \varphi(c)).$$

Since $f \in \mathfrak{M}(\mathcal{B})$ was arbitrary and \mathcal{B} is assumed to be semisimple, we obtain

$$\varphi(abc) = m^2 \varphi(a) \varphi(b) \varphi(c),$$

for all $a, b, c \in \mathcal{A}$. This completes the proof.

Theorem 2.6: Let \mathcal{A} and \mathcal{B} be two Banach algebras, where \mathcal{A} has a unit element e and $char(\mathcal{B}) > 3$. If every Jordan homomorphism from \mathcal{A} into \mathcal{B} is

a homomorphism, then every (3,m)-Jordan homomorphism from \mathcal{A} into \mathcal{B} is a (3,m)-homomorphism.

Proof: Let φ be a (3, m)-Jordan homomorphism, then for all $a \in \mathcal{A}$,

$$\varphi((a+2)^3 - 2(a+e)^3 + a^3) = m(\varphi(a+2)^3 - 2\varphi(a+e)^3 + \varphi(a)^3).$$

Hence,

$$6\varphi(a) + 6\varphi(e) = m(2\varphi(e)^2\varphi(a) + 2\varphi(a)\varphi(e)^2 + 2\varphi(e)\varphi(a)\varphi(e) + 6\varphi(e)^3).$$
(11)

By assumption $\varphi(e) = m\varphi(e)^3$, so by (11) we get

$$3\varphi(a) = m(\varphi(e)^2\varphi(a) + \varphi(a)\varphi(e)^2 + \varphi(e)\varphi(a)\varphi(e)).$$
(12)

Multiplying $\varphi(e)$ from the right in (12), we get

$$2\varphi(a)\varphi(e) = m(\varphi(e)^2\varphi(a)\varphi(e) + \varphi(e)\varphi(a)\varphi(e)^2).$$
(13)

Similarly,

$$2\varphi(e)\varphi(a) = m(\varphi(e)\varphi(a)\varphi(e)^2 + \varphi(e)^2\varphi(a)\varphi(e)).$$
(14)

By (13) and (14) we have

$$\varphi(a)\varphi(e) = \varphi(e)\varphi(a), \quad (a \in \mathcal{A}).$$
(15)

It follows from (12) and (15) that

$$\varphi(a) = m\varphi(e)^2\varphi(a) = m\varphi(a)\varphi(e)^2.$$
(16)

By assumption

$$\varphi((a+e)^3 - a^3) = m(\varphi(a+e)^3 - \varphi(a)^3).$$
(17)

So by (15) and (17) we have

$$3\varphi(a^2) + 3\varphi(a) + \varphi(e) = m(3\varphi(a)^2\varphi(e) + 3\varphi(a)\varphi(e)^2 + \varphi(e)^3).$$
(18)

By (16) and (18) we get

$$\varphi(a^2) = m\varphi(a)^2\varphi(e), \quad (a \in \mathcal{A}).$$
⁽¹⁹⁾

Now define a mapping $f : \mathcal{A} \longrightarrow \mathcal{B}$ by

$$f(a) := m\varphi(a)\varphi(e),$$

for all $a \in \mathcal{A}$. Then by (19), f is Jordan homomorphism, so it is a homomorphism. By the definition of f and (16) we have

$$f(a)\varphi(e) = \varphi(a). \tag{20}$$

It follows from (16) and (20) that

$$\begin{split} \varphi(abc) &= f(abc)\varphi(e) \\ &= f(a)f(b)f(c)\varphi(e) \\ &= (m\varphi(a)\varphi(e))(m\varphi(b)\varphi(e))(m\varphi(c)\varphi(e))\varphi(e) \\ &= m\varphi(a)(m\varphi(b)\varphi(e)^2)(m\varphi(c)\varphi(e)^2) \\ &= m\varphi(a)\varphi(b)\varphi(c). \end{split}$$

Thus, φ is (3, m)-homomorphism.

As a consequence of Theorem 1.2 and Theorem 2.6 we deduce the next result.

Corollary 2.7: Suppose that \mathcal{A} is a unital Banach algebra and \mathcal{B} is a semisimple commutative Banach algebra. Then each (3,m)-Jordan homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a (3,m)-homomorphism.

3. Weakly commutative Case

We say that the Banach algebra \mathcal{A} is weakly commutative if

$$(ax)^2 = a^2 x^2$$
 and $ax^2 a = x^2 a^2$,

for all $a, x \in A$. Clearly, every commutative Banach algebra is weakly commutative, but in general, the converse is false. For example, let

$$\mathcal{A} = ig\{ egin{bmatrix} a & b \ 0 & 0 \end{bmatrix} : \quad a,b \in \mathbb{R} ig\}.$$

Then it is obvious to check that with the usual matrix product for all $x, y \in \mathcal{A}$,

$$(xy)^2 = x^2y^2$$
 and $xy^2x = y^2x^2$

Thus, \mathcal{A} is weakly commutative, but it is neither unital nor commutative.

Theorem 3.1: Let \mathcal{A} and \mathcal{B} be two weakly commutative Banach algebras. If \mathcal{A} is unital, then every (2,m)-Jordan homomorphism from \mathcal{A} into \mathcal{B} is a (2,m)-homomorphism

Proof: By a similar argument which has been used in the proof of theorem 2.1, for all $a, b \in \mathcal{A}$ we have

$$\varphi(aba) = m^2 \varphi(a)\varphi(b)\varphi(a). \tag{21}$$

Replacing b by b^2 in (21), we obtain

$$\varphi(b^2a^2) = \varphi(ab^2a) = m^2\varphi(a)\varphi(b^2)\varphi(a) = m^3\varphi(a)^2\varphi(b)^2 = m\varphi(b^2)\varphi(a^2).$$
(22)

Replacing b by x + y in (22), gives

$$\varphi(xya^2 + yxa^2) = m\varphi(xy + yx)\varphi(a^2).$$
(23)

Replacing a by a + b in (23), gives

$$\varphi((xy+yx)(ab+ba)) = m\varphi(xy+yx)\varphi(ab+ba), \tag{24}$$

for all $a, b, x, y \in \mathcal{A}$. Replacing y and b with unit the element of \mathcal{A} in (24), we get

$$\varphi(xa) = m\varphi(x)\varphi(a),\tag{25}$$

for all $a, x \in \mathcal{A}$, as claimed.

Theorem 3.2: With the hypotheses of Theorem 3.1, every $(3, m^2)$ -Jordan homomorphism from \mathcal{A} into \mathcal{B} is a $(3, m^2)$ -homomorphism.

Proof: Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be $(3, m^2)$ -Jordan homomorphism. Then by Lemma 2.4, φ is (2, m)-Jordan or (2, -m)-Jordan homomorphism. If φ is (2, m)-Jordan, then by Theorem 3.1 it is (2, m)-homomorphism and so it is $(3, m^2)$ -homomorphism. If φ is (2, -m)-Jordan homomorphism, then by Theorem 3.1 it is (2, -m)-homomorphism. That is, $\varphi(ab) = -m\varphi(a)\varphi(b)$, for all $a, b \in \mathcal{A}$. Therefore

$$\varphi(abc) = -m\varphi(a)\varphi(bc) = -m\varphi(a)[-m\varphi(b)\varphi(c)] = m^2\varphi(a)\varphi(b)\varphi(c),$$

for all $a, b, c \in \mathcal{A}$. Hence, φ is $(3, m^2)$ -homomorphism.

The following theorem follows from Theorem 3.1 and Theorem 2.6.

Theorem 3.3: With the hypotheses of Theorem 3.1, every (3,m)-Jordan homomorphism from \mathcal{A} into \mathcal{B} is a (3,m)-homomorphism.

Acknowledgements

The author gratefully acknowledges the helpful comments of the anonymous referee.

References

- G. An, Characterization of n-Jordan homomorphism, Linear and Multilinear algebra, 66, 4 (2018), 671-680
- [2] A. Bodaghi, H. Inceboz, n-Jordan homomorphisms on commutative algebras, Acta, Math. Univ. Comenianae, 87, 1 (2018), 141-146
- J. Bračič, M.S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malaysian Math. Sci. Soc., 30, 2 (2007), 195-200
- [4] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc., 80, 1 (2009), 159-164
- M.E. Gordji, T. Karimi, S.K. Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appli., 2009, Article ID 870843, (2009)
- [6] E. Gselmann, On approximate n-Jordan homomorphisms, Annales Math. Silesianae., 28 (2014), 47-58
- [7] Sh. Hejazian, M. Mirzavaziri, M.S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc., 31, 1 (2005), 13-23

 \Box

- [8] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81, 1 (1956), 331-341
- [9] N. Jacobson, C.E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69, 3 (1950), 479-502
- [10] Y.H. Lee, Stability of n-Jordan homomorphisms from a Normed Algebra to a Banach Algebra, Abst. Appli. Anal., 2013, Article ID 691025, (2013)
- [11] T. Miura, S.E. Takahasi, G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq. Appl., 2005 (4), (2005), 435-441
- W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85
- [13] A. Zivari-Kazempour, A characterization of Jordan homomorphism on Banach algebras, Chinese J. Math., 2014 (2014), 1-3
- [14] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc., 93, 2 (2016), 301-306
- [15] A. Zivari-Kazempour, A characterization of Jordan and 5-Jordan homomorphisms between Banach algebras, Asian-Eropean J. Math., **11**, 2 (2018), 1-10
- [16] A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc., 33, 1 (2018), 165-170