Characterization of (n, m)-Jordan Homomorphisms

Abbas Zivari-Kazempour
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran (Received April 17, 2018; Revised June 23, 2019; Accepted June 24, 2019)

[^0]Keywords: (n, m)-homomorphisms, (n, m)-Jordan homomorphisms, Weakly commutative.
AMS Subject Classification: 46L05, 46H25.

1. Introduction

Let $n \in \mathbb{N}, \mathcal{A}$ and \mathcal{B} be complex Banach algebras and let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an n-homomorphism if for all $a_{1}, a_{2}, \ldots a_{n} \in \mathcal{A}$,

$$
\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots \varphi\left(a_{n}\right)
$$

The concept of an n-homomorphism was studied for complex algebras in [7] and [3].
Herstein in [8] introduced the notion of n-Jordan homomorphisms. A linear map φ between Banach algebras \mathcal{A} and \mathcal{B} is called an n-Jordan homomorphism if

$$
\varphi\left(a^{n}\right)=\varphi(a)^{n}, \quad a \in \mathcal{A} .
$$

A 2-homomorphism (2-Jordan homomorphism) is called simply a homomorphism (Jordan homomorphism).
It is clear that every n-homomorphism is an n-Jordan homomorphism, but in general the converse is false. There are some examples of n-Jordan homomorphisms which are not n-homomorphisms. For $n=2$, it is proved in [9] that some Jordan homomorphism on the polynomial rings can not be homomorphism.

Herstein in [8] proved the following theorem.
Theorem 1.1: If φ is a Jordan homomorphism of a ring R onto a prime ring R^{\prime} of characteristic deferent from 2 and 3 , then either φ is a homomorphism or an anti-homomorphism.

[^1]It is shown in [4] that every n-Jordan homomorphism between two commutative Banach algebras is an n-homomorphism for $n \in\{2,3,4\}$, and this result extended to the case $n=5$ in [5]. For the case that $n \in \mathbb{N}$ is an arbitrary, Lee in [10] and Gselmann in [6] generalized this result. This challenge is solved in [2] by the different methods which are used in [6] and [10]. For the non-commutative case, Zelazko in [12] presented the following result (see also [11]).

Theorem 1.2: Suppose that \mathcal{A} is a Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then each Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism.

Later, this result was proved in [14] for 3-Jordan homomorphism with the extra condition that the Banach algebra \mathcal{A} is unital, and it is extended for all $n \in \mathbb{N}$ in [1]. Some significant results concerning Jordan homomorphisms and their automatic continuity on Banach algebras are obtained by the author in [13], [15] and [16].

Let $m \in \mathbb{Z} \backslash\{0\}$, let \mathcal{A} and \mathcal{B} be complex algebras and let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an (n, m)-homomorphism if for all $a_{1}, a_{2}, \ldots a_{n} \in \mathcal{A}$,

$$
\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=m \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots \varphi\left(a_{n}\right),
$$

and it is called an (n, m)-Jordan homomorphism if

$$
\varphi\left(a^{n}\right)=m \varphi(a)^{n}, \quad a \in \mathcal{A} .
$$

Clearly ($n, 1$)-homomorphism and ($n, 1$)-Jordan homomorphism coincide with the classical definitions of n-homomorphism and n-Jordan homomorphism, respectively.

Note that every n-Jordan homomorphism is not necessary (n, m)-Jordan homomorphism for $m \neq 1$, for example, consider the identity map. Also every (n, m) Jordan homomorphism is not necessary n-Jordan homomorphism for $m \neq 1$. For example, define $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ by $\varphi(x)=\frac{1}{2} x$. Then φ is not n-Jordan homomorphism, but for $m=2^{(n-1)}$ it is (n, m)-Jordan homomorphism.

Example 1.3 Let

$$
\mathcal{A}=\left\{\left[\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right]: \quad X, Y \in M_{2}(\mathbb{C})\right\},
$$

and define $\varphi: \mathcal{A} \longrightarrow \mathcal{A}$ by

$$
\varphi\left(\left[\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right]\right)=\frac{1}{k}\left[\begin{array}{cc}
X & 0 \\
0 & Y^{T}
\end{array}\right],
$$

for each $k \in \mathbb{N}$. Then for all $U \in \mathcal{A}$, we have

$$
\varphi\left(U^{n}\right)-k^{(n-1)} \varphi(U)^{n}=\frac{1}{k}\left[\begin{array}{cc}
X^{n} & 0 \\
0 & \left(Y^{n}\right)^{T}
\end{array}\right]-k^{(n-1)} \frac{1}{k^{n}}\left[\begin{array}{cc}
X^{n} & 0 \\
0 & \left(Y^{T}\right)^{n}
\end{array}\right]=0 .
$$

Thus, φ is (n, m)-Jordan homomorphism for $m=k^{(n-1)}$, but φ is not $(n, m)-$ homomorphism.

In this paper, we prove that every $(3, m)$-Jordan homomorphism φ from unital Banach algebra \mathcal{A} into Banach algebra \mathcal{B} is $(3, m)$-homomorphism if either:
(1) \mathcal{B} is semisimple and commutative, or
(2) \mathcal{A} and \mathcal{B} are weakly commutative.

2. Main Results

For $m=1$, the following result is Theorem 1.2 , and for $m=-1$ it is Lemma 2.1 of [14].

Theorem 2.1: Every $(2, m)$-Jordan homomorphism φ from Banach algebra \mathcal{A} into \mathbb{C} is a $(2, m)$-homomorphism.

Proof: Suppose that φ is $(2, m)$-Jordan homomorphism. Then $\varphi\left(a^{2}\right)=m \varphi(a)^{2}$, for all $a \in \mathcal{A}$. Replacing a by $a+b$, we get

$$
\begin{equation*}
\varphi(a b+b a)=2 m \varphi(a) \varphi(b), \quad(a, b \in \mathcal{A}) \tag{1}
\end{equation*}
$$

Replacing a by a^{2} in (1), we have

$$
\begin{equation*}
\varphi\left(a^{2} b+b a^{2}\right)=2 m^{2} \varphi(a)^{2} \varphi(b), \quad(a, b \in \mathcal{A}) \tag{2}
\end{equation*}
$$

Taking $b=a b+b a$ in (1), we see that

$$
\varphi(a(a b+b a)+(a b+b a) a)=2 m \varphi(a) \varphi(a b+b a)
$$

and hence by (1),

$$
\begin{equation*}
\varphi\left(a^{2} b+2 a b a+b a^{2}\right)=4 m^{2} \varphi(a)^{2} \varphi(b) \tag{3}
\end{equation*}
$$

Subtraction (2) from (3), gives

$$
\begin{equation*}
\varphi(a b a)=m^{2} \varphi(a)^{2} \varphi(b) \tag{4}
\end{equation*}
$$

Fix $a \in \mathcal{A}$ and $b \in \mathcal{A}$ arbitrarily, and put

$$
\begin{equation*}
2 t=\varphi(a b-b a) \tag{5}
\end{equation*}
$$

It follows from (1) and (5) that

$$
\begin{equation*}
\varphi(a b)-t=m \varphi(a) \varphi(b), \quad \varphi(b a)+t=m \varphi(a) \varphi(b) \tag{6}
\end{equation*}
$$

By (4), (5) and (6),

$$
\begin{aligned}
4 t^{2} & =\varphi(a b-b a)^{2}=\frac{1}{m} \varphi\left[(a b-b a)^{2}\right] \\
& =\frac{1}{m} \varphi\left[(a b)^{2}+(b a)^{2}-a b^{2} a-b a^{2} b\right] \\
& =\left[\varphi(a b)^{2}+\varphi(b a)^{2}\right]+\frac{-1}{m}\left[m^{2} \varphi(a)^{2} \varphi\left(b^{2}\right)+m^{2} \varphi(b)^{2} \varphi\left(a^{2}\right)\right] \\
& =[t+m \varphi(a) \varphi(b)]^{2}+[-t+m \varphi(a) \varphi(b)]^{2}-\left[2 m^{2} \varphi(a)^{2} \varphi(b)^{2}\right] \\
& =2 t^{2} .
\end{aligned}
$$

Hence $t=0$, which proves $\varphi(a b)=\varphi(b a)$. Therefore by (1), $\varphi(a b)=m \varphi(a) \varphi(b)$, and the proof is complete.

Corollary 2.2: Suppose that \mathcal{A} is a Banach algebra and \mathcal{B} is a semisimple commutative Banach algebra. Then each (2,m)-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is $a(2, m)$-homomorphism.

Lemma 2.3: Let \mathcal{A} be a unital Banach algebra with unit e and let $\varphi: \mathcal{A} \longrightarrow \mathbb{C}$ be a non-zero $(3, m)$-Jordan homomorphism. Then $\varphi(e) \neq 0$.
Proof: Let φ be non-zero ($3, m$)-Jordan homomorphism, then $\varphi\left(a^{3}\right)=m \varphi(a)^{3}$, for all $a \in \mathcal{A}$. Replacing a by $a+b$, we get

$$
\begin{equation*}
\varphi\left(a b^{2}+b^{2} a+a^{2} b+b a^{2}+a b a+b a b\right)=m\left(3 \varphi(a)^{2} \varphi(b)+3 \varphi(a) \varphi(b)^{2}\right), \tag{7}
\end{equation*}
$$

and replacing b by $-b$ in (7), we obtain

$$
\begin{equation*}
\varphi\left(a b^{2}+b^{2} a-a^{2} b-b a^{2}-a b a+b a b\right)=m\left(-3 \varphi(a)^{2} \varphi(b)+3 \varphi(a) \varphi(b)^{2}\right) . \tag{8}
\end{equation*}
$$

By (7) and (8) we obtain

$$
\begin{equation*}
\varphi\left(a b^{2}+b^{2} a+b a b\right)=3 m \varphi(a) \varphi(b)^{2}, \quad(a, b \in \mathcal{A}) . \tag{9}
\end{equation*}
$$

Now assume that $\varphi(e)=0$ and take $b=e$ in (9), then it follows that $\varphi(a)=0$, for all $a \in \mathcal{A}$, which is a contradiction.

Lemma 2.4: Let φ be a non-zero ($3, m^{2}$)-Jordan homomorphism from unital Banach algebra \mathcal{A} into \mathbb{C}. Then either φ is $(2, m)$-Jordan or $(2,-m)$-Jordan homomorphism.

Proof: By assumption for all $a \in \mathcal{A}$,

$$
\begin{equation*}
\varphi\left(a^{3}\right)=m^{2} \varphi(a)^{3} \tag{10}
\end{equation*}
$$

Replacing a by $a+e$ in (10), to obtain

$$
\varphi\left(a^{2}+a\right)=m^{2}\left(\varphi(e)^{2} \varphi(a)+\varphi(e) \varphi(a)^{2}\right) .
$$

Replacing a by e in (10), we get $\varphi(e)=m^{2} \varphi(e)^{3}$. By above Lemma $\varphi(e) \neq 0$, therefore $\varphi(e)=\frac{1}{m}$ or $\varphi(e)=\frac{-1}{m}$. If $\varphi(e)=\frac{1}{m}$, then by the above equation we get

$$
\varphi\left(a^{2}\right)=m \varphi(a)^{2}
$$

hence φ is $(2, m)$-Jordan. Similarly, we have

$$
\varphi\left(a^{2}\right)=-m \varphi(a)^{2}
$$

if $\varphi(e)=\frac{-1}{m}$. Thus, φ is $(2,-m)$-Jordan.
The next result, which is the main one in the paper, characterizes $\left(3, m^{2}\right)$-Jordan homomorphisms.
Theorem 2.5: Suppose that \mathcal{A} is a unital Banach algebra and \mathcal{B} is a semisimple commutative Banach algebra. Then each $\left(3, m^{2}\right)$-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow$ \mathcal{B} is a $\left(3, m^{2}\right)$-homomorphism.

Proof: We first assume that $\mathcal{B}=\mathbb{C}$ and let $\varphi: \mathcal{A} \longrightarrow \mathbb{C}$ be $\left(3, m^{2}\right)$-Jordan homomorphism, then by Lemma $2.4, \varphi$ is either $(2, m)$-Jordan or $(2,-m)$-Jordan homomorphism. If φ is $(2, m)$-Jordan, then by Theorem 2.1 it is $(2, m)$-homomorphism and so it is $\left(3, m^{2}\right)$-homomorphism. If φ is $(2,-m)$-Jordan, then by Theorem 2.1 it is $(2,-m)$-homomorphism. That is, for all $a, b \in \mathcal{A}$,

$$
\varphi(a b)=-m \varphi(a) \varphi(b)
$$

Therefore

$$
\varphi(a b c)=-m \varphi(a) \varphi(b c)=-m \varphi(a)[-m \varphi(b) \varphi(c)]=m^{2} \varphi(a) \varphi(b) \varphi(c)
$$

for all $a, b, c \in \mathcal{A}$. Hence, φ is $\left(3, m^{2}\right)$-homomorphism.
Now suppose \mathcal{B} is arbitrary semisimple and commutative. Let $\mathfrak{M}(\mathcal{B})$ be the maximal ideal space of \mathcal{B}. We associate with each $f \in \mathfrak{M}(\mathcal{B})$ a function $\varphi_{f}: \mathcal{A} \longrightarrow \mathbb{C}$ defined by

$$
\varphi_{f}(a):=f(\varphi(a)), \quad(a \in \mathcal{A})
$$

Pick $f \in \mathfrak{M}(\mathcal{B})$ arbitrary. It is easy to see that φ_{f} is a $\left(3, m^{2}\right)$-Jordan homomorphism, so by the above argument it is a $\left(3, m^{2}\right)$-homomorphism. Thus by the definition of φ_{f} we have

$$
f(\varphi(a b c))=m^{2} f(\varphi(a)) f(\varphi(b)) f(\varphi(c))=f\left(m^{2} \varphi(a) \varphi(b) \varphi(c)\right)
$$

Since $f \in \mathfrak{M}(\mathcal{B})$ was arbitrary and \mathcal{B} is assumed to be semisimple, we obtain

$$
\varphi(a b c)=m^{2} \varphi(a) \varphi(b) \varphi(c)
$$

for all $a, b, c \in \mathcal{A}$. This completes the proof.
Theorem 2.6: Let \mathcal{A} and \mathcal{B} be two Banach algebras, where \mathcal{A} has a unit element e and $\operatorname{char}(\mathcal{B})>3$. If every Jordan homomorphism from \mathcal{A} into \mathcal{B} is
a homomorphism, then every $(3, m)$-Jordan homomorphism from \mathcal{A} into \mathcal{B} is a (3,m)-homomorphism.

Proof: Let φ be a $(3, m)$-Jordan homomorphism, then for all $a \in \mathcal{A}$,

$$
\varphi\left((a+2)^{3}-2(a+e)^{3}+a^{3}\right)=m\left(\varphi(a+2)^{3}-2 \varphi(a+e)^{3}+\varphi(a)^{3}\right)
$$

Hence,

$$
\begin{equation*}
6 \varphi(a)+6 \varphi(e)=m\left(2 \varphi(e)^{2} \varphi(a)+2 \varphi(a) \varphi(e)^{2}+2 \varphi(e) \varphi(a) \varphi(e)+6 \varphi(e)^{3}\right) \tag{11}
\end{equation*}
$$

By assumption $\varphi(e)=m \varphi(e)^{3}$, so by (11) we get

$$
\begin{equation*}
3 \varphi(a)=m\left(\varphi(e)^{2} \varphi(a)+\varphi(a) \varphi(e)^{2}+\varphi(e) \varphi(a) \varphi(e)\right) \tag{12}
\end{equation*}
$$

Multiplying $\varphi(e)$ from the right in (12), we get

$$
\begin{equation*}
2 \varphi(a) \varphi(e)=m\left(\varphi(e)^{2} \varphi(a) \varphi(e)+\varphi(e) \varphi(a) \varphi(e)^{2}\right) \tag{13}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
2 \varphi(e) \varphi(a)=m\left(\varphi(e) \varphi(a) \varphi(e)^{2}+\varphi(e)^{2} \varphi(a) \varphi(e)\right) \tag{14}
\end{equation*}
$$

By (13) and (14) we have

$$
\begin{equation*}
\varphi(a) \varphi(e)=\varphi(e) \varphi(a), \quad(a \in \mathcal{A}) \tag{15}
\end{equation*}
$$

It follows from (12) and (15) that

$$
\begin{equation*}
\varphi(a)=m \varphi(e)^{2} \varphi(a)=m \varphi(a) \varphi(e)^{2} \tag{16}
\end{equation*}
$$

By assumption

$$
\begin{equation*}
\varphi\left((a+e)^{3}-a^{3}\right)=m\left(\varphi(a+e)^{3}-\varphi(a)^{3}\right) \tag{17}
\end{equation*}
$$

So by (15) and (17) we have

$$
\begin{equation*}
3 \varphi\left(a^{2}\right)+3 \varphi(a)+\varphi(e)=m\left(3 \varphi(a)^{2} \varphi(e)+3 \varphi(a) \varphi(e)^{2}+\varphi(e)^{3}\right) \tag{18}
\end{equation*}
$$

By (16) and (18) we get

$$
\begin{equation*}
\varphi\left(a^{2}\right)=m \varphi(a)^{2} \varphi(e), \quad(a \in \mathcal{A}) \tag{19}
\end{equation*}
$$

Now define a mapping $f: \mathcal{A} \longrightarrow: \mathcal{B}$ by

$$
f(a):=m \varphi(a) \varphi(e)
$$

for all $a \in \mathcal{A}$. Then by (19), f is Jordan homomorphism, so it is a homomorphism. By the definition of f and (16) we have

$$
\begin{equation*}
f(a) \varphi(e)=\varphi(a) . \tag{20}
\end{equation*}
$$

It follows from (16) and (20) that

$$
\begin{aligned}
\varphi(a b c) & =f(a b c) \varphi(e) \\
& =f(a) f(b) f(c) \varphi(e) \\
& =(m \varphi(a) \varphi(e))(m \varphi(b) \varphi(e))(m \varphi(c) \varphi(e)) \varphi(e) \\
& =m \varphi(a)\left(m \varphi(b) \varphi(e)^{2}\right)\left(m \varphi(c) \varphi(e)^{2}\right) \\
& =m \varphi(a) \varphi(b) \varphi(c) .
\end{aligned}
$$

Thus, φ is ($3, m$)-homomorphism.
As a consequence of Theorem 1.2 and Theorem 2.6 we deduce the next result.
Corollary 2.7: Suppose that \mathcal{A} is a unital Banach algebra and \mathcal{B} is a semisimple commutative Banach algebra. Then each $(3, m)$-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow$ \mathcal{B} is a $(3, m)$-homomorphism.

3. Weakly commutative Case

We say that the Banach algebra \mathcal{A} is weakly commutative if

$$
(a x)^{2}=a^{2} x^{2} \quad \text { and } \quad a x^{2} a=x^{2} a^{2},
$$

for all $a, x, \in \mathcal{A}$. Clearly, every commutative Banach algebra is weakly commutative, but in general, the converse is false. For example, let

$$
\mathcal{A}=\left\{\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]: \quad a, b \in \mathbb{R}\right\} .
$$

Then it is obvious to check that with the usual matrix product for all $x, y \in \mathcal{A}$,

$$
(x y)^{2}=x^{2} y^{2} \quad \text { and } \quad x y^{2} x=y^{2} x^{2} .
$$

Thus, \mathcal{A} is weakly commutative, but it is neither unital nor commutative.
Theorem 3.1: Let \mathcal{A} and \mathcal{B} be two weakly commutative Banach algebras. If \mathcal{A} is unital, then every $(2, m)$-Jordan homomorphism from \mathcal{A} into \mathcal{B} is a $(2, m)-$ homomorphism

Proof: By a similar argument which has been used in the proof of theorem 2.1, for all $a, b \in \mathcal{A}$ we have

$$
\begin{equation*}
\varphi(a b a)=m^{2} \varphi(a) \varphi(b) \varphi(a) . \tag{21}
\end{equation*}
$$

Replacing b by b^{2} in (21), we obtain

$$
\begin{equation*}
\varphi\left(b^{2} a^{2}\right)=\varphi\left(a b^{2} a\right)=m^{2} \varphi(a) \varphi\left(b^{2}\right) \varphi(a)=m^{3} \varphi(a)^{2} \varphi(b)^{2}=m \varphi\left(b^{2}\right) \varphi\left(a^{2}\right) \tag{22}
\end{equation*}
$$

Replacing b by $x+y$ in (22), gives

$$
\begin{equation*}
\varphi\left(x y a^{2}+y x a^{2}\right)=m \varphi(x y+y x) \varphi\left(a^{2}\right) \tag{23}
\end{equation*}
$$

Replacing a by $a+b$ in (23), gives

$$
\begin{equation*}
\varphi((x y+y x)(a b+b a))=m \varphi(x y+y x) \varphi(a b+b a) \tag{24}
\end{equation*}
$$

for all $a, b, x, y \in \mathcal{A}$. Replacing y and b with unit the element of \mathcal{A} in (24), we get

$$
\begin{equation*}
\varphi(x a)=m \varphi(x) \varphi(a) \tag{25}
\end{equation*}
$$

for all $a, x \in \mathcal{A}$, as claimed.
Theorem 3.2: With the hypotheses of Theorem 3.1, every $\left(3, m^{2}\right)$-Jordan homomorphism from \mathcal{A} into \mathcal{B} is a $\left(3, m^{2}\right)$-homomorphism.
Proof: Let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be $\left(3, m^{2}\right)$-Jordan homomorphism. Then by Lemma 2.4, φ is $(2, m)$-Jordan or $(2,-m)$-Jordan homomorphism. If φ is $(2, m)$-Jordan, then by Theorem 3.1 it is $(2, m)$-homomorphism and so it is $\left(3, m^{2}\right)$-homomorphism. If φ is $(2,-m)$-Jordan homomorphism, then by Theorem 3.1 it is $(2,-m)-$ homomorphism. That is, $\varphi(a b)=-m \varphi(a) \varphi(b)$, for all $a, b \in \mathcal{A}$. Therefore

$$
\varphi(a b c)=-m \varphi(a) \varphi(b c)=-m \varphi(a)[-m \varphi(b) \varphi(c)]=m^{2} \varphi(a) \varphi(b) \varphi(c)
$$

for all $a, b, c \in \mathcal{A}$. Hence, φ is $\left(3, m^{2}\right)$-homomorphism.
The following theorem follows from Theorem 3.1 and Theorem 2.6.
Theorem 3.3: With the hypotheses of Theorem 3.1, every (3,m)-Jordan homomorphism from \mathcal{A} into \mathcal{B} is a $(3, m)$-homomorphism.

Acknowledgements

The author gratefully acknowledges the helpful comments of the anonymous referee.

References

[1] G. An, Characterization of n-Jordan homomorphism, Linear and Multilinear algebra, 66, 4 (2018), 671-680
[2] A. Bodaghi, H. Inceboz, n-Jordan homomorphisms on commutative algebras, Acta, Math. Univ. Comenianae, 87, 1 (2018), 141-146
[3] J. Bračič, M.S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malaysian Math. Sci. Soc., 30, 2 (2007), 195-200
[4] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc., 80, 1 (2009), 159-164
[5] M.E. Gordji, T. Karimi, S.K. Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appli., 2009, Article ID 870843, (2009)
[6] E. Gselmann, On approximate n-Jordan homomorphisms, Annales Math. Silesianae., 28 (2014), 47-58
[7] Sh. Hejazian, M. Mirzavaziri, M.S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc., 31, 1 (2005), 13-23
[8] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81, 1 (1956), 331-341
[9] N. Jacobson, C.E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69, 3 (1950), 479-502
[10] Y.H. Lee, Stability of n-Jordan homomorphisms from a Normed Algebra to a Banach Algebra, Abst. Appli. Anal., 2013, Article ID 691025, (2013)
11] T. Miura, S.E. Takahasi, G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq. Appl., 2005 (4), (2005), 435-441
[12] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85
[13] A. Zivari-Kazempour, A characterization of Jordan homomorphism on Banach algebras, Chinese J. Math., 2014 (2014), 1-3
[14] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc., 93, 2 (2016), 301-306
[15] A. Zivari-Kazempour, A characterization of Jordan and 5-Jordan homomorphisms between Banach algebras, Asian-Eropean J. Math., 11, 2 (2018), 1-10
[16] A. Zivari-Kazempour, Automatic continuiuy of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc., 33, 1 (2018), 165-170

[^0]: Let $n \in \mathbb{N}, m \in \mathbb{Z} \backslash\{0\}$. In this paper among other things, under special hypotheses, we prove that every (n, m)-Jordan homomorphism between Banach algebras \mathcal{A} and \mathcal{B} is a $(n, m)-$ homomorphism.

[^1]: Email: zivari@abru.ac.ir, zivari6526@gmail.com

