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The present work is devoted to the formulation and investigation of a non-local contact
problem for a parabolic-type linear differential equation with partial derivatives.

In the first part of the work, the linear parabolic equation with constant coefficients is
considered. To solve a non-local contact problem, the variable separation method (Fourier
method) is used. Analytical solutions are built for this problem.

One then elaborates on the non-local contact problem for parabolic equations with variable
coefficients. Using the iterative method, the existence and uniqueness of the classical solution to
the problem is proved. The proof of the existence and uniqueness of the solution is based on the
use of the generalized Harnack theorem, which is also valid for linear differential equations with
partial derivatives of parabolic type. The effectiveness of the method is confirmed by numerical
calculations.
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1. Introduction

The formulation and study of non-local problems of mathematical physics is an
actual, theoretically and practically interesting direction of computational and ap-
plied mathematics [1]-[4]. The study of these problems has been carried out since
the beginning of the last century [5]-[8].
After the appearance of remarkable works by J.R. Canon [9], A.V. Bitsadze and

A.A. Samarskii [10], intensive studies of non-local problems and their various gener-
alizations began (see [11]-[26] and the references autocited there). The present work
is devoted to the formulation and investigation of a non-local contact problem for a
parabolic-type linear differential equation with partial derivatives.
In the first part of the work, the linear parabolic equation with constant coefficients

is considered. To solve a non-local contact problem, the variable separation method
(Fourier method) is used. Analytical solutions are built for this problem.
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One then elaborates on the non-local contact problem for parabolic equations with
variable coefficients. Using the iterative method, the existence and uniqueness of the
classical solution to the problem is proved. The proof of the existence and uniqueness
of the solution is based on the use of the generalized Harnack theorem, which is also
valid for linear differential equations with partial derivatives of parabolic type. The
effectiveness of the method is confirmed by numerical calculations.

2. Method of separation of variables

2.1.

We will consider the nonlocal contact problem for one dimensional parabolic equa-
tion with constant coefficients.
Find the function

u(x, t) =

{
u−(x, t), 0 ≤ x ≤ c, t ≥ 0,

u+(x, t), c ≤ x ≤ l, t ≥ 0,

0 < c < l, which satisfies the following equations

∂u−

∂t
= a21

∂2u−

∂x2
+ f−(x, t) 0 < x < c, t > 0, (1)

∂u+

∂t
= a22

∂2u+

∂x2
+ f+(x, t) c < x < l, t > 0, (2)

the initial conditions

u−(x, 0) = 0, 0 ≤ x ≤ c, (3)

u+(x, 0) = 0, c ≤ x ≤ l, (4)

the boundary conditions

u−(0, t) = 0, t ≥ 0, (5)

u+(l, t) = 0, t ≥ 0, (6)

and the nonlocal contact condition

u−(c, t) = u+(c, t) = u(c, t) = α1u
−(c−, t) + α2u

+(c+, t) + µ(t), (7)

where α1 > 0, α2 > 0, 0 < c− < c < c+ < l.
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2.2.

At first, we will consider the following problem: the equation (1), initial condition
(3) and the boundary conditions:

u−(0, t) = 0, t ≥ 0, u−(c, t) = u(c, t), t ≥ 0, (8)

where u(c, t) is so far an unknown function. We introduce the new unknown function
[27]:

{
u−(x, 0) = U−(x, t) + z−(x, t)

U−(x, t) =
x

c
u(c, t)

(9)

Then for the function z−(x, t) we get the following problem
∂z−

∂t
=a21

∂2z−

∂x2
+f̃−(x, t), f̃−(x, t)=f−(x, t)−x

c
u′(c, t), 0 < x < c, t > 0,

z−(x, 0) = 0, 0 ≤ x ≤ c, z−(0, t) = 0, z−(c, t) = 0, t ≥ 0.

(10)

The solution of problem (10) is the following function [27]:

z−(x, t) =

∞∑
n=1

{∫ t

0
e−(πn

c
)2a2

1(t−τ)f̃−
n (τ)dτ

}
sin

πn

c
x,

where

f̃−
n (t) =

2

c

∫ c

0
f̃−(ξ, t) sin

πn

c
ξdξ.

If we transform the last expression, we can receive

f̃−
n (t) =

2

c

∫ c

0
f−(ξ, t) sin

πn

c
ξdξ − 2

c

∫ c

0

x

c
u′(c, t) sin

πn

c
ξdξ

=
2

c

∫ c

0
f−(ξ, t) sin

πn

c
ξdξ − 2u′(c, t)

c2

∫ c

0
ξ sin

πn

c
ξdξ.

Let us consider the integral
∫ c
0 ξ sin πn

c ξdξ and use the integration by parts

∫ c

0
ξ sin

πn

c
ξdξ = − c2

πn
cosπn+

( c

πn

)2
sin

πn

c
|c0= (−1)n+1 c

2

πn
.

Then the function f̃−
n (t) can be written in the following form:

f̃−
n (t) =

2

c

∫ c

0
f−(ξ, t) sin

πn

c
ξdx− (−1)n+1 2

πn
u′(c, t).
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Considering the last equality for the solution of problem (10), we obtain the following
expression

z−(x, t) =

∞∑
n=1

{
2

c

∫ t

0
e−(πn

c
)2a2

1(t−τ)

[∫ c

0
f−(ξ, τ) sin

πn

c
ξdξ

]
dt

}
sin

πn

c
x

−
∞∑
n=1

(−1)n+1

[
2

πn

∫ t

0
e−(πn

c
)2a2

1(t−τ)u′(c, τ)dτ

]
sin

πn

c
x

=

∫ t

0

∫ c

0
G−(x, ξ, t− τ)f−(ξ, τ)dξdτ

−
∞∑
n=1

(−1)n+1 2

πn
sin

πn

c
x

∫ t

0
e−(πn

c
)2a2

1(t−τ)u′(c, τ)dτ,

where the function

G−(x, ξ, t− τ) =
2

c

∞∑
n=1

e−(πn

c
)2a2

1(t−τ) sin
πn

c
x sin

πn

c
ξ (11)

is called as function of an instant point-source [27].

Thus, for the solution of the problem (1), (3), (8) we received the following ex-
pression

u−(x, t) =
x

c
u(c, t) +

∫ t

0

∫ c

0
G−(x, ξ, t− τ)f−(ξ−, τ)dξdτ

−
∞∑
n=1

(−1)n+1 2

πn
sin (

πn

c
x)

∫ t

0
e−(πn

c
)2a2

1(t−τ)u′(c, τ)dτ.

Using the integration by parts regarding the integral
∫ t
0 e

−(πn

c
)2a2

1(t−τ)u′(c, τ)dτ from
the last expression we get

∫ t

0
e−(πn

c
)2a2

1(t−τ)u′(c, τ)dτ = u(c, t)−
(πn

c

)2
a21

∫ t

0
e−(πn

c
)2a2

1(t−τ)u(c, τ)dτ.

Considering this equality in the expression of u−(x, t), we get

u−(x, t) =
x

c
u(c, t) +

∫ t

0

∫ c

0
G−(x, ξ, t− τ)f−(ξ, τ)dξdτ

−

( ∞∑
n=1

(−1)n+1 2

πn
sin
(πn

c
x
))

u(c, t) +

∫ t

0
k−(x, t− τ)u(c, τ)dτ, (12)
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where

k−(x, t− τ) =
2πa21
c2

∞∑
n=1

(
(−1)n+1ne−(πn

c
)2a2

1(t−τ)sin
(πn

c
x)
))

. (13)

The following sum is equal

∞∑
n=1

(−1)n+1 2

n
sin
(πn

c
x
)
=

x

c
,

(Wolfram Mathematica 10.4, the function Sum[ ]).

Note, that the sum k−(x, t − τ) converges, as the sum
∑∞

n=1 ne
−(πn

c
)2a2

1(t−τ)

converges.

Finally, we get

u−(x, t) =

∫ t

0

∫ c

0
G−(x, ξ, t− τ)f−(ξ, τ)dξdτ +

∫ t

0
k−(x, t− τ)u(c, τ)dτ. (14)

2.3.

Analogously we can consider the problem: the equation (2), the initial condition (4)
and the boundary conditions:

u+(c, t) = u(c, t), u+(l, t) = 0, t ≥ 0, (15)

where u(c, t) is so far an unknown function.

Let us introduce the new unknown functionu+(x, t) = U+(x, t) + z+(x, t), c ≤ x ≤ l

U+(x, t) =
l − x

l − c
u(c, t).

(16)

Then for the function z+(x, t) we get the following problem
∂z+

∂t
= a22

∂2z+

∂x2
+ f̃+(x, t), f̃+(x, t) = f+(x, t)− l − x

l − c
u′(x, t)

z+(x, 0) = 0, c ≤ x ≤ l, z+(c, t) = 0, z+(l, t) = 0, t ≥ 0.
(17)

The solution of problem (17) is the following function [27]:

z+(x, t) =

∞∑
n=1

{∫ t

0
e−( πn

1−c
)2a2

2(t−τ)f̃+
n (τ)dτ

}
sin

πn

l − c
(l − x), c ≤ x ≤ l,
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where

f̃+
n (t) =

2

l − c

∫ l

c
f̃+(ξ, t) sin

πn

l − c
(l − ξ)dξ.

Let us convert the last expression for f̃+
n (t):

f̃+
n (t) =

2

l − c

∫ l

c
f+(ξ, t) sin

πn

l − c
(l − ξ)dξ − 2u′(c, t)

(l − c)2

∫ l

c
(l − ξ) sin

πn

l − c
(l − ξ)dξ.

At first we consider the integral
∫ l
c (l− ξ) sin πn

l−c(l− ξ)dξ and use the integration by

parts regarding it. Then this integral is equal to (−1)n+1 (l−c)2

πn and therefore,

f̃+
n (t) =

2

l − c

∫ l

c
f+(ξ, t) sin

πn

l − c
(l − ξ)dξ − (−1)n+1 2

πn
u′(c, t).

Given the last equality, for the function u+(x, t) we get the following expression:

u+(x, t) =
l − x

l − c
u(c, t) +

∫ t

0

∫ l

c
G+(x, ξ, t− τ)f+(ξ, τ)dξdτ

−
∞∑
n=1

(−1)n+1 2

πn
sin

πn

l − c
(l − x)

∫ t

0
e−( πn

l−c
)2a2

2(t−τ)u′(c, τ)dτ,

where

G+(x, ξ, t− τ) =
2

l − c

∞∑
n=1

e−(πn

c
)2a2

1(t−τ) sin
πn

l − c
(l − ξ) sin

πn

l − c
(l − x). (18)

Let us consider the integral
∫ t
0 e

−(πn

c
)2a2

2(t−τ)u′(c, τ)dτ and use the integration by
parts. Then we get

∫ t

0
e−(πn

c
)2a2

2(t−τ)u′(c, τ)dτ = u(c, t) +

(
πn

l − c

)2

a22

∫ t

0
e−(πn

c
)2a2

2(t−τ)u′(c, τ)dτ.

Considering this equality, for the solution of problem (2), (4), (15) we get the fol-
lowing expression:

u+(x, t) =
l − x

l − c
u(c, t) +

∫ t

0

∫ l

c
G+(x, ξ, t− τ)f+(ξ, τ)dξdτ

−

( ∞∑
n=1

(−1)n+1 2

πn
sin

πn

l − c
(l − x)

)
u(c, t) +

∫ t

0
k+(x, t− τ)u(c, τ)dτ, (19)
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where

k+(x, t− τ) =
2πa22

(l − c)2

∞∑
n=1

(−1)n+1ne−( πn

1−c
)2a2

2(t−τ) sin
πn

l − c
(l − x). (20)

Consider that

∞∑
n=1

(−1)n+1 2

πn
sin

πn

l − c
(l − x) =

l − x

l − c
,

(Wolfram Mathematica 10.4, the function Sum[ ]).
Finally we get

u+(x, t) =

∫ t

0

∫ l

c
G+(x, ξ, t− τ)f+(ξ, τ)dξdτ +

∫ t

0
k+(x, t− τ)u(c, τ)dτ. (21)

2.4.

Let’s define function u(c, t), using a nonlocal contact condition (7):

u(c, t) = α1u
−(c−, t) + α2u

+(c+, t) + µ(t).

Considering expressions (14) and (21), we can get

u(c, t) =

∫ t

0
α1k

−(c−, t− τ) + α2k
+(c+, t− τ)]u(c, t)dτ +Φ(t),

where

Φ(t) = α1

∫ t

0

∫ c

0
G−(c−, ξ, t− τ)f−(ξ, τ)dξdτ

+ α2

∫ t

0

∫ l

c
G+(c+, ξ, t− τ)f+(ξ, τ)dξdτ + µ(t). (22)

Thus, for the definition of the function u(c, t) we receive an integral equation of
Volterra of the second order

u(c, τ)−
∫ t

0
k(t− τ)u(c, τ)dτ = Φ(t), (23)

where

k(t− τ) = α1k
−(c−, t− τ) + α2k

+(c+, t− τ).

As the core of the integral equation k(t − τ) and the right-side function Φ(t) are
continuous functions, then equation (23) has a unique solution [28].
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Thus, we proved the existence and uniqueness of a regular solution of problem
(1)-(7), if the functions f−(x, t), f+(x, t) and µ(t) are sufficiently smooth functions.
The solution of problem (1)-(7) can be written in the following form:

u(x, t) =



∫ t
0

∫ c
0 G−(x, ξ, t− τ)f−(ξ, τ)dξdτ +

∫ t
0 k

−(x, t− τ)u(c, τ)dτ,

0 ≤ x < c,

∫ t
0

∫ c
0 G+(x, ξ, t− τ)f+(ξ, τ)dξdτ +

∫ t
0 k

+(x, t− τ)u(c, τ)dτ,

c < x ≤ l,

(24)

where the function u(c, t) is a solution of equation (23), and the functions
G−(x, ξ, t− τ), G+(x, ξ, t− τ), k−(x, t− τ), k+(x, t− τ) are defined using equalities
(11), (18), (13), (20).

Note that the applied technique can be successfully extended in case of more
general problems, but in this case the use of the spectral theory of linear operators
will be necessary.

3. The problem with variable coefficients

The use of expression (24) for the numerical solution of problem (1)-(7) is related
with rather bulky calculations: at first, you need to solve numerically the second-
order Volterra integral equation (23) and then calculate the approximate sum of the
Fourier series. Therefore, for the numerical solution of problem (1)-(7), the more
rational way is to use the iterative method [25].

Let us set the following problem: Find the functions

u−(x, t) ∈ C2,1(−l < x < 0, 0 < t ≤ T ) ∩ C1,0(−l ≤ x ≤ 0, 0 ≤ t ≤ T ), (25)

u+(x, t) ∈ C2,1(0 < x < l, 0 < t ≤ T ) ∩ C1,0(0 ≤ x ≤ l, 0 ≤ t ≤ T ), (26)

which satisfy the equations

∂u−

∂t
=

∂

∂x

(
k−(x, t)

∂u−

∂x

)
− q−(x, t)u−(x, t) = f−(x, t),

− l < x < 0, 0 < t ≤ T, (27)

∂u+

∂t
=

∂

∂x

(
k+(x, t)

∂u+

∂x

)
− q+(x, t)u+(x, t) = f+(x, t),

0 < x < l, 0 < t ≤ T, (28)

where k−(x, t), k+(x, t), q−(x, t), q+(x, t), f−(x, t), f+(x, t) are given sufficiently
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smooth real functions of x, t.

The coefficients k−(x, t), k+(x, t) are bounded above and below

0 < σ−
1 ≤ k−(x, t) ≤ σ−

2 , −l ≤ x ≤ 0, 0 ≤ t ≤ T,

0 < σ+
1 ≤ k+(x, t) ≤ σ+

2 , 0 ≤ x ≤ l, 0 ≤ t ≤ T,

q−(x, t) ≥ 0, q+(x, t) ≥ 0.

The functions u−(x, t), u+(x, t) satisfy the initial conditions

u−(x, 0) = u−0 (x), −l ≤ x ≤ 0, u+(x, 0) = u+0 (x), 0 ≤ x ≤ l, (29)

and boundary conditions

u−(−l, t) = φ−(t), u+(l, t) = φ+(t), 0 ≤ t ≤ T, (30)

where u−0 (x), u
+
0 (x, t), φ

−(t), φ+(t) are given real functions, φ−(−l) =
u−0 (−l), φ+(l) = u+0 (l).

The functions u−(x, t), u+(x, t) satisfy the following nonlocal contact condition as
well:

u−(0, t) = u+(0, t) = u0(t) =

m∑
i=1

γ−i u
−(ξ−i , t) +

n∑
j=1

γ+j u
+(ξ+j , t) + Φ0(t),

0 ≤ t ≤ T, (31)

where

− 1 < ξ−m < ξ−m−1 < · · · < ξ−1 < 0 < ξ+1 < ξ+2 < · · · < ξ+n ,

γ−i > 0, γ+i > 0,

m∑
i=1

γ−i +

n∑
j=1

γ+j ≤ 1 (32)

and Φ0(t) is a given real function.

When the conditions (8) and the corresponding requirements, imposed on the
initial data of problem (27)-(31) are met, we prove theorems on the existence and
uniqueness of a regular solution, as well as we formulate an algorithm for the nu-
merical solution of this problem.

4. Uniqueness of a solution of Problem (27)-(31)

Theorem 4.1 : Let the conditions, under which a regular solution to problem (27)-
(31) exists and inequality (32) be met, then this solution is unique.
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Proof : Suppose the opposite, that is, suppose there are two solutions to the prob-
lem u−(x, t), u+(x, t) and v−(x, t), v+(x, t). Let us consider the functions

z−(x, t) = u−(x, t)− v−(x, t), z+(x, t) = u+(x, t)− v+(x, t).

Then these functions are solutions to the following problem

∂z−

∂t
=

∂

∂x

(
k−(x, t)

∂z−

∂x

)
− q−(x, t)z−(x, t) = 0, −l < x < 0, 0 < t ≤ T, (33)

∂z+

∂t
=

∂

∂x

(
k+(x, t)

∂z+

∂x

)
− q+(x, t)z+(x, t) = 0, 0 < x < l, 0 < t ≤ T, (34)

z−(x, 0) = 0, −l < x < 0, z+(x, 0) = 0, 0 < x < l, (35)

z−(−l, 0) = 0, z+(l, 0) = 0, 0 ≤ t ≤ T, (36)

z−(0, t) = z+(0, t) = z0(t) =

m∑
i=1

γ−i z
−(ξ−i , t) +

n∑
j=1

γ+j z
+(ξ+j , t), 0 ≤ t ≤ T. (37)

Using equality (37), the following estimate can be obtained:

max
0≤t≤T

| z0(t) |≤ max
1≤i≤m
0≤t≤T

| z−(ξ−i , t) |
m∑
i=1

γ−i + max
1≤j≤n
0≤t≤T

| z+(ξ+j , t) |
n∑

j=1

γ+j

≤ max

 max
1≤i≤m
0≤t≤T

| z−(ξ−i , t) |; max
1≤j≤n
0≤t≤T

| z+(ξ+j , t) |


 m∑

i=1

γ−i +

n∑
j=1

γ+j

 .

Given the condition (32), one can write

max
0≤t≤T

| z0(t) |≤ max
1≤i≤m
0≤t≤T

| z−(ξ−i , t) | or max
0≤t≤T

| z0(t) |≤ max
1≤j≤n
0≤t≤T

| z+(ξ+j , t) | .

And this means that either the function z−(x, t) does not reach its maximum at the
border of region (−l ≤ x ≤ 0, 0 ≤ t ≤ T ), or the function z+(x, t) does not reach
its maximum at the border of region (0 ≤ x ≤ l, 0 ≤ t ≤ T ), which contradicts the
principle of maximum [29]. Then, given the conditions (35), 36), we can conclude
that z−(x, t) = 0 (−l ≤ x ≤ 0, 0 ≤ t ≤ T ) and z+(x, t) = 0 (0 ≤ x ≤ l, 0 ≤ t ≤ T ).�
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5. The iterative process for solving Problem (27)-(31)

First, assume that there exists a regular solution to problem (27)-(31), and to solve
the problem, consider the following iterative process

[
∂u−

∂t

](k)
=

[
∂

∂x

(
k−(x, t)

∂u−

∂x

)](k)
− q−(x, t)

[
u−
](k)

+ f−(x, t),

− l < x < 0, 0 < t ≤ T, (38)

[
∂u+

∂t

](k)
=

[
∂

∂x

(
k+(x, t)

∂u+

∂x

)](k)
− q+(x, t)

[
u+
](k)

+ f+(x, t),

0 < x < l, 0 < t ≤ T, (39)

[
u−(x, 0)

](k)
= u−0 (x), −l ≤ x ≤ 0,

[
u+(x, 0)

](k)
= u+0 (x), 0 ≤ x ≤ l, (40)

[
u−(−l, t)

](k)
= φ−(t),

[
u+(l, t)

](k)
= φ+(t), 0 ≤ t ≤ T, (41)

[
u−(0, t)

](k)
=
[
u+(0, t)

](k)
= [u0(t)]

(k) =

m∑
i=1

γ−i
[
u−(ξ−i , t)

](k−1)

+

n∑
j=1

γ+j

[
u+(ξ+j , t)

](k−1)
+Φ0(t), 0 ≤ t ≤ T, (42)

where k=0,1,2, and
[
u−(ξ−i , t)

](−1)
= 0, i = 1,m,

[
u+(ξ+j , t)

](−1)
= 0, j = 1, n.

Theorem 5.1 : If there exists a regular solution of problem (27)-(31) and condi-
tions (32) are met, then the iterative process (38)-(42) converges to this solution at
the rate of infinitely decreasing geometric progression.

Proof : For the error[
z−(x, t)

](k)
=
[
u−(x, t)

](k) − u−(x, t), −l ≤ x ≤ 0, 0 ≤ t ≤ T,

[
z+(x, t)

](k)
=
[
u+(x, t)

](k) − u+(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ T,

where u−(x, t), u+(x, t) are the solutions of (27)-(31), we receive the following prob-
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lem:

[
∂z−

∂t

](k)
=

[
∂

∂x

(
k−(x, t)

∂z−

∂x

)](k)
− q−(x, t)

[
z−
](k)

,

− l < x < 0, 0 < t ≤ T, (43)

[
∂z+

∂t

](k)
=

[
∂

∂x

(
k+(x, t)

∂z+

∂x

)](k)
− q+(x, t)

[
z+
](k)

,

0 < x < l, 0 < t ≤ T, (44)

[
z−(x, 0)

](k)
0, −l ≤ x ≤ 0,

[
z+(x, 0)

](k)
= 0, 0 ≤ x ≤ l,[

z−(−l, t)
](k)

= 0,
[
z+(l, t)

](k)
= 0, 0 ≤ t ≤ T, (45)

[
z−(0, t)

](k)
=
[
z+(0, t)

](k)
= [z0(t)]

(k) =

m∑
i=1

γ−i
[
z−(ξ−i , t)

](k−1)

+

n∑
j=1

γ+j

[
z+(ξ+j , t)

](k−1)
, 0 ≤ t ≤ T, (46)

If we use the Schwartz lemma, we can write

max
1≤i≤m
0≤t≤T

| [z−(ξ−i , t)]
(k−1) |≤ q− max

0≤t≤T
| [z0(t)](k) |,

max
1≤j≤n
0≤t≤T

| [z+(ξ+j , t)]
(k−1) |≤ q+ max

0≤t≤T
| [z0(t)](k) |,

where 0 < q− < 1, 0 < q+ < 1.

We will use the non-local contact condition

max
0≤t≤T

| [z0(t)](k) |≤ max
1≤i≤m
0≤t≤T

| [z−(ξ−i , t)]
(k−1) |

m∑
i=1

γ−i

+ max
1≤j≤n
0≤t≤T

| [z+(ξ+j , t)]
(k−1) |

n∑
j=1

γ+j ≤ Q max
0≤t≤T

| [z0(t)](k−1) |, (47)
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where Q = q−
∑m

i=1 γ
−
i + q+

∑n
j=1 γ

+
j .

Given the condition (32), we can conclude that 0 ≤ Q ≤ 1. Then we get

lim
k→∞

[z0(t)]
(k) = 0.

Thus, if there exists a solution to problem (27)-(31), then based on the principle of
maximum we get

max
−l≤x≤0
0≤t≤T

| [u−(x, t)](k) − u−(x, t) |= O
(
Qk
)
,

max
0≤x≤l
0≤t≤T

| [u+(x, t)](k) − u+(x, t) |= O
(
Qk
)
.

�

Remark 5.2 : The iterative process (38)-(42) gives us the opportunity to reduce the
solution of the problem (27)-(31) to a sequence of solutions to the Cauchy-Dirichlet
problems for equations of the parabolic type with variable coefficients. Thus, one
can obtain an algorithm for the numerical solution of the problem (27)-(31).

6. Existence of a regular solution

Now we prove the existence of a regular solution to problem (27)-(31).

We will use the iterative process (38)-(42). Introduce the notations

[
ε−(x, t)

](k)
=
[
u−(x, t)

](k) − [u−(x, t)](k−1)
,

[
ε+(x, t)

](k)
=
[
u+(x, t)

](k) − [u+(x, t)](k−1)
,

It is evident that the functions [ε−(x, t)]
(k)

and [ε+(x, t)]
(k)

are the solutions to
problem (43)-(46). Then, similar to the estimate (47), we get the following inequality

max
0≤t≤T

| [ε0(0, t)](k) |≤ Q max
0≤t≤T

| [ε0(0, t)](k−1) |, 0 < Q < 1.

And this means that

u
(k)
0 (t)− u

(k−1)
0 → 0, if k → ∞.

Thus, we get that the sequence
{
u
(k)
0 (t)

}
uniformly converges. Then based on

Harnack’s theorem [29] function [u−(x, t)](k) and [u+(x, t)](k), respectively in areas
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(−l ≤ x ≤ 0, 0 ≤ t ≤ T ), (0 ≤ x ≤ l, 0 ≤ t ≤ T ), converges to functions u−(x, t)
and u+(x, t), which are the solution to problem (27)-(31).

Thus, we proved the following theorem:

Theorem 6.1 : If f−(x, t), f+(x, t), k−(x, t), k+(x, t), q−(x, t), q+(x, t) suffi-
ciently smooth functions, then there exists a regular solution to problem (27)-(31).

7. Numerical example

We consider the following problem as an example: find the function u(x, t) in the
area {(x, t) | 0 ≤ x ≤ 1, 0 ≤ t ≤ T}, T = 6:

u(x, t) =

{
u−(x, t), if 0 ≤ x ≤ 0.5, 0 ≤ t ≤ 6

u+(x, t), if 0.5 ≤ x ≤ 1, 0 ≤ t ≤ 6,

which satisfies the equations

∂u−

∂t
=

∂

∂x

(
(1 + 2x)

∂u−

∂x

)
+ f−(x, t), 0 < x < 0.5, 0 < t ≤ T,

∂u+

∂t
=

∂

∂x

(
(1 + x)

∂u+

∂x

)
+ f+(x, t), 0.5 < x < 1, 0 < t ≤ T,

the conditions

u−(x, 0) = 0, 0 ≤ x ≤ 0.5, u+(x, 0) = 0, 0.5 ≤ x ≤ 1,

u−(0, t) = 0, u+(1, t) = 0, 0 ≤ t ≤ T,

and the nonlocal contact condition

u(0.5, t) = 0.25u−(0.25, t) + 0.25u+(0.75, t) +
169

256
(1− e−t), 0 ≤ t ≤ T,

where

f−(x, t) = e−t(−120+417x+1611x2−3040x3−100x4)+8(15−51x−210x2+400x3),

f+(x, t) =
16

3
e−t(2 + 4x− 11x2 − 16x3 − x4) +

32

3
(−1− 2x+ 6x2 + 8x3).

The exact solution of this problem is

u(x, t) =

{
(100x(1− x)(0.3− x)2(1− e−t), 0 ≤ x ≤ 0.5, 0 ≤ t ≤ T,
16
3 x

2(1− x2)(1− e−t), 0.5 ≤ x ≤ 1, 0 ≤ t ≤ T.
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Figure 1. Exact solution for different values of t.

To solve this problem, we consider the following iteration process:

∂[u−](k)

∂t
=

∂

∂x

(
(1 + 2x)

∂[u−](k)

∂x

)
+ f−(x, t), 0 < x < 0.5, 0 < t ≤ T,

∂[u+](k)

∂t
=

∂

∂x

(
(1 + x)

∂[u+](k)

∂x

)
+ f+(x, t), 0.5 < x < 1, 0 < t ≤ T,

[u−(x, 0)](k) = 0, 0 ≤ x ≤ 0.5, [u+(x, 0)](k) = 0, 0.5 ≤ x ≤ 1,

[u−(0, t)](k) = 0, [u+(l, t)](k) = 0, 0 ≤ t ≤ 3,

and the nonlocal contact condition

[u(0.5, t)](k) = 0.25[u−(0.25, t)](k−1)+

+ 0.25[u+(0.75, t)](k−1) +
169

256
(1− e−t), 0 ≤ t ≤ T,

where k = 1, 2, . . . and the initial values for u(k)(x, t) are equal to 0.
Below one can see the figures of approximate solution and respective absolute

error for k = 1 and k = 7.

The absolute error decreases as O(Qk), where Q = q+
m∑
i=1

β+
i + q−

n∑
j=1

β−
j < 1/4

for this example, and 0 < q−, q+ < 1.
The figure below compares the absolute error (C-norm) with its theoretical value
(1/4)k

We considered the case when γ−i > 0, γ+i > 0,
m∑
i=1

γ−i +
n∑

j=1
γji

+ < 1.
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Figure 2. Approximate solution and absolute errors for k = 1, k = 7, for different t.

Figure 3. The relative error,
∥uexact−uappr∥C

∥uexact∥C
versus iteration k.

Figure 4. Absolute error (numerical) and Qk (theoretical) versus iteration k.

Let us consider the example with nonlocal condition, where
m∑
i=1

γ−i +
n∑

j=1
γ+j =
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1, T = 3 and the nonlocal condition has the form:

[u(0.5, t)](k) = 0.5[u−(0.25, t)](k−1)+

+ 0.5[u+(0.75, t)](k−1) +
41

128
(1− e−t), 0 ≤ t ≤ T,

where k = 1, 2, . . . and the initial values for u(k)(x, t) are equal to 0. In this case the
convergence is achieved as well:

Table 1. Relative error
Iteration k Relative error Relative error,%

2 0.39321 39.32
4 0.10602 10.6
6 0.02982 2.98
8 0.00805 0.81
10 0.002460 0.25
12 0.00093 0.09

Figure 5. The relative error,
∥uexact−uappr∥C

∥uexact∥C
versus iteration k.

8. Conclusion

The present article investigates a new type of the nonlocal contact problem for
parabolic equations. In section 2, the method of separation of variables is used
for one dimensional parabolic equation with constant coefficients to construct the
analytic solution of a given nonlocal contact problem and provide the existence and
uniqueness of a regular solution.
In section 3, for an equation with variable coefficients the existence and unique-

ness of the solution of a nonlocal contact problem is proved. A convergent iterative
procedure is constructed to find the numerical solution of the considered problem.
In sections 3-6, for an equation with variable coefficients the existence and unique-

ness of the solution of a nonlocal contact problem is proved and the convergent
iterative procedure is constructed to find the numerical solution of the considered
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problem. For the equation with variable coefficients convergence is achieved under

the more general conditions
m∑
i=1

γ−i +
n∑

j=1
γ+j ≤ 1. The technique used in the present

article can also be applied for the problems with elliptic type equations.
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