РАЦИОНАЛЬНАЯ ЭКВИВАЛЕНТНОСТЬ АЛГЕБР, ЕЕ «КЛОНОВЫЕ» ОБОБЩЕНИЯ И «КЛОНОВАЯ» КАТЕГОРИЧНОСТЬ А. Г. Пинус

Аннотация. С любой универсальной алгеброй $\mathfrak{A} = \langle A; \sigma \rangle$ тем или иным естественным образом связаны различные клоны функций на множестве A. Простейший и минимальный из них — клон $\mathrm{Tr}(\mathfrak{A})$ термальных функций алгебры \mathfrak{A} — замыкание совокупности сигнатурных функций этих алгебр относительно оператора суперпозиции. Совпадение подобных клонов (с точностью до сопряжения биекциями основных множеств алгебр) порождает различные отношения эквивалентности на универсальных алгебрах, первой в ряду которых является отношение рациональной эквивалентности, введенное A. И. Мальцевым. Рассмотрению подобных «клоновых» эквивалентностей между алгебрами произвольных сигнатур и посвящена данная работа.

Ключевые слова: клон функций, рациональная эквивалентность алгебр, производные структуры алгебр, клоновая категоричность алгебр.

§ 1. «Клоновые» эквивалентности

Понятие рациональной эквивалентности универсальных алгебр принадлежит А. И. Мальцеву [1]. Одним из первых примеров подобных алгебр были булевы алгебры и соответствующие им ассоциативные идемпотентные кольца с единицей.

Для любой универсальной алгебры $\mathfrak{A}=\langle A;\sigma\rangle$ сигнатуры σ через $\mathrm{Tr}(\sigma)$ обозначим совокупность всех термов сигнатуры σ , а через $\mathrm{Tr}(\mathfrak{A})$ — совокупность всех термальных функций алгебры \mathfrak{A} . Алгебры $\mathfrak{A}=\langle A;\sigma_1\rangle$ и $\mathfrak{B}=\langle A;\sigma_2\rangle$ сигнатур соответственно σ_1 и σ_2 называются рационально эквивалентными ($\mathfrak{A}\sim^r\mathfrak{B}$), если существует биекция φ множества A на множество B такая, что имеют место включения:

$$\varphi f(\varphi^{-1}(x_1), \dots, \varphi^{-1}(x_n)) \in \operatorname{Tr}(\mathfrak{B})$$

для любой сигнатурной функции f алгебры ${\mathfrak A}$ и

$$\varphi^{-1}g(\varphi(x_1),\ldots,\varphi(x_n)) \in \operatorname{Tr}(\mathfrak{A})$$

для любой сигнатурной функции g алгебры \mathfrak{B} .

Очевидно, что эти включения равносильны условию

$$\varphi\operatorname{Tr}(\mathfrak{A})\varphi^{-1}=\{\varphi h(\varphi^{-1}(x_1),\ldots,\varphi^{-1}(x_n))\mid h\in\operatorname{Tr}(\mathfrak{A})\}=\operatorname{Tr}(\mathfrak{B}).$$

Также в [1] А. И. Мальцевым доказан следующий критерий рациональной эквивалентности алгебр. Здесь через $\mathfrak{M}(\mathfrak{A})$ обозначено многообразие, порожденное алгеброй \mathfrak{A} , для любого многообразия \mathfrak{M} через $\overrightarrow{\mathfrak{M}}$ — категория, объектами которой являются \mathfrak{M} -алгебры, а морфизмами — любые гомоморфизмы

одних \mathfrak{M} -алгебр в другие. При этом две подобные категории $\overrightarrow{\mathfrak{M}}$ и $\overrightarrow{\mathfrak{N}}$ натирально изомор ϕ ны тогда и только тогда, когда существует изомор ϕ изм категории $\overrightarrow{\mathfrak{M}}$ на категорию $\overrightarrow{\mathfrak{N}}$ (как частичных полугрупп), коммутирующий со стирающими функторами категорий $\overrightarrow{\mathfrak{M}}$ и $\overrightarrow{\mathfrak{N}}$ в категорию множеств.

Теорема Мальцева. Для любых двух алгебр $\mathfrak{A} = \langle A; \sigma_1 \rangle$ и $\mathfrak{B} = \langle B; \sigma_2 \rangle$ следующие условия равносильны:

- (а) \mathfrak{A} и \mathfrak{B} рационально эквивалентны;
- (б) существует натуральный изоморфизм φ категории $\mathfrak{M}(\mathfrak{A})$ на категорию $\mathfrak{M}(\mathfrak{B})$ такой, что $\varphi(\mathfrak{A})=\mathfrak{B}$.

При расширении совокупностей термальных функций до тех или иных естественных и представляющих определенный интерес совокупностей функций, связанных с рассматриваемыми алгебрами, понятие рациональной эквивалентности допускает соответствующие обобщения.

Напомним понятия условно термальной функции, позитивно условно термальной для алгебры \mathfrak{A} функции, введенные в работах автора [2,3] (подробнее о них см., к примеру, [4,5]). Под условием $J(\bar{x})$ (позитивным условием) сигнатуры σ будем понимать любую конечную совокупность равенств и неравенств (равенств) между термами этой сигнатуры, зависящими от переменных \bar{x} . Конечная совокупность $\{J_1(\bar{x}),\dots,J_k(\bar{x})\}$ условий (позитивных условий) называется *полной*, если формула $\bigvee_{i\leq k}J_i(\bar{x})$ общезначима, а для $i\neq j$ формулы $(J_i(\bar{x})\&J_j(\bar{x}))$ попарно несовместны (если формула $\bigvee_{i\leq k}J_i(\bar{x})$ общезначима).

Условные (позитивно условные) термы для алгебры 🎗 строятся из простейших термов с помощью той же индукции, что и обычные термы, с добавлением еще одного индуктивного шага: если $\{J_1(\bar{x}),\ldots,J_k(\bar{x})\}$ — некоторая полная система условий (позитивных условий) и $t_1(\bar{x}),\dots,t_k(\bar{x})$ — некоторая система условных (позитивно условных) термов для алгебры $\mathfrak A$ и для i,j < k выполнено $\mathfrak{A} \models \forall \bar{x}(J_i(\bar{x}) \& J_i(\bar{x}) \rightarrow t_i(\bar{x}) = t_i(\bar{x})), \text{ TO}$

$$t(\bar{x}) = \begin{cases} J_1(\bar{x}) \to t_1(\bar{x}) \\ \dots \\ J_m(\bar{x}) \to t_m(\bar{x}) \end{cases}$$

также является условным (позитивно условным) термом для 🎗. При этом значение соответствующей условно термальной (позитивно условно термальной) ϕy нкции $t^{\mathfrak{A}}(\bar{x})$ на элементах \bar{a} из алгебры \mathfrak{A} определяется следующим образом: если $\mathfrak{A}\models J_i(\bar{a}),$ то $t^{\mathfrak{A}}(\bar{a})=t_i^{\mathfrak{A}}(\bar{a}).$ Условный (позитивно условный) терм $t(\bar{x})$ имеет нормальную форму, если введенный выше (новый по сравнению с определением понятия терма) индукционный шаг при построении $t(\bar{x})$ либо не встречается вовсе, либо является последним. Через $\mathrm{CT}(\mathfrak{A})$, $\mathrm{PCT}(\mathfrak{A})$ будем далее обозначать совокупности всех условно термальных, позитивно условно термальных для алгебры 🎗 функций. Имеют место следующие включения для любых алгебр \mathfrak{A} :

$$\operatorname{Tr}(\mathfrak{A}) \subseteq \operatorname{PCT}(\mathfrak{A}) \subseteq \operatorname{CT}(\mathfrak{A}).$$

Алгебры $\mathfrak{A}=\langle A;\sigma_1\rangle,\ \mathfrak{B}=\langle B;\sigma_2\rangle$ называются [6,7] условно рационально (позитивно условно рационально) эквивалентными $\mathfrak{A} \sim^{cr} \mathfrak{B} (\mathfrak{A} \sim^{pcr} \mathfrak{B})$, если существует биекция φ множества A на множество B такая, что

$$\varphi \operatorname{CT}(\mathfrak{A})\varphi^{-1} = \operatorname{CT}(\mathfrak{B}) \quad (\varphi \operatorname{PCT}(\mathfrak{A})\varphi^{-1} = \operatorname{PCT}(\mathfrak{B})),$$

или, иначе, с точностью до сопряжения биекцией φ сигнатурные функции алгебры $\mathfrak A$ являются условно термальными (позитивно условно термальными) для $\mathfrak B$ и обратно — с точностью до сопряжения биекцией φ^{-1} .

В силу определения отношений $\sim^r, \sim^{pcr}, \sim^{cr}$ и включений $\mathrm{Tr}(\mathfrak{A}) \subseteq \mathrm{PCT}(\mathfrak{A})$ $\subseteq \mathrm{CT}(\mathfrak{A})$ имеют место следующие импликации для любых алгебр \mathfrak{A} и \mathfrak{B} :

$$\mathfrak{A} \sim^r \mathfrak{B} \to \mathfrak{A} \sim^{pcr} \mathfrak{B} \to \mathfrak{A} \sim^{cr} \mathfrak{B}.$$

Стандартным набором производных структур, связанных с универсальной алгеброй $\mathfrak A$ служат: Sub $\mathfrak A$, Con $\mathfrak A$ — решетки подалгебр и соответственно конгруэнций этой алгебры; Aut $\mathfrak A$ — группа автоморфизмов алгебры $\mathfrak A$; End $\mathfrak A$, Iso $\mathfrak A$, Ihm $\mathfrak A$ — полугруппы эндоморфизмов, внутренних изоморфизмов и внутренних гомоморфизмов алгебры $\mathfrak A$. Напомним, что *внутренним изоморфизмом* (гомоморфизмом) алгебры $\mathfrak A$ называется любой изоморфизм (гомоморфизм) между ее подалгебрами. В силу того, что производные структуры алгебр в конечном счете могут быть определены их термальными, а не только сигнатурными функциями (а также в силу равносильности условий (а) и (б) из приведенной выше теоремы $\mathfrak A$. И. Мальцева), рациональная эквивалентность $\mathfrak A$ \sim $\mathfrak B$ (с помощью биекции φ) влечет попарное совпадение (с точностью до биекции φ) решеток Sub $\mathfrak A$, Sub $\mathfrak B$, Con $\mathfrak A$, Con $\mathfrak B$, групп Aut $\mathfrak A$, Aut $\mathfrak B$ и полугрупп End $\mathfrak A$, End $\mathfrak B$, Iso $\mathfrak A$, Ihm $\mathfrak A$, Ihm $\mathfrak B$ соответственно.

Пример двухэлементной полурешетки $\mathfrak{A}_1 = \langle \{0,1\}; \vee \rangle$ и двухэлементной решетки $\mathfrak{A}_1 = \langle \{0,1\}; \vee, \wedge \rangle$ демонстрирует, что равенства $\operatorname{Sub}\mathfrak{A}_1 = \operatorname{Sub}\mathfrak{A}_2$, $\operatorname{Con}\mathfrak{A}_1 = \operatorname{Con}\mathfrak{A}_2$, $\operatorname{Aut}\mathfrak{A}_1 = \operatorname{Aut}\mathfrak{A}_2$, $\operatorname{End}\mathfrak{A}_1 = \operatorname{End}\mathfrak{A}_2$, $\operatorname{Iso}\mathfrak{A}_1 = \operatorname{Iso}\mathfrak{A}_2$, $\operatorname{Ihm}\mathfrak{A}_1 = \operatorname{Ihm}\mathfrak{A}_2$ не влекут, вообще говоря, рациональную эквивалентность алгебр \mathfrak{A}_1 и \mathfrak{A}_2 (так как $\wedge \notin \operatorname{Tr}(\mathfrak{A}_1)$).

В [8, 9] доказано, что функция $f(x_1, \ldots, x_n)$, определенная на основном множестве A конечной или равномерно локально конечной и конечной сигнатуры (в последнем случае) алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ является условно термальной (позитивно условно термальной) для \mathfrak{A} тогда и только тогда, когда 1) подалгебры алгебры \mathfrak{A} замкнуты относительно функции f, 2) f коммутирует со всеми внутренними изоморфизмами (гомоморфизмами) алгебры \mathfrak{A} .

В силу того, что для двухэлементной нижней полурешетки $\mathfrak{A}_1 = \langle \{0,1\}; \wedge \rangle$ и двухэлементной решетки $\mathfrak{A}_2 = \langle \{0,1\}; \wedge, \vee \rangle$ имеет место равенство $\mathrm{Ihm}\,\mathfrak{A}_1 = \mathrm{Ihm}\,\mathfrak{A}_2$, получаем $\mathrm{PCT}(\mathfrak{A}_1) = \mathrm{PCT}(\mathfrak{A}_2)$, а так как $\vee \not\in \mathrm{Tr}(\mathfrak{A}_1)$, имеем $\mathrm{Tr}(\mathfrak{A}_1) \not= \mathrm{Tr}(\mathfrak{A}_2)$. Тем самым эти алгебры являются примером позитивно условно рационально эквивалентных алгебр, не являющихся рационально эквивалентными, т. е., вообще говоря, $\mathfrak{A} \sim^{pcr} \mathfrak{B} \to \mathfrak{A} \sim^r \mathfrak{B}$.

Рассмотрим пару алгебр $\mathfrak{A} = \langle A \cup B; f \rangle$ и $\mathfrak{A} = \langle A \cup B; g, h \rangle$ где A и B — дизъюнктные множества мощности 4 и 2 соответственно. При этом f, g, h — одноместные функции, $\langle A; f \rangle$, $\langle A; g \rangle$ — циклы длины 4, $\langle B; f \rangle$, $\langle B; h \rangle$ — циклы длины 2, функция g тождественна на B, а h — на A. Тогда очевидно, что $\mathrm{Ihm}\,\mathfrak{A} \neq \mathrm{Ihm}\,\mathfrak{B}$ и, значит, $\mathfrak{A} \nsim^{pcr}\,\mathfrak{B}$. В то же время $\mathrm{Iso}\,\mathfrak{A} = \mathrm{Iso}\,\mathfrak{B}$ и, следовательно, $\mathfrak{A} \sim^{cr}\,\mathfrak{B}$. Тем самым, вообще говоря, $\mathfrak{A} \sim^{cr}\,\mathfrak{B} \not\to \mathfrak{A} \sim^{pcr}\,\mathfrak{B}$.

Отметим также, что, как известно (см., к примеру, [10]), для любой алгебры $\mathfrak A$ имеет место равенство $\mathrm{CT}(\mathfrak A)=\mathrm{Tr}(\mathfrak A^d)$, где $\mathfrak A^d$ — обогащение алгебры $\mathfrak A=\langle A;\sigma\rangle$ функцией d(x,y,z)-дискриминатора на множестве A:

$$d(x,y,z) = \left\{egin{array}{ll} z, & ext{если } x=y, \ x, & ext{если } x
eq y. \end{array}
ight.$$

Тем самым $\mathfrak{A} \sim^{cr} \mathfrak{B}$ имеет место тогда и только тогда, когда $\mathfrak{A}^d \sim^r \mathfrak{B}^d$. В [11] доказано существование алгебр \mathfrak{A} таких, что клон функций $\operatorname{PCT}(\mathfrak{A})$ не является расширением клона $\operatorname{Tr}(\mathfrak{A})$ с помощью какой-либо одной функции и тем самым отношение $\mathfrak{A} \sim^{pcr} \mathfrak{B}$ не может быть сведено к отношению $\mathfrak{A}' \sim^r \mathfrak{B}'$ ни для каких обогащений \mathfrak{A}' , \mathfrak{B}' алгебр \mathfrak{A} и \mathfrak{B} конечным числом функций.

Понятие неявной операции для универсальной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ (аналог введенного Эйленбергом и Шутценберже [12] понятия неявной операции для псевдомногообразий) введено в работе автора [13].

Функция $f(x_1,...,x_n)$, определенная на основном множестве A алгебры $\mathfrak{A}=\langle A;\sigma
angle$, называется $\mathit{неявной}$ $\mathit{onepaque\'u}$ на $\mathfrak{A},$ если 1) подалгебры алгебры \mathfrak{A} замкнуты относительно f, 2) f коммутирует со всеми внутренними гомоморфизмами алгебры 🎗. Таким образом, в случае либо конечности 🎗, либо равномерной локальной конечности 🎗 и конечности ее сигнатуры неявные операции на 🎗 суть позитивно условно термальные функции для 🎗. В общем случае (как показано в [13]) неявные операции на $\mathfrak A$ являются так называемыми ∞ -позитивно условно термальными для \mathfrak{A} . ∞ -Позитивно условные термы (∞ -условные термы) определяются той же индукцией, что и позитивно условные (условные) термы со снятием ограничений на конечность в определениях позитивного условия (условия) и полной системы позитивных условий (условий). При этом определение ∞ -позитивно условно (∞ -условно) термальных функций для ∞ -позитивно условных (∞ -условных) термов проводится так же, как определение позитивно условно термальных (условно термальных) функций для позитивно условных (условных) термов. Через $IO(\mathfrak{A})$ обозначим клон всех неявных операций на основном множестве алгебры Д. Очевидны включения

$$\mathrm{Tr}(\mathfrak{A})\subseteq\mathrm{PCT}(\mathfrak{A})\overset{\subseteq}{\subseteq}\mathrm{CT}(\mathfrak{A})\\ \subseteq\mathrm{IO}(\mathfrak{A})\ .$$

Пусть $\mathfrak{A} = \langle A; \cdot \rangle$ — бесконечная локально конечная полугруппа, порядки циклических подполугрупп которой не ограничены в совокупности. Тогда одноместная функция f(x) на A такая, что f(x) — идемпотент полугруппы, порожденной элементом x, является неявной операцией для \mathfrak{A} . В то же время без труда замечается, что $f \notin \mathrm{PCT}(\mathfrak{A})$, т. е. включение $\mathrm{PCT}(\mathfrak{A}) \subseteq \mathrm{IO}(\mathfrak{A})$, вообще говоря, собственное.

Заметим также, что клоны $CT(\mathfrak{A})$ и $IO(\mathfrak{A})$, вообще говоря, несравнимы по включению. Действительно, пусть $\mathfrak{A} = \langle A; \sigma \rangle$ — произвольная алгебра с некоторой неодноэлементной подалгеброй, являющейся эндоморфным образом алгебры \mathfrak{A} . Пусть этот эндоморфизм не является биекцией. Тогда, как замечено выше, d (функция дискриминатора) условно термальная для \mathfrak{A} , но она не коммутирует с указанным выше эндоморфизмом, т. е. $CT(\mathfrak{A}) \nsubseteq IO(\mathfrak{A})$ в этом случае. Столь же легко непосредственно замечается, что в приведенном выше примере локально конечной полугруппы \mathfrak{A} с не ограниченными в совокупности порядками циклических подполугрупп функция f(x) является неявной операцией на \mathfrak{A} , но $f \notin CT(\mathfrak{A})$. Таким образом, $IO(\mathfrak{A}) \nsubseteq CT(\mathfrak{A})$ в общем случае.

Аналогично понятию неявной операции на алгебре $\mathfrak A$ введем понятие абстрактной операции на $\mathfrak A$. Абстрактной (сохраняемой изоморфизмами) операцией над алгеброй $\mathfrak A$ назовем любую функцию $f(x_1,\ldots,x_n)$ на множестве A такую, что 1) подалгебры алгебры $\mathfrak A$ замкнуты относительно f,2) f коммутирует со всеми внутренними изоморфизмами алгебры $\mathfrak A$. Таким образом, в случае конечности (либо равномерной локальной конечности и конечности сигнатуры) алгебры $\mathfrak A$ абстрактные операции над $\mathfrak A$ суть ее условно термальные функции.

Через $AO(\mathfrak{A})$ обозначим совокупность всех абстрактных операций над алгеброй \mathfrak{A} .

Подобно тому, как неявные операции над $\mathfrak A$ определимы с помощью ∞ -позитивно условных термов, абстрактные операции над $\mathfrak A$ определимы ∞ -условными термами сигнатуры σ . Для любых элементов a_1,\ldots,a_n алгебры $\mathfrak A$ через $D_{\bar a}(x_1,\ldots,x_n)$ обозначим диаграмму алгебры $\langle a_1,\ldots,a_n\rangle_{\mathfrak A}$ (подалгебры алгебры $\mathfrak A$, порожденной элементами a_1,\ldots,a_n) такую, что $\mathfrak A \models D_{\bar a}(a_1,\ldots,a_n)$. Иначе говоря, $D_{\bar a}(x_1,\ldots,x_n)$ — это конъюнкция всевозможных равенств и неравенств между термами $t_1(x_1,\ldots,x_n)$ и $t_2(x_1,\ldots,x_n)$ сигнатуры алгебры $\mathfrak A$, которые (равенства и неравенства) истинны в алгебре $\mathfrak A$ на элементах a_1,\ldots,a_n .

Тем самым $\mathfrak{A} \models D_{\bar{a}}(b_1,\ldots,b_n)$ для $b_1,\ldots,b_n \in A$ тогда и только тогда, когда существует изоморфизм φ алгебры $\langle a_1,\ldots,a_n\rangle_{\mathfrak{A}}$ на алгебру $\langle b_1,\ldots,b_n\rangle_{\mathfrak{A}}$ такой, что $\varphi(a_i)=b_i$ для $i=1,\ldots,n$. Пусть $\mathrm{Tr}^n(\sigma)$ — совокупность всех термов сигнатуры σ от переменных x_1,\ldots,x_n , а $\mathrm{T}^n(\mathfrak{A})$ — совокупность всех типов изоморфизма $\langle \langle a_1,\ldots,a_n\rangle_{\mathfrak{A}},a_1,\ldots,a_n\rangle$ -алгебр $\langle a_1,\ldots,a_n\rangle_{\mathfrak{A}}$, обогащенных константами a_1,\ldots,a_n . Под типом изоморфизма алгебры традиционно понимается некоторый представитель класса всех изоморфных между собой алгебр.

Пусть ψ — произвольное отображение множества $\mathrm{T}^n(\mathfrak{A})$ в множество $\mathrm{Tr}^n(\mathfrak{A})$. Через $\Phi_{\psi}(x_1,\ldots,x_n)$ обозначим следующую схему:

$$& & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

называемую далее ∞ -условным термом сигнатуры σ для алгебры $\mathfrak A$. Через ∞ -СТг $(\sigma,\mathfrak A)$ обозначим совокупность всех подобных ∞ -условных термов. С каждым ∞ -условным термом $\Phi_{\psi}(x_1,\ldots,x_n)$ для алгебры $\mathfrak A$ естественным образом свяжем определенную на A ∞ -условно термальную функцию $\Phi_{\psi}^{\mathfrak A}(x_1,\ldots,x_n)$: для $b_1,\ldots,b_n\in A$, если $\mathfrak A\models D_{\bar a}(b_1,\ldots,b_n)$, то

$$\Phi_\psi^{rak{Al}}(b_1,\ldots,b_n)=\psi(\langle\langle a_1,\ldots,a_n
angle_{rak{Al}},a_1,\ldots,a_n
angle)(b_1,\ldots,b_n).$$

Через ∞ -CT($\mathfrak A$) обозначим совокупность всех ∞ -условно термальных функций для алгебры $\mathfrak A$.

Без труда непосредственно замечается равенство $AO(\mathfrak{A}) = \infty$ - $CT(\mathfrak{A})$ и включения $CT(\mathfrak{A}) \subset AO(\mathfrak{A})$, $IO(\mathfrak{A}) \subset AO(\mathfrak{A})$.

Утверждение 1. Имеет место следующая диаграмма, вообще говоря, собственных включений на связанных c алгеброй $\mathfrak{A} = \langle A; \sigma \rangle$ клонах функций на множестве A:

$$\mathrm{Tr}(\mathfrak{A})\subseteq\mathrm{PCT}(\mathfrak{A})\overset{\subseteq}{\subseteq}\mathrm{CT}(\mathfrak{A})\overset{\subseteq}{\subseteq}\mathrm{AO}(\mathfrak{A}).$$

При этом включение $\mathrm{CT}(\mathfrak{A}) \cup \mathrm{IO}(\mathfrak{A}) \subseteq \mathrm{AO}(\mathfrak{A})$ собственное в общем случае и имеет место равенство $\mathrm{CT}(\mathfrak{A}) \cap \mathrm{IO}(\mathfrak{A}) = \mathrm{PCT}(\mathfrak{A}).$

Доказательство. Пусть $\mathfrak{A} = \langle A; f \rangle$ — моноунар, являющийся дизъюнктным объединением f-циклов C_n длины n для каждого натурального n. Тогда функция g(x), совпадающая на цикле C_n с функцией $f^{n-1}(x)$, очевидным образом входит в $AO(\mathfrak{A})$ и не является ни условно термальной, ни неявной операцией для \mathfrak{A} .

Пусть для некоторой алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ функция $f(x_1, \dots, x_n)$ условно термальная и одновременно является неявной операцией для \mathfrak{A} , т. е. в последнем случае коммутирует со всеми внутренними гомоморфизмами этой алгебры.

Пусть

$$t(x_1,\ldots,x_n) = \left\{ egin{array}{ll} J_1(ar x)
ightarrow t_1(ar x) \ \ldots & \ldots \ J_m(ar x)
ightarrow t_m(ar x) \end{array}
ight.$$

— нормальная форма (см. [4,5]) условного терма сигнатуры σ , определяющего функцию f на \mathfrak{A} . Здесь $\{J_i(\bar{x}) \mid i \leq m\}$ — дизъюнктная система условий (конечных наборов равенств и неравенств между термами сигнатуры σ от переменных x_1, \ldots, x_n). При этом

$$\mathfrak{A} \models \forall \bar{x} \left(\bigvee_{i=1}^m J_i(\bar{x}) \right).$$

Пусть $J_i^+(\bar x)$ — совокупность термальных равенств, входящих в $J_i(\bar x)$, а $J_i^-(\bar x)$ — совокупность отрицаний термальных равенств, входящих в $J_i(\bar x)$, т. е. $J_i(\bar x) = J_i^+(\bar x) \cup J_i^-(\bar x)$. При этом $t_i(\bar x)$ — термы сигнатуры σ . Рассмотрим схему

$$t'(x_1,\ldots,x_n) = \begin{cases} J_1^+(\bar{x}) \to t_1(\bar{x}) \\ \dots \\ J_m^+(\bar{x}) \to t_m(\bar{x}). \end{cases}$$

Очевидно, что

$$\mathfrak{A} \models \forall \bar{x} \left(\bigvee_{i=1}^{m} J_{i}^{+}(\bar{x}) \right),$$

а так как $f(x_1,\ldots,x_n)$ коммутирует со всеми внутренними гомоморфизмами алгебры $\mathfrak{A},$ для любых $i\neq j$

$$\mathfrak{A} \models \forall \bar{x}(J_i^+(\bar{x})\&J_i^+(\bar{x}) \to t_i(\bar{x}) = t_j(\bar{x})).$$

Тем самым $t'(x_1,\ldots,x_n)$ является позитивно условным термом для алгебры \mathfrak{A} , при этом для любых $b_1,\ldots,b_n\in A$

$$f(b_1,\ldots,b_n)=t(b_1,\ldots,b_n)=t'(b_1,\ldots,b_n),$$

т. е. $f \in PCT(\mathfrak{A})$. Тем самым равенство $CT(\mathfrak{A}) \cap IO(\mathfrak{A}) = PCT(\mathfrak{A})$ доказано. \square

Алгебры $\mathfrak{A} = \langle A; \sigma_1 \rangle$ и $\mathfrak{B} = \langle A; \sigma_2 \rangle$ называются (см. [13]) неявно эквивалентными, если существует биекция φ множества A на B такая, что φ IO(\mathfrak{A}) $\varphi^{-1} = \text{IO}(\mathfrak{B})$, или, иначе, φ -сопряжения сигнатурных функций алгебры \mathfrak{A} являются неявными операциями на \mathfrak{B} и φ^{-1} -сопряжения сигнатурных функций алгебры \mathfrak{B} — неявными операциями на \mathfrak{A} . Через $\mathfrak{A} \sim^i \mathfrak{B}$ обозначим неявную эквивалентность алгебр \mathfrak{A} и \mathfrak{B} . В силу определения неявных операций и того, что Sub \mathfrak{A} отождествима с решеткой идемпотентов полугруппы Ihm \mathfrak{A} , отношение $\mathfrak{A} \sim^i \mathfrak{B}$ равносильно сопряженности полугрупп Ihm \mathfrak{A} и Ihm \mathfrak{B} с помощью некоторой биекции φ множества A на B.

Алгебры $\mathfrak{A} = \langle A; \sigma_1 \rangle$ и $\mathfrak{B} = \langle B; \sigma_2 \rangle$ назовем абстрактно эквивалентными ($\mathfrak{A} \sim^a \mathfrak{B}$), если существует биекция φ множества A на множество B такая, что φ АО(\mathfrak{A}) $\varphi^{-1} = \text{AO}(\mathfrak{B})$ или, иначе, φ -сопряжения сигнатурных функций алгебры \mathfrak{A} являются абстрактными операциями на \mathfrak{B} , а φ^{-1} -сопряжения сигнатурных функций алгебры \mathfrak{B} — абстрактными операциями на \mathfrak{A} . По определению абстрактных операций отношение $\mathfrak{A} \sim^a \mathfrak{B}$ равносильно сопряженности полугрупп Іѕо \mathfrak{A} и Іѕо \mathfrak{B} с помощью некоторой биекции φ множества A на B.

В силу отмеченных выше включений между клонами $\mathrm{Tr}(\mathfrak{A}), \mathrm{PCT}(\mathfrak{A}), \mathrm{CT}(\mathfrak{A}),$ $\mathrm{IO}(\mathfrak{A})$ и $\mathrm{AO}(\mathfrak{A})$ имеет место

Утверждение 2. Справедлива следующая диаграмма между отношениями $\sim^r, \sim^{pcr}, \sim^{cr}, \sim^i, \sim^a$:

$$rac{rac{rac{a}{2}}{2} \sim^{cr} rac{rac{a}{2}}{2}}{2} \sim^{cr} rac{a}{2}} \sim^{cr} rac{a}{2}$$

При этом все эти импликации, вообще говоря, собственные (т. е. необратимы).

Доказательство. Раньше эта необратимость была отмечена для всех импликаций, кроме $\mathfrak{A} \sim^{cr} \mathfrak{B} \to \mathfrak{A} \sim^a \mathfrak{B}$ и $\mathfrak{A} \sim^i \mathfrak{B} \to \mathfrak{A} \sim^a \mathfrak{B}$. Покажем необратимость последних, а также еще раз отметим, что для конечных и равномерно локально конечных алгебр \mathfrak{A} и \mathfrak{B} конечной сигнатуры имеет место

$$\mathfrak{A} \sim^{pcr} \mathfrak{B} \leftrightarrow \mathfrak{A} \sim^i \mathfrak{B}, \quad \mathfrak{A} \sim^{cr} \mathfrak{B} \leftrightarrow \mathfrak{A} \sim^a \mathfrak{B}.$$

Итак, покажем, что, вообще говоря,

$$\mathfrak{A} \sim^a \mathfrak{B} \nrightarrow \mathfrak{A} \sim^i \mathfrak{B}$$
 if $\mathfrak{A} \sim^a \mathfrak{B} \nrightarrow \mathfrak{A} \sim^{cr} \mathfrak{B}$.

Пусть A — дизъюнктное объединение множеств C_{2n} для любого натурального $n \geq 3$. Унарная функция f, заданная на A, обращает C_{2n} в циклы длины 2n. Пусть $a_i \in C_i$. Функцию g(x) определим на A так, что для $x \in C_i$ выполнено $g(x) = a_i$. Функцию h(x) определим на A так, что для $x = f^n(a_n)$ выполнено h(x) = f(x) и для иных $x \in C_{2n}$ имеет место h(x) = x. Рассмотрим алгебры $\mathfrak{A} = \langle A; f, g \rangle$ и $\mathfrak{B} = \langle A; f, h \rangle$. Очевидно, что они не имеют нетривиальных внутренних изоморфизмов. Стало быть, Iso $\mathfrak{A} = \text{Iso }\mathfrak{B}$ и $\mathfrak{A} \sim^a \mathfrak{B}$. В то же время если \mathfrak{B} не имеет нетривиальных внутренних гомоморфизмов, то у \mathfrak{A} таковые есть и тем самым $\mathfrak{A} \sim^i \mathfrak{B}$. Столь же необременительно заметить с помощью синтаксического анализа возможных нормальных форм условных термов алгебры \mathfrak{A} , что функция h не совпадает ни с каким сопряжением (биекцией A на A) условно термальных функций алгебры \mathfrak{A} , так что $\mathfrak{A} \sim^{cr} \mathfrak{B}$. \square

Среди различных результатов, связанных с «клоновыми» эквивалентностями алгебр (\sim^r , \sim^{pcr} , \sim^{cr} , \sim^i , \sim^a), укажем ряд работ автора об эквивалентности \sim^{cr} и, более того, об отношении сравнения алгебр, связанном с этой эквивалентностью (о так называемых «шкалах вычислимости»). Изложение большей части этих результатов и их обзор см., к примеру, в [4, 5, 14, 15]. Здесь лишь отметим, что число различных классов \sim^{cr} -эквивалентности n-элементных алгебр конечно для любого натурального n, для 2-элементных алгебр оно равно 5, для 3-элементных — 53, для 4-элементных — 22610 (просчитанный на компьютере результат Джипсона). В то же время число различных классов \sim^r -эквивалентности двухэлементных алгебр счетно (следствие теоремы Поста [16]), а число классов \sim^r -эквивалентности n-элементных алгебр (для натуральных $n \geq 3$) континуально (следствие теоремы Ю. И. Янова и А. А. Мучника [17]).

§ 2. «Клоновая» категоричность

При изучении «клоновых» эквивалентностей универсальных алгебр определенный интерес представляют экстремальные относительно этих эквивалентностей (хотя бы в своей фиксированной сигнатуре) алгебры.

Фиксируем некоторую сигнатуру σ , далее будем всегда предполагать ее конечной, и рассмотрим некоторую перестановку π ее символов, сохраняющую их местность (арность). Для любой алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ этой сигнатуры π -двойственной κ \mathfrak{A} алгеброй \mathfrak{A}^{π} назовем алгебру $\mathfrak{A} = \langle A; \pi(\sigma) \rangle$. Алгебру $\mathfrak{A} = \langle A; \sigma \rangle$ назовем \sim -категоричной (для некоторой «клоновой» эквивалентности \sim), если для любой алгебры $\mathfrak{B} = \langle B; \sigma \rangle$ из эквивалентности $\mathfrak{A} \sim \mathfrak{B}$, осуществляемой с помощью биекции φ , следует, что φ является изоморфизмом алгебры \mathfrak{A}^{π} на \mathfrak{B} для некоторой сохраняющей арности перестановки π на σ .

В подобном контексте будем далее говорить о рациональной, позитивно условно рациональной, условно рациональной, неявной и абстрактной категоричностях алгебр.

Напомним, что ϕ ункциональным клоном на множестве A называется любая совокупность функций на A, замкнутая относительно оператора суперпозиции и включающая в себя селекторные функции π_n^i ($i \leq n \in \omega$) вида $\pi_n^i(x_1,\ldots,x_n)=x_i$. Таким образом, совокупность функций F на множестве A является клоном, если $F=\operatorname{Tr}(\mathfrak{A})$ для некоторой алгебры $\mathfrak{A}=\langle A;\sigma\rangle$, в частности, для $\mathfrak{A} = \langle A; F \rangle$. Назовем клон F функций на множестве A условно замкнутым, если $F=\mathrm{CT}(\mathfrak{A})$ для некоторой алгебры $\mathfrak{A}=\langle A;\sigma\rangle$, в частности, для $\mathfrak{A} = \langle A; F \rangle$. Таким образом, клон F условно замкнут, если он замкнут относительно оператора построения условно термальных функций над функциями из F. Аналогичным образом определяются понятия позитивно условно замкнутого клона F функций на A, если $F = \text{PCT}(\langle A; F \rangle)$ и неявно (абстрактно) замкнутого клона F, если $F = IO(\langle A; F \rangle)$ ($F = AO(\langle A; F \rangle)$). Отображения $F \to \mathrm{PCT}(\langle A; F \rangle), \ F \to \mathrm{CT}(\langle A; F \rangle), \ F \to \mathrm{IO}(\langle A; F \rangle), \ F \to \mathrm{AO}(\langle A; F \rangle)$ являются операциями позитивно условного, условного, неявного, абстрактного замыканий на решетке L_A функциональных клонов на множестве A. Понятие paquональной категоричности алгебры $\mathfrak{A}=\langle A;\sigma \rangle$ означает, что клон $\mathrm{Tr}(\mathfrak{A})$ имеет единственную с точностью до перестановки входящих в нее функций порождающую клон $Tr(\mathfrak{A})$ совокупность функций — функции из σ с фиксированным, таким, как в σ , набором их арностей.

Понятие позитивно условно рациональной (условно рациональной, неявной, абстрактной) категоричности алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ означает, что позитивно условное замыкание $\mathrm{PCT}(\mathfrak{A})$ (условное $\mathrm{CT}(\mathfrak{A})$, неявное $\mathrm{IO}(\mathfrak{A})$, абстрактное $\mathrm{AO}(\mathfrak{A})$ замыкания) имеет единственную с точностью до перестановки, сохраняющей арности входящих в нее функций, порождающую его (как соответствующее замыкание) совокупность функций — функции из σ с данным, как в σ , набором их арностей.

В силу отмеченных выше в § 1 импликаций между рассматриваемыми здесь «клоновыми» эквивалентностями абстрактная категоричность алгебры $\mathfrak A$ влечет ее неявную и условно рациональную категоричности, каждая из последних влечет позитивно условно рациональную категоричность алгебры $\mathfrak A$, а она, в свою очередь, — рациональную категоричность $\mathfrak A$.

Заметим также, что очевидным образом любая из введенных выше «клоновых» категоричностей алгебры $\mathfrak A$ влечет «обобщенную коммутативность» последней, т. е. то, что для любой $f(x_1,\ldots,x_n)$ и любой перестановки π на $\{1,\ldots,n\}$ найдется сохраняющая арности перестановка ρ на σ такая, что на $\mathfrak A$ истинно тождество

$$\forall x_1, \dots, x_n(\rho(f)(x_1, \dots, x_n) = f(x_{\pi(1)}, \dots, x_{\pi(n)})).$$

Напомним также близкое понятие определимости алгебры своей производ-

ной структурой Sub, Con, Aut, Iso или Ihm. Алгебра $\mathfrak{A}=\langle A;\sigma\rangle$ определима, к примеру, своей решеткой подалгебр Sub \mathfrak{A} , если для любой алгебры $\mathfrak{B}=\langle A;\sigma\rangle$ равенство Sub $\mathfrak{A}=\operatorname{Sub}\mathfrak{B}$ влечет существование сохраняющей арности перестановки π на σ такой, что $\mathfrak{A}^{\pi}=\mathfrak{B}$. Вопросы определимости алгебр производными структурами при различных дополнительных ограничениях на алгебру относятся к традиционным вопросам как универсальной, так и классической алгебр (см., к примеру, [18–21]).

В качестве примера для подобных определимостей приведем следующий, довольно очевидный. Моноунар $\mathfrak{A} = \langle A; \sigma \rangle$ является Sub-определимым тогда и только тогда, когда любая связная его подалгебра либо не содержит циклов, либо является два-циклом.

Как источник примеров Ihm-определимых (неявно категоричных) алгебр докажем

Утверждение 3. Любая не линейно упорядоченная нижняя (верхняя) полурешетка является Ihm-определимой. Линейно упорядоченные полурешетки Ihm-определимыми не являются.

Доказательство. Действительно, если $\mathfrak{A} = \langle A; \wedge \rangle$ — нижняя линейно упорядоченная полурешетка, то для двойственной ей верхней полурешетки $\mathfrak{A}' = \langle A; \vee \rangle$ имеет место равенство $\limsup \mathfrak{A} = \limsup \mathfrak{A}'$, что и влечет неопределимость алгебры \mathfrak{A} полугруппой $\limsup \mathfrak{A}$.

С другой стороны, пусть $\mathfrak{A}=\langle A;\wedge\rangle$ — некоторая нижняя полурешетка и a,c — пара несравнимых элементов из A, пусть $b=a\wedge c$. Без труда в силу наличия эндоморфизмов φ_1,φ_2 подполурешетки $\langle \{a,b,c\};\wedge\rangle$ таких, что $\varphi_1(a)=\varphi_1(b)=b,\ \varphi_1(c)=c,\ \varphi_2(c)=\varphi_2(b)=b,\ \varphi_2(a)=a,$ замечается Іhmопределимость операции \wedge на $\langle \{a,b,c\};\wedge\rangle$. Иначе говоря, существует единственная на $\{a,b,c\}$ полурешеточная операция с данной полугруппой внутренних гомоморфизмов. При этом $d\leq e$ для $d,e\in A$ в $\mathfrak A$ тогда и только тогда, когда существует внутренний изоморфизм ψ подполурешетки $\langle \{a,b\};\wedge\rangle$ на подполурешетку $\langle \{d,e\};\wedge\rangle$ такой, что $\psi(a)=e,\psi(b)=d$. Из этих замечаний следует в конечном итоге Ihm-определимость полурешетки $\mathfrak A$. \square

Утверждение 4. Имеет место следующая диаграмма, собственных (необратимых) импликаций и эквивалентностей между определимостями алгебр своими производными структурами и «клоновыми» категоричностями:

При этом, как уже не раз отмечалось выше, для конечных либо равномерно локально конечных алгебр конечной сигнатуры абстрактная (неявная) категоричность равносильна условно рациональной (позитивно условно рациональной) категоричности.

Доказательство. В доказательстве с учетом утверждения 2 нуждается лишь необратимость импликаций из утверждения 4.

В [21] доказана Іѕо-определимость группоида $\mathfrak{G}^3_{iso} = \langle \{a,b,c\};\cdot \rangle$ со следующей таблицей умножения:

Очевидно, что ту же решетку подалгебр имеет и группоид с таблицей умножения

Тем самым из Iso-определимости алгебр, вообще говоря, не следует их Sub-определимость.

Группа автоморфизмов трехэлементного группоида $\mathfrak{A} = \langle \{a,b,c\}; f(x,y) \rangle$ такого, что f(x,y) = x, совпадает с группой автоморфизмов группоида $\mathfrak{G}^3_{\rm iso}$, и, значит, Aut-определимость алгебр, вообще говоря, не следует из их Іsоопределимости.

Рассмотрим трехэлементную полурешетку $\mathfrak{A} = \langle \{a,b,c\}; \wedge \rangle$ такую, что a,c несравнимы и $a \wedge c = b$ (она Ihm-определима в силу утверждения 3), и трехэлементный идемпотентный группоид $\mathfrak{A}' = \langle \{a,b,c\}; \cdot \rangle$ такой, что $a \cdot c = c \cdot a = b,$ $a \cdot b = b \cdot a = a$ и $c \cdot b = b \cdot c = c$. Тогда непосредственно замечается, что Iso $\mathfrak{A} = \text{Iso}\,\mathfrak{A}'$ и, значит, полурешетка \mathfrak{A} не является Iso-определимой. Тем самым, вообще говоря, Imh-определимость (позитивно условно рациональная категоричность, так как \mathfrak{A} конечна) не влечет Iso-определимости (условно рациональной категоричности).

Покажем, что рациональная категоричность не влечет ни End-определимости, ни Con-определимости алгебр.

Действительно, наряду с указанным выше Іѕо-определимым (а, значит, и рационально категоричным) трехэлементным группоидом $\mathfrak{G}_{iso}^3 = \langle \{a,b,c\};\cdot \rangle$ рассмотрим группоид $\mathfrak{B} = \langle \{a,b,c\};* \rangle$ с таблицей умножения

Очевидно, что $\operatorname{End}\mathfrak{B}=\operatorname{End}\mathfrak{G}_{\mathrm{iso}}^3$, т. е. группоид $\mathfrak{G}_{\mathrm{iso}}^3$ рационально категоричен, но не End -определим.

Непосредственно проверяется простота (отсутствие нетривиальных конгруэнций) группоида $\mathfrak{G}^3_{\mathrm{iso}}$. Но трехэлементный группоид $\mathfrak{B}=\langle\{a,b,c\},\odot\rangle$ с таблицей умножения

также прост. Тем самым группоид $\mathfrak{G}^3_{\rm iso}$ рационально категоричен, но не Сопопределим. \square

Наконец покажем, что рациональная категоричность не влечет позитивно условно рациональной категоричности. Пусть $\mathfrak{A}=\langle A;f,h\rangle$ — биунар такой, что $A=\{a,b,0,1\}$ и f(a)=b, f(b)=a, f(0)=0, f(1)=1, h(0)=1, h(1)=0, h(a)=a, h(b)=b. Без труда непосредственно замечается рациональная категоричность алгебры \mathfrak{A} . Пусть функция g(x) определена на A позитивно условным для \mathfrak{A} термом

$$t(x) = \begin{cases} f(x) = x \to h(x) \\ h(x) = x \to f(x). \end{cases}$$

Тогда алгебра $\mathfrak{A}'=\langle A;g(x),h(x)\rangle$ позитивно условно рационально эквивалентна алгебре \mathfrak{A} , но $\mathfrak{A}'\neq\mathfrak{A}^\pi$ ни для какого $\pi\in \operatorname{Sym}\sigma$. Действительно, позитивно условный для \mathfrak{A}' терм

$$t'(x) = \left\{ egin{array}{l} h(x) = x
ightarrow g(x) \ g(x) = h(x)
ightarrow x \end{array}
ight.$$

определяет на A функцию f(x), т. е. \mathfrak{A} — пример рационально категоричной алгебры, не являющейся позитивно условно рационально категоричной. \square

Остается открытым вопрос о существовании алгебр (не являющихся равномерно локально конечными в случае конечности их сигнатур), которые условно рационально категоричны, но не абстрактно категоричны (позитивно условно рационально категоричны, но не неявно категоричны).

§ 3. Классы «клоново» категоричных алгебр фиксированной сигнатуры

В настоящем параграфе фиксируем некоторую конечную сигнатуру $\sigma = \langle f_1^{n_1}, \dots, f_m^{n_m} \rangle$, состоящую из функциональных символов f_i арности n_i . Рассмотрим вопросы строения классов рационально, позитивно условно рационально, условно рационально, неявно и абстрактно категоричных алгебр данной фиксированной сигнатуры σ .

Через $\mathrm{Tr}^{\bar{\sigma}}$ обозначим совокупность всех конечных последовательностей термов $\bar{t}=\langle t_1(x_1,\ldots,x_{n_1}),\ldots,t_m(x_1,\ldots,x_{n_m})\rangle$, сигнатуры арности которых (термов t_i) совпадают с соответствующими арностями в последовательности σ (арностями символов f_i). Для любого терма $t(x_1,\ldots,x_k)$ сигнатуры σ через $\mathrm{Sub}_{\bar{\sigma}}^{\bar{t}}\,t(x_1,\ldots,x_k)$ обозначим результат одновременной подстановки в терм t термов t_i вместо символов f_i соответственно. Через $\mathrm{Sym}\,\sigma$ обозначим совокупность всех перестановок π символов, входящих в σ и сохраняющих арности этих символов, через f^π будем обозначать σ -символ $\pi(f)$ для $f \in \sigma, \pi \in \mathrm{Sym}\,\sigma$.

Для любых двух последовательностей $\bar{t}=\langle t_1,\dots,t_m\rangle,\ \bar{t}'=\langle t_1',\dots,t_m'\rangle$ из $\mathrm{Tr}^{\bar{\sigma}}$ через $\Phi_{\bar{t},\bar{t}'}$ обозначим формулу

$$\bigotimes_{i=1}^{m} \forall x_1, \dots, x_{n_i} \left(\operatorname{Sub}_{\bar{\sigma}}^{\bar{t}} t_i'(x_1, \dots, x_{n_i}) = f_i(x_1, \dots, x_{n_i}) \right)
\rightarrow \bigvee_{\pi \in \operatorname{Sym} \sigma} \left[\bigotimes_{j=1}^{m} \forall x_1, \dots, x_{n_j} \left(t_j(x_1, \dots, x_{n_j}) = f_j^{\pi}(x_1, \dots, x_{n_j}) \right) \right].$$

Через $T^{r,c}_{\sigma}$ обозначим совокупность всех формул вида $\Phi_{\bar{t},\bar{t}'}$, где $\bar{t},\bar{t}'\in \mathrm{Tr}^{\bar{\sigma}}(\sigma)$. В силу определения рациональной категоричности алгебр имеет место

Утверждение 5. Алгебра $\mathfrak{A} = \langle A; \sigma \rangle$ конечной сигнатуры σ является рационально категоричной тогда и только тогда, когда $\mathfrak{A} \models T^{r,c}_{\sigma}$.

Таким образом, совокупность рационально категоричных алгебр конечной сигнатуры σ является элементарным классом, допускающим аксиоматизацию как $\forall \exists$ -, так и $\exists \forall$ -формулами. В частности, имеет место

Следствие 1. Совокупность рационально категоричных алгебр конечной сигнатуры σ замкнута как относительно ультрапроизведений, так и относительно объединения возрастающих (по включению) цепей алгебр. Для любой рационально категоричной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ конечной сигнатуры σ существует ее счетная подалгебра $\mathfrak{B} = \langle B; \sigma \rangle$ такая, что все подалгебры $\mathfrak{C} = \langle C; \sigma \rangle$ алгебры \mathfrak{A} , лежащие между \mathfrak{B} и \mathfrak{A} , рационально категоричны.

В качестве примера рассмотрим описание рационально категоричных моноунаров, сигнатура которых состоит из одной единственной унарной функции f. В этом случае $\bar{t} = \langle f^n \rangle$ для некоторого $n \in \omega$ (при этом $f^{n+1}(x) = f(f^n(x))$ и $f^0(x) = x$), $\bar{t}' = \langle f^m(x) \rangle$ для некоторого $m \in \omega$ и $f^{\pi} = f$ для $\pi \in \operatorname{Sym} \sigma$. Тем самым

$$\Phi_{\bar{t},\bar{t}'} = \forall x (f^{mn}(x) = f(x)) \to \forall x (f^n(x) = f(x)). \tag{1}$$

Ранее перед утверждением 3 были описаны Sub-определимые моноунары как такие, у которых связные подалгебры либо не имеют циклов, либо являются циклами длины два. Как замечено выше, они будут и рационально категоричными. Тем самым остается рассмотреть моноунары $\mathfrak{A} = \langle A; f \rangle$, которые не Sub-определимы, т. е. содержат связные подалгебры с циклами длины, большей чем два. Будем говорить, что моноунар $\mathfrak{A} = \langle A; f \rangle$ имеет цепь длины два, если существует элемент $a \in A$ такой, что $a \neq f(a), f(a)$ не входит в алгебре $\mathfrak A$ в f-цикл и не является f-неподвижной точкой. Очевидно, что если моноунар $\mathfrak A$ содержит цепь длины два, то 🎗 рационально категоричный (никакой терм сигнатуры $\langle f \rangle$, кроме как f(x), не совпадает на элементе a с термом f(x)). Итак, будем считать, что 🎗 не содержит цепей длины два. Также очевидно, что если длины циклов в \mathfrak{A} не ограничены в совокупности, то посылки формул вида (1) могут быть истинны на $\mathfrak A$ только при $m,n\in\{0,1\}$. Но в этом случае и сами формулы вида (1) истинны на \mathfrak{A} , т. е. подобные моноунары рационально категоричны. Таким образом, остается рассмотреть случай, когда 🎗 не содержит цепей длины два и длины циклов в 🎗 ограничены в совокупности. Допустим, что среди циклов в $\mathfrak A$ есть цикл длины, большей двух, и пусть $p \geq 3$ — наименьшее общее кратное длин циклов, входящих в \mathfrak{A} . Так как (p-1)(p-1)=1+p(p-2)и в 🎗 нет цепей длины два,

$$\mathfrak{A} \models \forall x (f^{(p-1)(p-1)}(x) = f(x)).$$

При этом p > p - 1 > 1, но тогда, если бы на \mathfrak{A} были истинны формулы вида (1), т. е. \mathfrak{A} был бы рационально категоричен, то

$$\mathfrak{A}\models \forall x(f^{(p-1)}(x)=f(x))$$

в противоречие с выбором p. Тем самым подобные моноунары не рационально категоричны. Окончательно остается рассмотреть случай, когда $\mathfrak A$ не содержит цепей длины два и все циклы в $\mathfrak A$ имеют длину два, и столь же очевидно, что подобные моноунары рационально категоричны.

Тем самым имеет место

Следствие 2. Моноунар $\mathfrak{A} = \langle A; f \rangle$ рационально категоричный, если либо длины его циклов не ограничены в совокупности, либо он содержит цепь длины два, либо таких цепей в \mathfrak{A} нет, а все циклы в \mathfrak{A} имеют длину два.

Заметим, что в силу этого следствия подалгебры рационально категоричных алгебр не обязаны быть рационально категоричными.

Отметим также, что классы позитивно условно рационально и условно рационально категоричных алгебр фиксированной конечной сигнатуры $\sigma = \langle f_1^{n_1}, \dots, f_k^{n_k} \rangle$ элементарны. Доказательство, аналогичное доказательству утверждения 5, проведем только для случая условно рациональной категоричности.

Прежде всего заметим, что за счет рассмотрения фиктивных переменных можно считать функции из сигнатуры σ зависящими от одного и того же числа переменных. Кроме того, будем предполагать все рассматриваемые в дальней-шем условные термы заданными в нормальной форме (см., к примеру, [4]), т. е. в виде следующих схем:

$$t(x_1, ..., x_n) = \begin{cases} J_1(x_1, ..., x_n) \to t_1(x_1, ..., x_n) \\ ... & ... \\ J_m(x_1, ..., x_n) \to t_m(x_1, ..., x_n). \end{cases}$$
(2)

Более того, имея дело с конечным числом условных термов $t^1(x_1, \ldots, x_n)$, \ldots , $t^k(x_1, \ldots, x_n)$, очевидным образом можно считать, что числа m (число условий в их записи) для них совпадают, как совпадают и сами эти условия:

$$t^{j}(\bar{x}) = \begin{cases} J_{1}(\bar{x}) \to t_{1}^{j}(\bar{x}) \\ \dots \\ J_{m}(\bar{x}) \to t_{1}^{j}(\bar{x}) \end{cases}$$

$$(3)$$

при $1 \leq j \leq k$.

Через $CT^{\bar{\sigma}}(\sigma)$ обозначим совокупность всех конечных последовательностей $\bar{t}(t^1(\bar{x}),\ldots,t^k(\bar{x}))$ схем вида (3) сигнатуры σ .

Для последовательности $\bar{t} \in \mathrm{CT}^{\bar{\sigma}}(\sigma)$ через \bar{t}_s $(1 \leq s \leq m)$ обозначим последовательность $\langle t_s^1, \dots, t_s^k \rangle$ термов сигнатуры σ .

Для двух последовательностей $\bar{t}\langle t^1,\ldots,t^k\rangle,\,\bar{g}\langle g^1,\ldots,g^k\rangle$ из $\mathrm{CT}^{\bar{\sigma}}(\sigma),$ где

$$t^{i}(\bar{x}) = \begin{cases} J_{1}(\bar{x}) \to t_{1}^{i}(\bar{x}) \\ \dots & g^{i}(\bar{x}) = \begin{cases} J_{1}(\bar{x}) \to g_{1}^{i}(\bar{x}) \\ \dots & \vdots \\ J_{m}(\bar{x}) \to t_{m}^{i}(\bar{x}), \end{cases}$$

через $\Psi_{\bar{t},\bar{a}}$ обозначим формулу

$$\begin{split} \forall \bar{x} \left(\bigvee_{i=1}^m J_i(\bar{x}) \right) \& \forall \bar{x} \bigotimes_{i=1}^m \left(J_i(\bar{x}) \to \bigvee_{j=1}^m \operatorname{Sub}_{\bar{\sigma}}^{\bar{t}_i} J_i(\bar{x}) \right) \\ \& \forall \bar{x} \bigotimes_{i=1}^m \left(J_i(\bar{x}) \to \bigotimes_{l=1}^m \operatorname{Sub}_{\bar{\sigma}}^{\bar{t}_i} g_l^i(\bar{x}) = f_l(\bar{x}) \right) \\ \to \bigvee_{\pi \in \operatorname{Sym} \sigma} \left(\bigotimes_{i=1}^m \forall \bar{x} \left(J_i(\bar{x}) \to \bigotimes_{i=1}^m t_l^i(\bar{x}) = f_l^{\pi}(\bar{x}) \right) \right). \end{split}$$

Через $\mathbf{T}^{rc,c}_{\sigma}$ обозначим совокупность всех формул вида $\Psi_{\bar{t},\bar{g}},$ где $\bar{t},\bar{g}\in\mathrm{CT}^{\bar{\sigma}}(\sigma).$ Очевидно

Утверждение 6. Алгебра $\mathfrak{A} = \langle A; \sigma \rangle$ конечной сигнатуры σ условно рационально категорична тогда и только тогда, когда $\mathfrak{A} \models T_{\sigma}^{cr,c}$.

Аналогичным образом строится система элементарных формул $T^{pcr,c}_{\sigma}$ сигнатуры σ такая, что имеет место

Утверждение 7. Алгебра $\mathfrak{A} = \langle A; \sigma \rangle$ конечной сигнатуры σ позитивно условно рационально категорична тогда и только тогда, когда $\mathfrak{A} \models T^{pcr,c}_{\sigma}$.

В силу того, что формулы из $T^{pcr,c}_\sigma$ и $T^{cr,c}_\sigma$ эквивалентны как $\forall \exists$ -, так и $\exists \forall$ -формулам, вытекает

Следствие 3. Совокупность условно рационально (позитивно условно рационально) категоричных алгебр конечной сигнатуры σ замкнута как относительно ультрапроизведений, так и относительно объединения возрастающих (по включению) цепей алгебр. Для любой условно рационально (позитивно условно рационально) категоричной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ конечной сигнатуры σ существует ее не более чем счетная подалгебра $\mathfrak{B} = \langle B; \sigma \rangle$ такая, что все подалгебры $\mathfrak{C} = \langle C; \sigma \rangle$ алгебры \mathfrak{A} , лежащие между \mathfrak{B} и \mathfrak{A} , условно рационально (позитивно условно рационально) категоричны.

По аналогии с утверждениями 5 и 6 без особого труда выписываются формулы $\Psi_{t,\bar{g}}^{\mathrm{iso}}$, $\Psi_{t,\bar{g}}^{\mathrm{ihm}}$ языка $L_{\omega_1,\omega}$, аксиоматизирующие классы абстрактно категоричных (Іso-определимых) и неявно категоричных (Іhm-определимых) алгебр фиксированной конечной сигнатуры. Причем, как и выше, эти аксиомы могут быть записаны в виде как $\forall \exists$ -, так и $\exists \forall$ - $L_{\omega_1,\omega}$ -формул.

В [21] на основе неверно выписанной формулы $\Psi_{t,\bar{g}}^{\mathrm{iso}}$ ошибочно утверждалась наследственность класса абстрактно категоричных алгебр сигнатуры σ .

Действительно, рассмотрим сигнатуру σ , состоящую, к примеру, из двух одноместных функций $\langle f(x),g(x)\rangle$, и биунар $\mathfrak{A}_0\langle\{0,1\};\sigma\rangle$ такой, что $f(0)=f(1)=1,\ g(0)=0,\ g(1)=1.$ Очевидно, что \mathfrak{A} не абстрактно категоричный (Іso-определимый). К примеру, если $\mathfrak{A}_1=\langle\{0,1\};\sigma\rangle$ и $f(0)=f(1)=1,\ g(0)=g(1)=1,\ \text{то }\mathfrak{A}_0\neq\mathfrak{A}_1,\ \text{хотя Iso}\,\mathfrak{A}_0=\text{Iso}\,\mathfrak{A}_1.$ Пусть $\mathfrak{A}_2,\ldots,\mathfrak{A}_k$ — все иные с точностью до изоморфизма двухэлементные биунары, попарно не изоморфные между собой и такие, что $\text{Iso}\,\mathfrak{A}_i=\text{Iso}\,\mathfrak{A}_0\ (0\leq i\leq k)$ и \mathfrak{B} — дизъюнктное объединение алгебр $\mathfrak{A}_0,\mathfrak{A}_1,\ldots,\mathfrak{A}_k$. Без труда замечается, что \mathfrak{B} — абстрактно категоричная алгебра, содержащая подалгебру \mathfrak{A}_0 , не являющуюся таковой.

Тем не менее некоторая «ограниченная наследственность» для класса абстрактно категоричных алгебр имеет место.

Утверждение 8. Для любой абстрактно категоричной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$, любой ее подалгебры $\mathfrak{B} = \langle B; \sigma \rangle$ такой, что существует алгебра \mathfrak{D} , полугруппа Іѕо \mathfrak{D} которой сопряжена (некоторой биекцией) полугруппе Іѕо \mathfrak{B} и не изоморфная никакой алгебре вида \mathfrak{C}^{π} для $\mathfrak{C} \in \operatorname{Sub} \mathfrak{A}$, $\pi \in \operatorname{Sym} \sigma$, c полугруппой Іѕо \mathfrak{C} , сопряженной полугруппе Іѕо \mathfrak{B} , абстрактно категоричной будет и алгебра \mathfrak{B} .

Доказательство. Допустим противное. Пусть $\mathfrak{D} = \langle B; \sigma \rangle$ — алгебра такая, что Іѕо $\mathfrak{D} =$ Іѕо \mathfrak{B} и $\mathfrak{D} \ncong \mathfrak{C}^{\pi}$ ни для какого $\pi \in$ Ѕут σ и ни для какой $\mathfrak{C} \in$ Ѕиь \mathfrak{A} такой, что Іѕо \mathfrak{C} сопряжена с Іѕо \mathfrak{B} . Пусть Φ — совокупность всех внутренних изоморфизмов φ алгебры \mathfrak{A} таких, что $\mathrm{Dom}\,\varphi = B$. Определим новую σ -алгебру \mathfrak{A}' на множестве A следующим образом: если $g(x_1,\ldots,x_n) \in \sigma$ и $a_1,\ldots,a_n \in \varphi(B)$ для некоторого $\varphi \in \Phi$, то полагаем $g^{\mathfrak{A}'}(a_1,\ldots,a_n) = \varphi g^{\mathfrak{D}}(\varphi^{-1}(a_1),\ldots,\varphi^{-1}(a_n))$. Если же a_1,\ldots,a_n не входят ни в какое из множеств вида $\varphi(B)$, то полагаем $g^{\mathfrak{A}'}(a_1,\ldots,a_n) = g^{\mathfrak{A}}(a_1,\ldots,a_n)$. Непосредственно

проверяются корректность определения алгебры \mathfrak{A}' и то, что Iso $\mathfrak{A}' = \text{Iso }\mathfrak{A}$, но при этом $\mathfrak{A}' \neq \mathfrak{A}^{\pi}$ ни для какого $\pi \in \text{Sym } \sigma$, что противоречит предположению об абстрактной категоричности алгебры \mathfrak{A} . Утверждение доказано. \square

В силу отмеченной выше неверности утверждения о наследственности класса Iso-определимых алгебр доказательство единственности построенного в [21] трехэлементного Iso-определимого группоида $\mathfrak{G}_{\rm iso}^3$ (основанное на неверном предположении об отсутствии у таковых группоидов двухэлементных подгруппоидов ввиду отсутствия двухэлементных Iso-определимых группоидов) неверно и исправленная версия соответствующего утверждения из [21] должна выглядеть так: существует единственный с точностью до изоморфизма трехэлементный Iso-определимый группоид, не имеющий двухэлементных подгруппоидов.

Было бы интересно выяснить, насколько эта единственность трехэлементных Iso-определимых группоидов имеет место и без предположения об отсутствии у них двухэлементных подгруппоидов. Тем не менее утверждение следствия 2 из [21] о существовании сколь угодно больших конечных и бесконечных Iso-определимых группоидов (строящихся в [21] на основе группоида $\mathfrak{G}_{\rm iso}^3$) остается в силе.

ЛИТЕРАТУРА

- Мальцев А. И. Структурная характеристика некоторых классов алгебр // Докл. АН СССР. 1952. Т. 120, № 1. С. 29–32.
- Пинус А. Г. Об условных термах и тождествах на универсальных алгебрах // Вычислительные системы. 1996. Т. 156. С. 59–78.
- 3. Пинус А. Г. Внутренние гомоморфизмы и позитивно условные термы // Алгебра и логика. 2001. Т. 40, № 2. С. 158–173.
- Пинус А. Г. Условные термы и их применение в алгебре и теории вычислений. Новосибирск: Изд-во НГТУ, 2002.
- Пинус А. Г. Условные термы и их приложения в алгебре и теории вычислений // Успехи мат. наук. 2001. Т. 56, № 4. С. 35–72.
- Пинус А. Г. Исчисление условных тождеств и условно рациональная эквивалентность // Алгебра и логика. 1998. Т. 37, № 4. С. 432–459.
- 7. Пинус А. Г. Позитивно условные многообразия // Алгебра и теория моделей. Новосибирск: Изд-во НГТУ, 2001. Вып. 3. С. 99–106.
- Пинус А. Г. Характеризация условно термальных функций // Сиб. мат. журн. 1997.
 Т. 38, № 1. С. 161–165.
- Пинус А. Г. О функциях коммутирующих с полугруппами преобразований алгебр // Сиб. мат. журн. 2000. Т. 41, № 6. С. 1409–1418.
- **10.** *Пинус А.* Г. О рационально и условно рационально эквивалентных алгебрах // Алгебра и логика. 2002. Т. 41, № 3. С. 326–334.
- Pinus A. G. The positive and generalized discriminators don't exist // Discuss. Math., Gen. Algebra Appl. 2000. V. 20. P. 121–128.
- Eilenberg S., Schutzenberger M. P. On pseudovarieties // Adv. Math. 1976. V. 19, N 3. P. 413–465.
- 13. Пинус А. Г. Неявно эквивалентные универсальные алгебры // Сиб. мат. журн. 2012. Т. 53, № 5. С. 1077—1090.
- **14.** Пинус А. Г., Журков С. В. Шкалы потенциалов вычислимости конечных алгебр: результаты и проблемы // Фунд. и прикл. математика. 2003. Т. 9, № 3. С. 145–164.
- **15.** *Пинус А.* Γ . Шкала потенциалов вычислимости всех конечных алгебр // Сиб. мат. журн. 2007. Т. 48, № 3. С. 668–673.
- Post E. The two-valued iterative systems of mathematical logic // Princeton, NJ.: Princeton Univ. Press, 1941. (Ann. Math. Studies; V. 5).
- 17. Янов Ю. И., Мучник А. А. О существовании k-значных замкнутых классов, не имеющих конечного базиса // Докл. АН СССР. 1959. Т. 127, № 1. С. 144–146.
- Шеврин Л. Н., Овчинников А. Я. Полугруппы и их пополугрупповые решетки. Свердловск: Изд-во УрГУ, 1990, Ч. 1; 1991, Ч. 2.

- **19.** *Пинус А. Г.* Полные вложения категорий алгебраических систем и определимость модели полугруппой ее эндоморфизмов // Изв. вузов. Математика. 1982. № 1. С. 80–83.
- **20.** *Пинус А. Г.* Об определимости конечных алгебр производными структурами // Изв. вузов. Математика. 2001. N 4. С. 38–42.
- **21.** Π инус A. Γ . Определимость локально конечных и конечных алгебр полугруппами своих преобразований // Избранные вопросы алгебры. Барнаул: Изд-во АГУ, 2007. С. 173–198.

Cтатья поступила 26 марта 2012 г.

Пинус Александр Георгиевич Новосибирский гос. технический университет, пр. К. Маркса, 20, Новосибирск 630092 algebra@nstu.ru