УДК 514.763.3

ОБ ОДНОМ НОВОМ СЕМЕЙСТВЕ ПОЛНЫХ РИМАНОВЫХ МЕТРИК НА $S^3\times \mathbb{R}^4$ С ГРУППОЙ ГОЛОНОМИИ G_2

О. А. Богоявленская

Аннотация. Рассматривается деформация стандартной конусной метрики над $S^3 \times S^3$. Исследуется система нелинейных ОДУ первого порядка на функции, задающие деформацию метрики. Доказывается существование однопараметрического семейства полных римановых метрик с группой голономии G_2 , определенных на $S^3 \times \mathbb{R}^4$.

Ключевые слова: специальные группы голономии, асимптотически локально конические римановы метрики.

1. Введение

Работа является продолжением работы [1], в которой изучался специальный класс римановых многообразий с группой голономии G_2 . Основная идея данной статьи заключается в том, чтобы рассмотреть коническую метрику над римановым многообразием со специальной геометрией и деформировать ее так, чтобы разрешить особенность в вершине конуса. При этом за деформацию метрики отвечают функции $A_i(t)$, $B_i(t)$, зависящие от переменной, меняющейся вдоль образующей конуса. Так, если в качестве базы конуса рассмотреть пространство $M = S^3 \times S^3$, то деформированную метрику можно записать в виде

$$d\bar{s}^{2} = dt^{2} + \sum_{i=1}^{3} A_{i}(t)^{2} \left(\eta_{i} + \tilde{\eta_{i}}\right)^{2} + \sum_{i=1}^{3} B_{i}(t)^{2} \left(\eta_{i} - \tilde{\eta_{i}}\right)^{2}, \qquad (*)$$

где $\eta_i, \tilde{\eta_i}$ — базис из левоинвариантных 1-форм, описанный в п. 2, а функции $A_i(t), B_i(t)$ задают деформацию конусной метрики. В [2] выписана система дифференциальных уравнений, гарантирующая, что метрика $d\bar{s}^2$ имеет группу голономии, содержащуюся в G_2 .

В этой работе мы продолжаем исследование данного класса метрик, положив $A_2 = A_3$, $B_2 = B_3$ и рассмотрев отличное от [1] краевое условие, а именно, требуем, чтобы в вершине конуса обращались в нуль функции A_i , i = 1, 2, 3. Это приводит к тому, что риманова метрика ds^2 становится определенной на $S^3 \times \mathbb{R}^4$. Отметим, что в [2] (см. также [3–5]) рассмотрено такое же краевое

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 12–01–00124–а), Совета по грантам президента РФ и государственной поддержке ведущих научных школ (код проекта НШ–544.2012.1) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (соглашение № 8206 от 06.08.2012).

условие и найдено одно частное решение этой системы, определяющее метрику с группой голономии G_2 на $S^3 \times \mathbb{R}^4$, однако асимптотически она ведет себя иначе.

Основной результат работы можно сформулировать в виде теоремы.

Теорема. Для каждого параметра p < 0 существует полная риманова метрика вида (*) с группой голономии G_2 на $S^3 \times \mathbb{R}^4$ такая, что

$$p = \frac{12}{B_1^2(0)(A_1^{\prime\prime\prime}(0) - A_2^{\prime\prime\prime}(0))}$$

При $t \to \infty$ метрики данного семейства сколь угодно близко аппроксимируются прямым произведением $S^1 \times C(S^2 \times S^3)$, где $C(S^2 \times S^3)$ — конус над произведением сфер.

Точное определение аппроксимации в классе рассматриваемых метрик дано в п. 3. Заметим, что при $p = -\frac{1}{5}$ метрика (*) совпадает с метрикой, найденной в [2]. При $A_1(0) = A_2(0)$ метрика (*) совпадает с метрикой, найденной в [6], и асимптотически аппроксимируется конусом $C(S^3 \times S^3)$. Можно считать, что этот случай отвечает значению параметра $p = \pm \infty$.

2. G_2 -структура на конусе над $S^3 \times S^3$

В обозначениях и основных этапах конструкции *G*₂-структуры следуем работе [1].

Рассмотрим группу Ли G = SU(2) со стандартной биинвариантной метрикой $\langle X, Y \rangle = -\operatorname{tr}(XY)$, где $X, Y \in \operatorname{su}(2)$. На G рассмотрим три киллинговых векторных поля:

$$\xi^1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \xi^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \xi^3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Пусть $M = G \times G$, тогда на M возникает шесть киллинговых полей ξ^i , $\tilde{\xi}^i$, i = 1, 2, 3, касательных соответственно первому и второму множителю, и шесть двойственных 1-форм η_i , $\tilde{\eta}_i$. Рассмотрим конус $\overline{M} = \mathbb{R}_+ \times M$ с метрикой

$$dar{s}^2 = dt^2 + \sum_{i=1}^3 A_i(t)^2 (\eta_i + ilde{\eta}_i)^2 + \sum_{i=1}^3 B_i(t)^2 (\eta_i - ilde{\eta}_i)^2,$$

где $A_i(t)$ и $B_i(t)$ — положительные функции, определяющие деформацию стандартной конусной метрики.

Введя в рассмотрение ортонормированный корепер в метрике $d\bar{s}^2$:

$$e^1 = A_1(\eta_1 + ilde\eta_1), \quad e^2 = A_2(\eta_2 + ilde\eta_2), \quad e^3 = A_3(\eta_3 + ilde\eta_3),$$

$$e^4 = B_1(\eta_1 - \tilde{\eta}_1), \quad e^5 = B_2(\eta_2 - \tilde{\eta}_2), \quad e^6 = B_3(\eta_3 - \tilde{\eta}_3), \quad e^t = dt,$$

определим следующую 3-форму:

$$\Psi = e^{564} + e^{527} + e^{513} + e^{621} + e^{637} + e^{432} + e^{417}$$

где $e^{ijk} = e^i \wedge e^j \wedge e^k$. Форма Ψ задает G_2 -структуру на \overline{M} , которая является параллельной в случае выполнения уравнений

$$d\Psi = 0, \quad d * \Psi = 0. \tag{1}$$

В данной работе рассматриваем частный случай, когда $A_3 = A_2$, $B_3 = B_2$. Следующая лемма является результатом непосредственных вычислений. **Лемма 1.** Уравнения (1) равносильны следующей системе обыкновенных дифференциальных уравнений:

$$\frac{dA_1}{dt} = \frac{1}{2} \left(\frac{A_1^2}{A_2^2} - \frac{A_1^2}{B_2^2} \right), \quad \frac{dA_2}{dt} = \frac{1}{2} \left(\frac{B_2^2 - A_2^2 + B_1^2}{B_1 B_2} - \frac{A_1}{A_2} \right), \\
\frac{dB_1}{dt} = \frac{A_2^2 + B_2^2 - B_1^2}{A_2 B_2}, \quad \frac{dB_2}{dt} = \frac{1}{2} \left(\frac{A_2^2 - B_2^2 + B_1^2}{A_2 B_1} + \frac{A_1}{B_2} \right).$$
(2)

Доказательство. Пользуясь соотношениями

$$d\eta_i = -2\eta_{i+1} \wedge \eta_{i+2}, \quad d\tilde{\eta}_i = -2\tilde{\eta}_{i+1} \wedge \tilde{\eta}_{i+2},$$

где индексы i = 1, 2, 3 приводятся по модулю 3, доказанными в [7], можно вычислить $d\Psi$:

$$\begin{split} d\Psi &= \left(-4B_3A_3 + B_2A_3\frac{dA_1}{dt} + B_2A_1\frac{dA_3}{dt} + A_1A_3\frac{dB_2}{dt} \\ &+ B_2B_3\frac{dB_1}{dt} + B_1B_3\frac{dB_2}{dt} + B_1B_2\frac{dB_3}{dt} - B_3A_2\frac{dA_1}{dt} - B_3A_1\frac{dA_2}{dt} \\ &- A_2A_1\frac{dB_3}{dt} + B_1A_3\frac{dA_2}{dt} + B_1A_2\frac{dA_3}{dt} \\ &+ A_3A_2\frac{dB_1}{dt}\right)\eta_1 \wedge \eta_2 \wedge \tilde{\eta_3} \wedge dt + \dots + \left(-B_2A_3\frac{dA_1}{dt} - B_2A_1\frac{dA_3}{dt} - A_1A_3\frac{dB_2}{dt} \\ &+ B_2B_3\frac{dB_1}{dt} + B_1B_3\frac{dB_2}{dt} + B_1B_2\frac{dB_3}{dt} \\ &- B_3A_2\frac{dA_1}{dt} - B_3A_1\frac{dA_2}{dt} - A_2A_1\frac{dB_3}{dt} \\ &- B_1A_3\frac{dA_2}{dt} - B_1A_2\frac{dA_3}{dt} - A_3A_2\frac{dB_1}{dt}\right)dt \wedge \tilde{\eta_2} \wedge \tilde{\eta_1} \wedge \tilde{\eta_3}. \end{split}$$

(Мы приводим только часть выражения для $d\Psi$ в силу его громоздкости.) Тогда уравнение $d\Psi = 0$ приводит к четырем независимым обыкновенным дифференциальным уравнениям первого порядка на функции $A_i(t)$, $B_i(t)$, i = 1, 2, 3. Полагая здесь $A_3 = A_2$, $B_3 = B_2$, получаем три дифференциальных уравнения на функции $A_i(t)$, $B_i(t)$, i = 1, 2:

$$\begin{aligned} -4B_2A_2 + (B_2)^2\frac{dB_1}{dt} + 2B_1B_2\frac{dB_2}{dt} + 2B_1A_2\frac{dA_2}{dt} + (A_2)^2\frac{dB_1}{dt} &= 0, \\ 4B_1A_1 - 2(B_2)^2\frac{dB_1}{dt} - 4B_1B_2\frac{dB_2}{dt} + 4B_1A_2\frac{dA_2}{dt} + 2(A_2)^2\frac{dB_1}{dt} &= 0, \\ 4B_1A_1 - 4B_2A_2\frac{dA_1}{dt} - 4B_2A_1\frac{dA_2}{dt} - 4A_1A_2\frac{dB_2}{dt} &= 0. \end{aligned}$$

Рассматривая аналогично форму * Ψ и ее внешний дифференциал, получаем два дифференциальных уравнения на функции $A_i(t), B_i(t), i = 1, 2$:

$$-4A_1A_2^2 - 8A_2B_1B_2 + 4A_1B_2^2 + 8A_2B_2^2\frac{dA_2}{dt} + 8A_2^2B_2\frac{dB_2}{dt} = 0,$$

$$4A_1A_2^2 - 4A_2B_1B_2\frac{dA_1}{dt} - 4A_1B_1B_2\frac{dA_2}{dt} - 4A_1A_2B_2\frac{dB_1}{dt} - 4A_1A_2B_1\frac{dB_2}{dt} + 4A_1B_2^2 = 0.$$

Разрешая полученную систему линейных уравнений из пяти уравнений относительно производных неизвестных функций $A_i(t), B_i(t), i = 1, 2$, находим, что

$$\begin{split} \frac{dA_1}{dt} &= \frac{1}{2} \left(\frac{A_1^2}{A_2^2} - \frac{A_1^2}{B_2^2} \right), \quad \frac{dA_2}{dt} &= \frac{1}{2} \left(\frac{B_2^2 - A_2^2 + B_1^2}{B_1 B_2} - \frac{A_1}{A_2} \right), \\ \frac{dB_1}{dt} &= \frac{A_2^2 + B_2^2 - B_1^2}{A_2 B_2}, \quad \frac{dB_2}{dt} &= \frac{1}{2} \left(\frac{A_2^2 - B_2^2 + B_1^2}{A_2 B_1} + \frac{A_1}{B_2} \right). \end{split}$$

Лемма доказана.

При t = 0 имеем конусную особенность пространства \overline{M} , которая может быть разрешена заданием начальных значений функций A_i, B_i следующим образом.

ТИП 1. $B_1(0) = 0, B_2(0) \neq 0, A_i(0) \neq 0$. Этот случай подробно изучен в [1].

Тип 2. $A_i(0) = 0, B_i(0) \neq 0$. В этом случае происходит коллапс интегральных трехмерных сфер, порожденных векторными полями $\xi^i + \tilde{\xi}^i$. Эти сферы являются орбитами свободного действия $SU(2) = S^3$ на M, заданного соотношением

$$h = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in SU(2) : (U, V) \mapsto \left(\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} U, \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} V \right), \ |a|^2 + |b|^2 = 1.$$

Диффеоморфизм

$$\phi: M \to M: (U, V) \mapsto (V^{-1}U, V)$$

преобразует рассмотренное выше действие SU(2) в действие следующего вида:

$$h \in SU(2) : (U, V) \mapsto \left(U, \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} V\right).$$

Факторизация по действию SU(2) на втором сомножителе дает $S^3 \times \{*\}$. После затягивания в точку орбит этого действия при t = 0 в объемлющем пространстве $[0, \infty) \times G$, получаем произведение $S^3 \times \mathbb{R}^4$, где проколотое $\mathbb{R}^4 \setminus \{0\}$ расслаивается над открытым лучом $(0, \infty)$ на концентрические сферы S^3 . Таким образом, метрика $d\bar{s}^2$ на \overline{M} продолжается на пространство, гомеоморфное $S^3 \times \mathbb{R}^4$, обозначим его через \mathcal{M} .

Лемма 2. Для того чтобы метрика $d\bar{s}^2$ продолжалась до гладкой метрики на \mathcal{M} , необходимо и достаточно выполнение следующих условий:

- (1) $A_1(0) = A_2(0) = 0, |A'_1(0)| = |A'_2(0)| = \frac{1}{2};$
- (2) $B_1(0) = B_2(0) \neq 0, B'_1(0) = B'_2(0) = 0;$
- (3) функции A_i , B_i знакоопределены на промежутке $(0, \infty)$.

Доказательство почти не отличается от доказательства леммы 4 в [7]. Действительно, в [7] рассматривается конус над 3-сасакиевым многообразием M, обладающим структурой расслоения над четырехмерным многообразием (орбифолдом) со слоем S^3 . Сглаживание конуса заключается в стягивании слоя этого расслоения в точку при t = 0. У нас имеется конус над $S^3 \times S^3$, расслаивающимся над S^3 со слоем S^3 с тем же типом сглаживания особенности, размерность базы расслоения и ее специфика в доказательстве роли не играют. Таким образом, функция B в лемме 4 из [7] управляет диаметром базы при изменении t, у нас эту роль выполняет пара функций B_1, B_2 и наши условия (2), (3) отвечают условиям (2), (3) в лемме 4 из [7]. Далее, условие «схлопывания» сферы в точку в лемме 4 из [7] выглядит как $A_i(0) = 0, i = 1, 2, 3$, что полностью

554

отвечает нашим условиям $A_1(0) = A_2(0) = 0$. Осталось соотнести условия на производные. В [7] слой S^3 является сферой единичного радиуса и условия на производную A_i в точке t = 0 представляют собой условия гладкости метрики, записанной в сферической системе координат в \mathbb{R}^4 . В нашей ситуации, поля ξ^i имеют норму, равную $\sqrt{2}$. Кроме того, сферический слой в $S^3 \times S^3$ расположен диагонально, т. е. размер сферы S^3 надо домножить на $\sqrt{2}$. В итоге единичный репер на рассмотренном нами сферическом слое выглядит как $\frac{\eta_i + \eta_i}{2}$, значит, функции $2A_i$, i = 1, 2, отвечают сфере единичного размера и их производные в нуле должны быть равны единице, что и объясняет, почему наше условие (1) равносильно условию (1) леммы 4 из [7]. Лемма доказана.

В [2] для системы (2) найдено точное решение следующего вида (остальные решения семейства, найденного в [2], гомотетичны данному):

$$A_{1}(r) = \sqrt{\frac{(r-9/4)(r+9/4)}{(r-3/4)(r+3/4)}}, \quad A_{2}(r) = \frac{1}{\sqrt{3}}\sqrt{(r+3/4)(r-9/4)},$$

$$B_{1}(r) = 2r/3, \quad B_{2}(r) = \frac{1}{\sqrt{3}}\sqrt{(r-3/4)(r+9/4)},$$
(3)

где $r \ge 9/4$, и переменная r связана с t заменой

$$dt=rac{dr}{A_1(r)}, \quad tert_{r=rac{9}{4}}=0$$

Метрика (3) является полной метрикой с группой голономии G_2 на $S^3 \times \mathbb{R}^4$. Если рассмотреть случай $A_1 = A_2 = A_3 = A$, $B_1 = B_2 = B_3 = B$, то система (2) интегрируется в элементарных функциях и получаем другую полную метрику с группой голономии G_2 на $S^3 \times \mathbb{R}^4$:

$$d\bar{s}^{2} = \frac{dr^{2}}{1 - \frac{1}{r^{3}}} + \frac{r^{2}}{9} \left(1 - \frac{1}{r^{3}}\right) \sum_{i=1}^{3} \left(\eta_{i} + \tilde{\eta}_{i}\right)^{2} + \frac{r^{2}}{3} \sum_{i=1}^{3} \left(\eta_{i} - \tilde{\eta}_{i}\right)^{2}.$$
 (4)

Метрика (4) впервые построена в [6] (см. также [8]). Метрики (3) и (4) исчерпывают список известных явных решений системы (2), отвечающих полным римановым метрикам с группой голономии G_2 .

Если сделать формальную замену $r \to -r$ в решении (4), то получим следующее решение (2):

$$d\bar{s}^{2} = \frac{dr^{2}}{1 + \frac{1}{r^{3}}} + \frac{r^{2}}{9} \left(1 + \frac{1}{r^{3}}\right) \sum_{i=1}^{3} \left(\eta_{i} + \tilde{\eta}_{i}\right)^{2} + \frac{r^{2}}{3} \sum_{i=1}^{3} \left(\eta_{i} - \tilde{\eta}_{i}\right)^{2}.$$
 (5)

Решение (5) определено при $0 < r < \infty$, но не задает полную гладкую риманову метрику, поскольку имеет особенность при r = 0.

3. Семейство новых решений

Действуя аналогично [7], рассмотрим стандартное пространство \mathbb{R}^4 и обозначим через $R(t) \in \mathbb{R}^4$ вектор, состоящий из функций $A_1(t), A_2(t), B_1(t), B_2(t)$. Пусть $V : \mathbb{R}^4 \to \mathbb{R}^4 - функция от аргумента <math>R$, определенная правой частью системы (1) (функция V, конечно, определена лишь в области, где $A_i, B_i \neq 0$). Таким образом, система (1) имеет вид

$$\frac{dR}{dt} = V(R).$$

Пользуясь инвариантностью V относительно гомотетий \mathbb{R}^4 , сделаем замену: R(t) = f(t)S(t), где |S(t)| = 1, f(t) = |R(t)|, $S(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t), \alpha_4(t))$. Наша система распадается на «радиальную» и «тангенциальную» части:

$$\frac{dS}{du} = V(S) - \langle V(S), \quad S \rangle S = W(S), \tag{6}$$

$$\frac{1}{f}\frac{df}{du} = \langle V(S), S \rangle, \quad dt = f \, du. \tag{7}$$

Следовательно, нужно сначала решить автономную систему (6) на трехмерной сфере $S^3 = \left\{ (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \mid \sum_{i=1}^4 \alpha_i^2 = 1 \right\}$, и далее решения (2) находятся обычным интегрированием из уравнений (7).

Имеет место следующая

Лемма 3. Системы (2) и (6) допускают следующие симметрии:

$$(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) \mapsto (-\alpha_{1}, \alpha_{4}, \alpha_{3}, \alpha_{2}),$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (-\alpha_{1}(-u), \alpha_{2}(-u), \alpha_{3}(-u), -\alpha_{4}(-u)),$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (-\alpha_{1}(-u), -\alpha_{2}(-u), \alpha_{3}(-u), \alpha_{4}(-u)),$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (\alpha_{1}(u), \alpha_{2}(u), -\alpha_{3}(u), -\alpha_{4}(u)),$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (\alpha_{1}(u), -\alpha_{2}(u), -\alpha_{3}(u), \alpha_{4}(u)).$$

В силу леммы 2 для построения регулярной метрики на \mathcal{M} необходима траектория системы (6), выходящая из точки $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Остальные решения получаются из рассмотренного нами случая при помощи симметрий системы (6).

Для построения гладкой метрики на \mathscr{M} выполним раздутие сферы S^3 в точке $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Операция раздутия выглядит следующим образом. В окрестности точки S_0 рассмотрим локальные координаты $(\alpha_1, \alpha_2, \alpha_3 - \frac{1}{\sqrt{2}})$ и шар $B = \{(\alpha_1, \alpha_2, \alpha_3 - \frac{1}{\sqrt{2}}) \mid \alpha_1^2 + \alpha_2^2 + (\alpha_3 - \frac{1}{\sqrt{2}})^2 \le \varepsilon^2\}$ радиуса ε . Его пересечение с плоскостью $\alpha_3 = \frac{1}{\sqrt{2}}$ — это круг $U = \{(\alpha_1, \alpha_2) \mid \sum_{i=1}^2 \alpha_i^2 \le \varepsilon^2\}$ радиуса ε .

В Uвведем геодезическую систему координат, т. е. рассмотрим две координаты: радиальную $-\varepsilon < r < \varepsilon$ и тангенциальную $s \in S^1$, где $S^1 = \left\{ (\alpha_1, \alpha_2) \mid z \in S^1 \right\}$

 $\sum_{i=1}^{2} \alpha_i^2 = 1 \bigg\}.$ Таким образом, $(\alpha_1, \alpha_2) = rs.$ Рассмотрим произведение $(-\varepsilon, \varepsilon) \times S^1$ и действие группы \mathbb{Z}_2 на нем: $(r, s) \mapsto (-r, -s).$ Ясно, что действие свободно и получаем фактор-пространство $\widetilde{U} = (-\varepsilon, \varepsilon) \times S^1/\mathbb{Z}_2$, представляющее собой лист Мёбиуса. Сопоставление $\pm(r, s) \mapsto rs$ определяет гладкое отображение $\widetilde{U} \to U$, которое, очевидно, является диффеоморфизмом $\widetilde{U} \setminus P \to U \setminus S_0$, где $P = \{(r, s) \mid r = 0\}$ — вложенная в \widetilde{U} проективная прямая.

Удалим точку S_0 из окрестности U и приклеим \tilde{U} по построенному выше диффеоморфизму. Говорят, что полученное многообразие *получено из* S^3 *раздутием в точке* S_0 .

Обозначим через \tilde{S} сферу S^3 , раздутую в точке S_0 (заметим, что \tilde{S} можно представить как связную сумму сферы S^3 и вещественного проективного

пространства $\mathbb{R}P^3$). Нам потребуются локальные координаты в окрестности P. Рассмотрим $U_i = \{\pm(r,s) \mid \alpha_i \neq 0\}, i = 1, 2$. В окрестности U_i положим

$$lpha_i^i=lpha_i, \quad lpha_j^i=rac{lpha_j}{lpha_i}$$
для $i
eq j.$

Тем самым определили локальные координаты α_1^i, α_2^i на \tilde{U} в окрестности $U_i, i = 1, 2$. Дополним \tilde{U} до трехмерной окрестности точки S_0 , положив $\alpha_3^i = \alpha_3, i = 1, 2$.

Лемма 4. Для точки $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ существует однопараметрическое семейство траекторий системы (6), выходящих из S_0 в область $\alpha_2 \ge \alpha_1 > 0$.

Доказательство. Перенесем систему (6) на \tilde{S} , после чего проекции траекторий на S^3 будут доставлять необходимые решения. В силу предыдущих рассуждений и результатов леммы 2 мы должны исследовать траектории системы (6) на \tilde{S} , выходящие из точки $\alpha_1^2 = 1$, $\alpha_2^2 = 0$, $\alpha_3^2 = \frac{1}{\sqrt{2}}$. Пересчитаем поле W в окрестности U_2 в новых координатах. Для простоты положим $x = \alpha_1^2$, $y = \alpha_2^2$, $z = \alpha_3^2$. Тогда система (6) равносильна следующей:

$$\frac{dx}{dv} = W_1(xy, y, z) - xW_2(xy, y, z) = \widetilde{W}_1(x, y, z),$$

$$\frac{dy}{dv} = yW_2(xy, y, z) = \widetilde{W}_2(x, y, z),$$

$$\frac{dz}{dv} = yW_3(xy, y, z) = \widetilde{W}_3(x, y, z),$$
(8)

где $du = y \, dv$.

Непосредственно проверяется, что векторное поле \widetilde{W} обращается в нуль в точке $p = (1, 0, \frac{1}{\sqrt{2}})$. Рассмотрим линеаризацию системы (8) в окрестности этой точки:

$$rac{dx}{dv}=x,\quad rac{dy}{dv}=rac{1}{2}y,\quad rac{dz}{dv}=-3z.$$

Таким образом, в окрестности точки $p = (1, 0, \frac{1}{\sqrt{2}})$ существует поверхность, заметаемая траекториями системы (8), выходящими экспоненциально по переменной v из точки p. При этом данная поверхность в точке $p = (1, 0, \frac{1}{\sqrt{2}})$ касается двумерной плоскости, натянутой на первые два собственных вектора $e_1 = \{1, 0, 0\}$ и $e_2 = \{0, 1, 0\}$, а именно если рассмотреть фазовую плоскость с координатами $\tilde{x} = x - 1, \tilde{y} = y$, то в ней наши траектории представляют собой параболы $\tilde{y}^2 = 2p\tilde{x}$, выходящие параллельно выделенному направлению e_2 . Каждая такая парабола — параметризованная кривая $\gamma(v) = (\alpha e^v, \beta e^{\frac{v}{2}})$ или $\gamma(u) = (\frac{\alpha u^2}{4\beta^2}, \frac{u}{2}), \frac{d\gamma}{du} = (\frac{\alpha u}{2\beta^2}, \frac{1}{2})$ — ее вектор скорости, $\frac{d^2\gamma}{du^2} = (\frac{\alpha}{2\beta^2}, 0)$ — вектор ускорения. Отсюда $\frac{\alpha}{2\beta^2} = \frac{d^2x}{du^2}$.

Нетрудно посчитать, что

$$\frac{d^2x}{du^2} = f \frac{d}{dt} \left(f \frac{d}{dt} \left(\frac{A_1}{A_2} \right) \right) \Big|_{t=0} = \frac{1}{8} b_0^2 (a_1 - a_2),$$

где $b_0 = B_1(0) = B_2(0), a_1 = \frac{A_1^{\prime\prime\prime}(0)}{6}, a_2 = \frac{A_2^{\prime\prime\prime}(0)}{6}$. Тогда фокальный параметр параболы p находится из условия $2p = \frac{\beta^2}{\alpha}$ и получаем, что

$$p=rac{12}{B_1^2(0)(A_1^{\prime\prime\prime}(0)-A_2^{\prime\prime\prime}(0))}.$$

Отметим, что он однозначно (с точностью до гомотетии) определяет нашу траекторию. При этом если p < 0, то траектория выходит в область $\alpha_1 < \alpha_2$, если же p > 0, то — в область $\alpha_1 > \alpha_2$. Стоит отметить, что известные ранее частные решения (3) и (4) системы (1) в начальный момент времени также касаются вектора e_2 , при этом решение (4) представляет собой прямую $\tilde{x} = 0$ (можно считать, что это решение отвечает предельному значению $p = \pm \infty$), а решение (3) содержится в найденном семействе парабол $\tilde{y}^2 = 2p\tilde{x}$ и отвечает значению параметра p = -1/5.

Замечание. Напи рассуждения показывают, что существует семейство решений при p > 0, однако в данной работе мы не исследуем глобальное поведение соответствующих траекторий.

Тем самым в окрестности точки $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ существует однопараметрическое семейство траекторий системы (6), выходящее из точки S_0 за конечное время по переменной u, причем это семейство в точке S_0 касается плоскости, параллельной координатной плоскости $O\alpha_1\alpha_2$, и касательный вектор в начальный момент времени имеет вид $\{\alpha_1, \alpha_2, 0, 0\}$, где $\alpha_1 < \alpha_2$. Лемма доказана.

Следующая лемма доказана в [1].

Лемма 5. Стационарные решения системы (6) на S^3 исчерпываются следующим списком нулей векторного поля W с точностью до симметрий леммы 3:

$$\left(\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}\right), \quad \left(0, \frac{\sqrt{3}}{\sqrt{10}}, \frac{\sqrt{2}}{\sqrt{5}}, \frac{\sqrt{3}}{\sqrt{10}}\right)$$

ОПРЕДЕЛЕНИЕ. Точку $S \in S^3$, в которой поле W не определено, назовем условно стационарной, если существует вещественно-аналитическая кривая $\gamma(u)$ на S^3 , $u \in (-\varepsilon, \varepsilon)$, $\gamma(0) = S$, такая, что поле W определено во всех точках $\gamma(u)$, $u \in (-\varepsilon, \varepsilon)$, $u \neq 0$, непрерывно продолжается на всю кривую $\gamma(u)$, и $\lim_{u\to 0} W(\gamma(u)) = 0$.

Следующая лемма также была доказана в [7].

Лемма 6. Система (6) не имеет условно-стационарных решений на S^3 .

ОПРЕДЕЛЕНИЕ. Метрика $d\bar{s}^2$ называется *асимптотически локально конической*, если существуют функции $\tilde{A}_i(t)$, $\tilde{B}_i(t)$, линейные по t с точностью до сдвига, такие, что

$$\left|1-\frac{A_i}{\widetilde{A}_i}\right|\to 0, \ \left|1-\frac{B_i}{\widetilde{B}_i}\right|\to 0 \quad \text{при} \ t\to\infty.$$

Метрика, определяемая функциями $\widetilde{A}_i(t)$, $\widetilde{B}_i(t)$, называется локально конической.

Следующая лемма доказана в [7].

Лемма 7. Стационарным решениям системы (6) отвечают локально конические метрики на \overline{M} , а траекториям системы (6), асимптотически стремящимся к стационарным решениям, отвечают асимптотически локально конические метрики на \overline{M} .

Следующая лемма следует из непосредственного анализа систем (2) и (6).

Лемма 8. Если $S = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) -$ решение системы (6), то имеют место следующие соотношения:

$$\frac{d}{dt} \left(2A_1 A_2 B_2 - B_1 \left(B_2^2 - A_2^2 \right) \right) = 0, \tag{9}$$

$$\frac{d}{du} \left(\frac{\alpha_1 \alpha_2 \alpha_4}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)} \right) = \frac{\alpha_1 \alpha_3}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)}, \quad (10)$$

$$\frac{d}{du} \left(\ln \frac{\alpha_3((\alpha_4)^2 - (\alpha_2)^2)}{\alpha_1 \alpha_2 \alpha_4} \right) = \frac{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3((\alpha_4)^2 - (\alpha_2)^2)}{2\alpha_2 \alpha_4((\alpha_4)^2 - (\alpha_2)^2)},$$
(11)

$$\frac{d}{du}\ln\frac{\alpha_2}{\alpha_4} = -\frac{\alpha_1}{(\alpha_4)^2} \quad \text{при} \quad \alpha_2 = \alpha_4, \tag{12}$$

$$\frac{d}{du}\left(\frac{\alpha_3}{\alpha_4}\right) = \frac{3}{2\alpha_4}\left(\frac{2}{\sqrt{3}} + \frac{\alpha_3}{\alpha_4}\right)\left(\frac{2}{\sqrt{3}} - \frac{\alpha_3}{\alpha_4}\right) \quad \text{при} \quad \alpha_1 = 0, \ \alpha_2 = \alpha_4.$$
(13)

Доказательство. Докажем, например, соотношения (10) и (12). Имеем

$$\begin{aligned} \frac{d}{du} \left(\frac{\alpha_1 \alpha_2 \alpha_4}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)} \right) &= \frac{d}{du} \left(\frac{A_1 A_2 B_2}{2A_1 A_2 B_2 - B_1 \left((B_2)^2 - (A_2)^2 \right)} \right) \\ &= f \frac{d}{dt} \left(\frac{A_1 A_2 B_2}{2A_1 A_2 B_2 - B_1 \left((B_2)^2 - (A_2)^2 \right)} \right) = f \frac{A_1 B_1}{2A_1 A_2 B_2 - B_1 \left((B_2)^2 - (A_2)^2 \right)} \\ &= \frac{\alpha_1 \alpha_3}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)}, \end{aligned}$$

$$\begin{aligned} \frac{d}{du} \ln\left(\frac{\alpha_2}{\alpha_4}\right) &= \frac{d}{du} \ln\left(\frac{A_2}{B_2}\right) = f \frac{d}{dt} \ln\left(\frac{A_2}{B_2}\right) \\ &= f \left(\frac{1}{2} \frac{2A_2B_2((B_2)^2 - (A_2)^2) - A_1B_1((A_2)^2 + (B_2)^2)}{(A_2)^2B_1(B_2)^2}\right) \Big|_{A_2 = B_2} \\ &= f \left(-\frac{A_1}{(B_2)^2}\right) = -\frac{\alpha_1}{(\alpha_4)^2}. \end{aligned}$$

Замечание. Функция $F(t) = 2A_1A_2B_2 - B_1(B_2^2 - A_2^2)$ является интегралом системы (2).

Лемма 9. Траектория системы (6), определенная начальной точкой $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, стремится при $u \to \infty$ к стационарной точке $S_{\infty} = (0, \frac{\sqrt{3}}{\sqrt{10}}, \frac{\sqrt{2}}{\sqrt{5}}, \frac{\sqrt{3}}{\sqrt{10}})$.

Доказательство проводится, как в [7], но для строгости изложения приводим его полностью. Введем обозначения для следующих точек в S^3 :

$$O = (0, 0, 1, 0), \quad A = (0, 0, 0, 1), \quad B = (1, 0, 0, 0), \quad C = \left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right).$$

Рассмотрим область $\Pi \subset S^3,$ определенную неравенствами

$$\Pi: \alpha_4 \ge \alpha_2 \ge 0, \ \alpha_1 \ge 0, \ \alpha_3 \ge 0.$$

Нетрудно убедиться, что область П является сферическим тетраэдром (*OABC*). Границами области служат следующие множества:

$$\Pi_1 = (OAB) = \{ \alpha_4 \ge 0, \alpha_2 = 0, \alpha_1 \ge 0, \alpha_3 \ge 0 \},\$$

О. А. Богоявленская

$$\Pi_{2} = (OBC) = \{\alpha_{2} = \alpha_{4}, \alpha_{2} \ge 0, \alpha_{1} \ge 0, \alpha_{3} \ge 0\},\$$
$$\Pi_{3} = (OAC) = \{\alpha_{4} - \alpha_{2} \ge 0, \alpha_{2} \ge 0, \alpha_{1} = 0, \alpha_{3} \ge 0\},\$$
$$\Pi_{4} = (ABC) = \{\alpha_{4} - \alpha_{2} \ge 0, \alpha_{2} \ge 0, \alpha_{1} \ge 0, \alpha_{3} = 0\}.$$

Начальная точка $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ принадлежит (OA). При малых u траектория системы (6), определенная начальной точкой S_0 , попадает в П.

Рассмотрим сначала возможность достижения траекторией границы области П за конечное время. Рассмотрим множество Π_1 и определим функцию F_1 на S^3 :

$$F_1(lpha_1, lpha_2, lpha_3, lpha_4) = rac{lpha_1 lpha_2 lpha_4}{F(lpha_1, lpha_2, lpha_3, lpha_4)}.$$

В начальный момент $F_1(S_0) = 0$. Поскольку $F(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = f(t)^{-3}F(S_0) < 0$, из соотношения (10) вытекает, что производная функции F_1 отрицательна и, значит, функция строго убывает вдоль траекторий системы (2), идущих внутри области П. На множестве $\Pi_1 \setminus ((AB) \cup (OB))$ имеем $F_1(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 0$, следовательно, траектория не может вернуться и пересечь эту стенку, за исключением, возможно, дуг $(AB) = \{\alpha_3 = 0\}$ и $(OB) = \{\alpha_4 = 0\}$. Далее, на Π_2 имеем

$$\frac{d(\alpha_4 - \alpha_2)}{du} = \frac{\alpha_1}{\alpha_2} > 0$$

при $\alpha_1 \neq 0$, т. е. траектория не может пересечь некоторую окрестность множества Π_2 за конечное время или даже подойти к ней достаточно близко, за исключением дуги $(OC) = \{\alpha_1 = 0\}$. Заметим, что это же соображение заодно исключает окрестность дуги (OB). Наконец, на множестве Π_4 производная функции $\alpha_3(u)$ строго положительна и отделена от нуля:

$$\begin{aligned} \frac{d\alpha_3}{du} &= \frac{d}{du} \left(\frac{B_1}{f} \right) = f \frac{d}{dt} \left(\frac{B_1}{f} \right) \Big|_{B_1 = 0} = \frac{2A_1^2 \left(A_2^2 + B_2^2 \right) + 3A_2^4 + 2A_2^2 B_2^2 + 3B_2^4}{2A_2 B_2 \left(A_1^2 + A_2^2 + B_2^2 \right)} \\ &= \frac{2\alpha_1^2 \left(\alpha_2^2 + \alpha_4^2 \right) + 3\alpha_2^4 + 2\alpha_2^2 \alpha_4^2 + 3\alpha_4^4}{2\alpha_2 \alpha_4 \left(\alpha_1^2 + \alpha_2^2 + \alpha_4^2 \right)},\end{aligned}$$

поэтому траектория не пересекает Π_4 и некоторую ее окрестность (заметим, что тем самым исключили и остававшуюся возможность приближения к дуге (*AB*)). Поскольку Π_3 является инвариантным подмножеством системы (6), траектория не может пересечь Π_3 за конечное время (в том числе дугу (*OC*)).

Допустим теперь, что C- предельное множество рассматриваемой траектории. Тогда в Cмогут попасть следующие точки.

1. Стационарные или условно стационарные точки системы (2) (т. е. в соответствии с леммами 5 и 6 имеются только две такие возможности: точки S_{∞} и $S_1 = \left(\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}\right)$).

2. Точки, лежащие на критическом уровне функции F_1 .

3. Наконец, пусть $p \in C$ не принадлежит к типу 1 или 2. Если $p \in \text{Int }\Pi$, то траектория имеет в точке p ненулевую скорость и в силу убывания F_1 не может больше вернуться в некоторую окрестность точки p; противоречие с предельностью p. Итак, $p \in \partial \Pi$. Аналогичное соображение показывает, что p лежит на минимальном уровне F_1 .

Совершенно аналогично рассмотрим функцию

$$F_2(lpha_1, lpha_2, lpha_3, lpha_4) = \ln rac{lpha_3 \left(lpha_4^2 - lpha_2^2
ight)}{lpha_1 lpha_2 lpha_4}.$$

Из соотношения (11) следует, что F_2 убывает вдоль траектории, и, значит, множество $C \cap \partial \Pi$ лежит на минимальном уровне F_2 в П. Заметим, что минимальным (в П) уровнем функции F_2 служит множество $\Pi_2 \cup \Pi_4$. Выше было показано, что нельзя приблизиться к окрестности Π_4 , следовательно, возможен только случай $C \cap \partial \Pi \subset \Pi_2$.

Далее, из соотношения (12) следует, что функция $F_3 = \ln \frac{\alpha_2}{\alpha_4}$ убывает вдоль траектории (для достаточно больших *u*) к минимальному значению на Π_2 , которое достигается при $\alpha_1 = 0$. Итак, наша траектория стремится при $u \to \infty$ к инвариантному одномерному множеству $\Pi_2 \cap \Pi_3 = (OC)$. Соотношение (13) показывает, что в окрестности (OC) функция $F_4 = \frac{\alpha_3}{\alpha_4}$ возрастает при $F_4 \leq \frac{2}{\sqrt{3}}$ и убывает при $F_4 \geq \frac{2}{\sqrt{3}}$, следовательно, $C \cap \partial \Pi$ может содержать только точку S_{∞} , определяемую условием $F_4 = \frac{2}{\sqrt{3}}$.

Итак, мы пришли к выводу, что рассматриваемая траектория сходится либо к S_1 , либо к S_∞ . Для завершения доказательства леммы осталось показать, что сходимость к S_1 не имеет места.

Рассмотрим линеаризацию системы (6) в окрестности стационарной точки S_1 в локальных координатах ($\alpha_1, \alpha_2, \alpha_3$). Прямое вычисление показывает, что линеаризованная система имеет три собственных числа кратности один:

$$\lambda_1 = -2\sqrt{2}, \quad \lambda_2 = -\frac{7}{3}\sqrt{2} - \frac{1}{3}\sqrt{290}, \quad \lambda_3 = -\frac{7}{3}\sqrt{2} + \frac{1}{3}\sqrt{290}.$$

Таким образом, в окрестности точки S_1 существует (локально определенная) поверхность, заметаемая траекториями, входящими в точку S_1 , причем эта поверхность в точке S_1 касается двумерной плоскости, натянутой на первые два собственных вектора e_1 и e_2 . Остальные траектории в окрестности S_1 выходят из S_1 . При этом первый собственный вектор e_1 имеет в \mathbb{R}^4 координаты $(-\sqrt{3}, -\sqrt{3}, 1, 1)$ и является касательным к траектории, которая задается как $\alpha_1 = \alpha_2, \alpha_3 = \alpha_4$. Нетрудно увидеть, что собственному числу λ_1 отвечают в точности решения (4) и (5) (обе траектории входят в точку S_1 с противоположных сторон; траектория (4) отвечает F < 0, траектория (5) -F > 0). Поскольку $|\lambda_2| > |\lambda_1|$, остальные входящие в S_1 траектории (кроме одной) касаются в точке S_1 траектория (4) или (5). Упомянутая нами единственная не касательная к (4), (5) траектория отвечает собственному числу λ_2 и непосредственно проверяется, что она лежит на инвариантной поверхности F = 0, а следовательно, не может совпадать с нашей траекторией.

Рассмотрим пару функций: $G_1 = \alpha_2 \alpha_4 - \alpha_1 \alpha_3$ и $G_2 = \alpha_1 \alpha_4 - \alpha_2 \alpha_3$. Начальная точка S_0 и стационарная точка S_1 лежат в области $\{G_1 = 0, G_2 = 0\}$. Непосредственное вычисление показывает, что вектор e_2 направлен внутрь областей $\{G_1 > 0, G_2 > 0\}$ либо $\{G_1 < 0, G_2 < 0\}$ в зависимости от выбора направления e_2 :

$$e_2 = \pm \bigg\{ -\frac{1}{2} + \frac{\sqrt{145}}{10}, 1, -\frac{11\sqrt{3}}{6} - \frac{\sqrt{3}\sqrt{145}}{6}, \frac{5}{\sqrt{3}} + \frac{2\sqrt{145}}{5\sqrt{3}} \bigg\}.$$

Легко проверить, что $\frac{d}{du}G_1 = -\frac{2}{\alpha_2}G_2$ в точках, где $G_1 = 0$, и $\frac{d}{du}G_2 = -\frac{2}{\alpha_2}G_1$ в тех точках, где $G_2 = 0$. Значит, траектория может достичь точки S_1 , только находясь в области $\{G_1 > 0, G_2 > 0\}$. Если она перейдет в одну из областей $\{G_1 > 0, G_2 < 0\}$ либо $\{G_1 < 0, G_2 > 0\}$, то уже не сможет из них выйти (отметим, что S_∞ лежит в $\{G_1 > 0, G_2 < 0\}$). Это соображение определяет направление вектора e_2 : он направлен внутрь области $\{G_1 > 0, G_2 > 0\}$. С другой стороны, в начальный момент времени касательный вектор к нашей траектории имеет вид $\{\alpha_1, \alpha_2, 0, 0\}, \alpha_1 \ge 0, \alpha_2 \ge 0$, поэтому он направлен в одну из областей $\{G_1 > 0, G_2 < 0\}$ либо $\{G_1 < 0, G_2 > 0\}$ в зависимости от знака $(\alpha_2 - \alpha_1)$. Осталось только вспомнить, что $\alpha_2 > \alpha_1$ (см. доказательство леммы 4) и, значит, траектория сразу же входит в область $\{G_1 > 0, G_2 < 0\}$, где единственной предельной точкой является точка S_{∞} . Лемма доказана.

Основная теорема вытекает из лемм 4 и 9. Начальная точка траектории определяет топологическое строение пространства, где определена наша метрика, группа голономии которой, очевидно, совпадает со всей G_2 . Предельная точка S_{∞} означает, что функция A_1 аппроксимируется на бесконечности константой, а остальные функции, определяющие метрику, — линейными непостоянными функциями.

ЛИТЕРАТУРА

- Базайкин Я. В., Богоявленская О. А. Полные римановы метрики с группой голономии G₂ на деформациях конусов над S³ × S³ // Мат. заметки. (в печати).
- Brandhuber A., Gomis J., Gubser S. S., Gukov S. Gauge theory at large N and new G₂ holonomy metrics // Nucl. Phys. B. 2001. V. 611, N 1–3. P. 179–204.
- Brandhuber A. G₂ holonomy spaces from invariant three-forms // Nucl. Phys. B. 2002. V. 629, N 1–3. P. 393–416.
- Cvetic M., Gibbons G. W., Lu H., Pope C. N. A G₂ unification of the deformed and resolved conifolds // Phys. Lett. B. 2002. V. 534, N 1–4. P. 172–180.
- Chong Z. W., Cvetic M., Gibbons G. W., Lu H., Pope C. N., Wagner P. General metrics of G₂ holonomy and contraction limits // Nucl. Phys. B. 2002. V. 638, N 3. P. 459–482.
- Bryant R. L., Salamon S. On the construction of some complete metrics with exceptional holonomy // Duke Math. J. 1989. V. 58, N 3. P. 829–850.
- Базайкин Я. В. О новых примерах полных некомпактных метрик с группой голономии Spin(7) // Сиб. мат. журн. 2007. Т. 48, № 1. С. 11–32.
- Gibbons G. W., Page D. N., Pope C. N. Einstein Metrics on S³, R³, and R⁴ bundles // Commun. Math. Phys. 1990. V. 127, N 3. P. 529–553.

Статья поступила 6 ноября 2012 г.

Богоявленская Ольга Анатольевна Новосибирский гос. университет, механико-математический факультет, ул. Пирогова, 2, Новосибирск 630090 olga.bogoyavlenskaya@gmail.com

562