ОПЕРАТОРЫ СВЕРТКИ НА РАСШИРЯЮЩИХСЯ МНОГОГРАННИКАХ: ПРЕДЕЛЫ НОРМ ОБРАТНЫХ ОПЕРАТОРОВ И ПСЕВДОСПЕКТРОВ

Е. А. Максименко

Аннотация: Рассматриваются матричные операторы свертки с интегрируемыми ядрами на расширяющихся многогранниках. Изучается их связь с операторами свертки на конусах при вершинах многогранников. Доказано, что норма обратного к оператору на многограннике стремится к максимуму норм обратных к операторам на конусах, а псевдоспектр стремится к объединению соответствующих псевдоспектров. Исследование проводится с помощью локального метода, приспособленного к данному кругу задач.

Ключевые слова: операторы свертки, многогранники, нормы обратных операторов, псевдоспектры.

Введение

Зафиксируем до конца работы натуральные числа n, m и число $p \ge 1$. Если X — измеримое подмножество \mathbb{R}^n , то через $L_p^m(X)$ обозначим произведение m экземпляров пространства $L_p(X)$, т. е., что эквивалентно, пространство (классов) вектор-функций, определенных на X, со значениями в \mathbb{C}^m , абсолютно интегрируемых в p-й степени. Норма в $L_p^m(X)$ вводится по формуле

$$\|f\|_p = \|(f_1, \dots, f_m)\|_p = \left(\sum_{j=1}^m \int\limits_X |f_j(x)|^p dx
ight)^{1/p}.$$

Обозначим через $\mathbb{C}^{m\times m}$ пространство квадратных матриц порядка m. Оператор A, действующий в пространстве $L_n^m(\mathbb{R}^n)$ по правилу

$$(Af)(y) = cf(y) + \int_{\mathbb{R}^n} k(y-x)f(x) dx, \quad y \in \mathbb{R}^n, \ f \in L_p^m(\mathbb{R}^n),$$
 (0.1)

где $c \in \mathbb{C}^{m \times m}$, k — интегрируемая вектор-функция со значениями в $\mathbb{C}^{m \times m}$, называют матричным оператором свертки с интегрируемым ядром (или, что то же самое, с винеровским символом).

Если A — оператор в $L_p^m(\mathbb{R}^n)$, X — измеримое подмножество \mathbb{R}^n , то через A_X будем обозначать оператор, действующий в пространстве $L_p^m(X)$ по формуле

$$A_X = Q_X A J_X,$$

где оператор $J_X:L_p^m(X)\to L_p^m(\mathbb{R}^n)$ доопределяет вектор-функцию нулем вне X, а оператор $Q_X:L_p^m(\mathbb{R}^n)\to L_p^m(X)$ сужает область определения вектор-функции.

Пусть M — многогранник в \mathbb{R}^n (здесь и далее многогранники считаются выпуклыми), E — множество его вершин. Каждой точке $x \in E$ сопоставим конус K_x с вершиной 0, порожденный множеством M-x:

$$K_x = {\alpha(y - x) : \alpha > 0, y \in M}.$$

В работе рассматривается некоторая банахова алгебра \mathcal{W}_M , порожденная операторами свертки на семействе множеств $\{\tau M\}_{\tau>0}$. Для каждой точки $x\in M$ вводится отношение «локальной эквивалентности» $\overset{x}{\sim}$ и строится изоморфизм соответствующей фактор-алгебры $(\mathcal{W}_M)_x$ на алгебру \mathscr{C}_{K_x} , порожденную операторами свертки на конусе K_x , затем определяется морфизм алгебры \mathcal{W}_M в произведение семейства алгебр $\{\mathscr{C}_{K_x}\}_{x\in E}$. Главный результат работы — теорема 6.1, которая утверждает, что этот «глобальный морфизм» изометричен и «согласован с обращением».

Сейчас приведем лишь два утверждения, следующие из теоремы 6.1: о пределах норм обратных операторов и о пределах псевдоспектров. Если \mathscr{A} — банахова алгебра с единицей e и нормой $|\cdot|$, $a\in\mathscr{A}$ и $\varepsilon>0$, то ε -псевдоспектром элемента a называют множество

$$\sigma_{\varepsilon}(a) = \{\lambda \in \mathbb{C} \mid |(\lambda e - a)^{-1}| \ge 1/\varepsilon\}.$$

(Здесь и далее для необратимого элемента b полагаем $|b^{-1}| = +\infty$.)

Предложение 0.1. Пусть A — матричный оператор свертки в $L_p^m(\mathbb{R}^n)$. Тогда

$$\lim_{\tau \to +\infty} \|A_{\tau M}^{-1}\| = \max_{x \in E} \|A_{K_x}^{-1}\|.$$

Предложение 0.2. Пусть A — матричный оператор свертки в $L_p^m(\mathbb{R}^n)$, причем p>1, и пусть $\varepsilon>0$. Тогда

$$\lim_{ au o +\infty} \sigma_arepsilon(A_{ au M}) = igcup_{x\in E} \sigma_arepsilon(A_{K_x}),$$

где сходимость множеств понимается в смысле метрики Хаусдорфа.

Изучение псевдоспектров тёплицевых матриц (для скалярного случая и гладких символов) начали Г. Ландау [1], Л. Райхел и Л. Н. Трефетен [2]. Результаты для блочных тёплицевых матриц и матричных операторов Винера — Хопфа получил А. Бётчер [3]. Используя технику C^* -алгебр, он рассматривал лишь случай L_2 , но для очень широкого класса символов, содержащего все кусочно непрерывные функции. Впоследствии А. Бётчер и Г. Вольф [4] исследовали тёплицевы операторы на n-мерных кубах и установили для них аналоги предложений 0.1 и 0.2. С. М. Грудский и А. В. Козак [5] путем непосредственных вычислений доказали предложение 0.1 для скалярных тёплицевых операторов в пространстве L_1 . А. Бётчер, С. М. Грудский и Б. Зильберманн [6] доказали предложения 0.1 и 0.2 для одномерных матричных сверток с интегрируемыми ядрами в пространствах L_p . Более полно история проблемы изложена в [6] и в книге А. Бётчера и Б. Зильберманна [7, гл. 3 и § 6.3].

В настоящей работе результаты [6] обобщены на многомерный случай. При этом из [6] взяты идея теоремы 6.1 и техника работы с псевдоспектрами. С другой стороны, доказательство теоремы 6.1 основано на локальном методе, первоначальную версию которого (называемую также теорией операторов локального типа) разработал И. Б. Симоненко [8–12] для исследования нётеровости сингулярных интегральных операторов. А. В. Козак [13–15] обобщил этот метод на

абстрактные банаховы алгебры, снабженные локальной структурой, и применил его к исследованию обратимости операторов свертки на расширяющихся подмножествах \mathbb{R}^n (см. также [16]). Мы следуем локальному методу в изложении А. В. Козака, усиливая его теоремой Н. Я. Крупника [17] о норме оператора локального типа.

§1. О наполненных подалгебрах

В этом параграфе приводятся элементарные сведения о наполненных подалгебрах и о морфизмах, согласованных с обращением.

Всюду далее под банаховой алгеброй понимается банахова алгебра с единицей (единица будет обозначаться через e); под морфизмом банаховых алгебр понимается морфизм банаховых алгебр с единицей; подалгебры не предполагаются замкнутыми. Символ $\text{Inv}(\mathscr{A})$, где \mathscr{A} — банахова алгебра, используется для обозначения множества обратимых элементов алгебры \mathscr{A} ; $\sigma(a)$, где $a \in \mathscr{A}$, — спектр элемента a.

Подалгебра $\mathscr B$ алгебры $\mathscr A$ называется $\mathit{nanonnehnoй}$, если единица алгебры $\mathscr A$ принадлежит $\mathscr B$ и $\mathrm{Inv}(\mathscr B)=\mathscr B\cap\mathrm{Inv}(\mathscr A)$. Если $X\subset\mathscr A$, то [X] будет обозначать замкнутую наполненную подалгебру алгебры $\mathscr A$, порожденную множеством X. Так как замыкание наполненной подалгебры есть наполненная подалгебра, то [X] — замыкание наполненной подалгебры, порожденной множеством X

Пусть $f: \mathscr{A} \to \mathscr{B}$ — морфизм банаховых алгебр. Тогда из $a \in \text{Inv}(\mathscr{A})$ следует, что $f(a) \in \text{Inv}(\mathscr{B})$ и $f(a)^{-1} = f(a^{-1})$. Будем говорить, что морфизм f согласован c обращением, если для любого $a \in \mathscr{A}$ условия $a \in \text{Inv}(\mathscr{A})$ и $f(a) \in \text{Inv}(\mathscr{B})$ равносильны.

Предложение 1.1. Пусть $f: \mathscr{A} \to \mathscr{B}$ — изометрический морфизм банаховых алгебр, согласованный с обращением, $X \subset \mathscr{A}$. Тогда f([X]) = [f(X)].

Доказательство. Пусть Y_1 и Y_2 — наполненные подалгебры алгебр $\mathscr A$ и $\mathscr B$, порожденные множествами X и f(X) соответственно. Поскольку f согласован с обращением, то $f(Y_1) = Y_2$. Так как f — изометрия полных пространств, то $f(\overline{Y}_1) = \overline{f(Y_1)} = \overline{Y}_2$, где надчеркивание обозначает замыкание. Но $f(\overline{Y}_1) = f([X])$, $\overline{Y}_2 = [f(X)]$. Таким образом, f([X]) = [f(X)].

Для удобства ссылок приведем очевидное утверждение о единственности продолжения морфизма на наполненную подалгебру.

Если $f:X\to Y$ — отображение и $X_1\subset X$, то сужение (ограничение) f на X_1 будем обозначать через $f|X_1$.

Предложение 1.2. Пусть $\mathscr A$ и $\mathscr B$ — банаховы алгебры, $X \subset \mathscr A$, $f:[X] \to \mathscr B$ и $g:[X] \to \mathscr B$ — морфизмы банаховых алгебр, причем f|X=g|X. Тогда f=g.

§ 2. Локальный метод

В этом параграфе приводится одна из версий локального метода (или «локального принципа»), а именно локальный метод в формулировке А. В. Козака [13, 15]. Условие (LS4') из работ А. В. Козака заменим более сильным условием (LS4), введенным Н. Я. Крупником [17] для доказательства теоремы 2.3.

Прежде всего согласуем топологические термины и обозначения. Если \mathscr{X} — топологическое пространство, то $\Sigma_{\mathscr{X}}$ — кольцо борелевских подмножеств \mathscr{X} ;

окрестность точки x ($x \in \mathcal{X}$) — открытое подмножество \mathcal{X} , содержащее x; \mathfrak{U}_x ($x \in \mathcal{X}$) — множество окрестностей точки x; \bar{u} ($u \subset \mathcal{X}$) — замыкание множества u.

Будем говорить, что $(\mathscr{A},\mathscr{X},p)$ — алгебра c локальной структурой, если \mathscr{A} — банахова алгебра (с нормой $|\cdot|$ и единицей e), \mathscr{X} — компакт, $p:\Sigma_{\mathscr{X}}\to\mathscr{A}$, и выполняются следующие свойства:

- (LS1) $p(\mathcal{X}) = e$;
- (LS2) $p(u \cap v) = p(u)p(v)$ для любых $u, v \in \Sigma_{\mathscr{X}}$;
- (LS3) $p(u \cup v) = p(u) + p(v)$ для любых $u, v \in \Sigma_{\mathscr{X}}$ таких, что $\bar{u} \cap \bar{v} = \varnothing$;
- (LS4) $|p(u)ap(u)+p(v)bp(v)|\leq \max(|a|,|b|)$ для любых $a,b\in\mathscr{A},\ u,v\in\Sigma_{\mathscr{X}}$ таких, что $u\cap v=\varnothing$.

Далее в этом параграфе будем считать, что $(\mathscr{A},\mathscr{X},p)$ — некоторая алгебра с локальной структурой.

Из (LS2) следует, что элементы вида p(u) являются идемпотентами: $p(u)^2=p(u)$. Учитывая (LS4), получаем, что |p(u)|=1 при $p(u)\neq 0$. В частности.

$$(\mathrm{LS4'}) \sup_{u \in \Sigma_{\mathscr{X}}} |p(u)| < +\infty.$$

Пусть 1_u , где $u \in \Sigma_{\mathscr{X}}$, — характеристическая функция множества u; $B(\mathscr{X})$ — банахова алгебра ограниченных функций на \mathscr{X} , с равномерной нормой; $S(\mathscr{X})$ — замкнутая подалгебра алгебры $B(\mathscr{X})$, порожденная элементами вида 1_u ($u \in \Sigma_{\mathscr{X}}$); $C(\mathscr{X})$ — банахова алгебра непрерывных функций на \mathscr{X} . Легко видеть, что $C(\mathscr{X}) \subset S(\mathscr{X})$.

Элемент $a \in \mathscr{A}$ называется элементом локального типа, если p(u)ap(v)=0 для любых $u,v\in \Sigma_{\mathscr{X}}$ таких, что $\bar{u}\cap \bar{v}=\varnothing$. Множество элементов локального типа будет обозначаться через \mathscr{A}' .

Предложение 2.1. Отображение $1_u\mapsto p(u)\ (u\in\Sigma_{\mathscr{X}})$ можно единственным образом продолжить до морфизма банаховых алгебр $\mu:S(\mathscr{X})\to\mathscr{A}$. Этот морфизм не увеличивает норму: $|\mu(\varphi)|\leq \|\varphi\|$ для всех $\varphi\in S(\mathscr{X})$.

Теорема 2.1. \mathscr{A}' состоит из тех и только тех элементов, которые коммутируют с множеством $\mu(C(\mathscr{X}))$. Тем самым \mathscr{A}' — замкнутая наполненная подалгебра алгебры \mathscr{A} .

Доказательства предложения 2.1 и теоремы 2.1 см. в [13, 15].

Следуя [12], для каждой точки $x \in \mathcal{X}$ определим следующие преднормы:

$$q_L(a,x) = \inf_{u \in \mathfrak{U}_x} |p(u)a|, \quad q_R(a,x) = \inf_{u \in \mathfrak{U}_x} |ap(u)|,$$

$$q(a,x) = \max(q_L(a,x), q_R(a,x)).$$

Ясно, что $q(a,x) \leq |a|$ для любого $a \in \mathscr{A}$.

Если $a \in \mathscr{A}'$, $x \in \mathscr{X}$, то

$$q(a,x) = \inf_{u \in \mathfrak{U}_x} |p(u)a| = \inf_{u \in \mathfrak{U}_x} |ap(u)| = \inf_{u \in \mathfrak{U}_x} |p(u)ap(u)|.$$

Для каждой точки $x \in \mathscr{X}$ преднорма $q(\cdot,x)$ порождает отношение эквивалентности $\stackrel{x}{\sim}$:

$$a \stackrel{x}{\sim} b \Leftrightarrow q(a-b,x) = 0.$$

Легко проверяются следующие свойства:

- (a) если $a \stackrel{x}{\sim} b$, то q(a,x) = q(b,x);
- (b) если $a_1 \stackrel{x}{\sim} b_1, \ a_2 \stackrel{x}{\sim} b_2, \ \lambda, \mu \in \mathbb{C}, \ \text{то} \ \lambda a_1 + \mu a_2 \stackrel{x}{\sim} \lambda b_1 + \mu b_2;$

- (c) если $a_n \to a, b_n \to b, a_n \stackrel{x}{\sim} b_n$, то $a \stackrel{x}{\sim} b$;
- (d) если $a_1, a_2, b_1, b_2 \in \mathscr{A}', a_1 \overset{x}{\sim} b_1, a_2 \overset{x}{\sim} b_2$, то $a_1 a_2 \overset{x}{\sim} b_1 b_2$;
- (e) если $a,b \in \text{Inv}(\mathscr{A}')$ и $a \stackrel{x}{\sim} b$, то $a^{-1} \stackrel{x}{\sim} b^{-1}$.

Рассмотрим $\overset{x}{\sim}$ как отношение эквивалентности на \mathscr{A}' . Пусть \mathscr{A}'_x — соответствующее фактор-множество, $\pi_x:\mathscr{A}'\to\mathscr{A}'_x$ — соответствующее факторотображение. Свойства (a), (b), (d) показывают, что \mathscr{A}'_x естественным образом превращается в банахову алгебру с единицей $\pi_x(e)$ и нормой $|\pi_x(\cdot)|=q(\cdot,x)$.

Теорема 2.2 (см. [9,11–13,15]). Пусть $a \in \mathscr{A}'$ и для любой точки $x \in \mathscr{X}$ элемент $\pi_x(a)$ обратим слева (соответственно справа) в фактор-алгебре \mathscr{A}'_x . Тогда a обратим слева (соответственно справа).

Теорема 2.3. Если
$$a\in\mathscr{A}',$$
 то $|a|=\sup_{x\in\mathscr{X}}q(a,x).$

Эта теорема доказана в работе Н. Я. Крупника [17] для некоторого частного случая, но тривиально обобщается на случай алгебр с локальной структурой.

\S 3. Основные объекты: алгебры $\mathscr{A}_X, \mathscr{W}_X$ и \mathscr{C}_X

Определим основные объекты работы и покажем, как они связаны с объектами из $\S\,2.$

Как было указано во введении, числа $n\in\mathbb{N},\ m\in\mathbb{N},\ p\in[1,+\infty)$ фиксированы на протяжении всей работы.

Для любой точки $x \in \mathbb{R}^n$ обозначим через \mathfrak{U}_x множество окрестностей точки x (окрестности считаются открытыми).

Для любого измеримого подмножества X пространства \mathbb{R}^n определим оператор $P_X: L^m_p(\mathbb{R}^n) \to L^m_p(\mathbb{R}^n)$ следующим правилом:

$$(P_X f)(x) = \left\{ egin{array}{ll} f(x), & x \in X, \\ 0, & x \in \mathbb{R}^n \setminus X. \end{array} \right.$$

Ясно, что $P_X = J_X Q_X$.

Далее для сокращения записи вместо $L_p^m(\mathbb{R}^n)$ будем писать L_p^m .

Если \mathscr{B} — банахово пространство, то через $\operatorname{End}(\mathscr{B})$ будем обозначать банахову алгебру ограниченных линейных операторов в \mathscr{B} .

Выберем и зафиксируем до конца параграфа некоторое измеримое подмножество X пространства \mathbb{R}^n (в следующих параграфах роль множества X будет играть конус или многогранник).

Заметим, что $P_X\left(\operatorname{End}\left(L_p^m\right)\right)P_X$ — банахова алгебра с единицей P_X . Для краткости будем обозначать ее через $\operatorname{End}\left(P_XL_p^m\right)$. Будем отождествлять $P_XL_p^m$ с $L_p^m(X)$, а $\operatorname{End}\left(P_XL_p^m\right)$ — с $\operatorname{End}\left(L_p^m(X)\right)$. Если $A\in\operatorname{End}\left(L_p^m\right)$, то оператор $A_X=Q_XAJ_X$ будем отождествлять с элементом P_XAP_X алгебры $\operatorname{End}\left(P_XL_p^m\right)$. Если $A\in\operatorname{End}\left(L_p^m\right)$ и элемент P_XAP_X обратим в алгебре $\operatorname{End}\left(P_XL_p^m\right)$ (это равносильно тому, что оператор $Q_XAJ_X\in\operatorname{End}\left(L_p^m(X)\right)$ обратим), то соответствующий обратный элемент отождествляется с оператором $(Q_XAJ_X)^{-1}$ и также обозначается через A_X^{-1} .

Пусть \mathscr{U}_X — произведение семейства банаховых алгебр $\left\{ \operatorname{End} \left(P_{\tau X} L_p^m \right) \right\}_{\tau > 0}$, т. е. множество семейств операторов вида $\{A_{\tau}\}_{\tau > 0}$, где $A_{\tau} \in \operatorname{End} \left(P_{\tau X} L_p^m \right)$ и $\sup_{\tau > 0} \|A_{\tau}\| < +\infty$, снабженное покоординатными операциями и нормой

$$|\{A_{\tau}\}_{\tau>0}|_{\mathscr{U}_X} = \sup_{\tau>0} ||A_{\tau}||.$$

Рассмотрим в \mathscr{U}_X замкнутый идеал \mathscr{J}_X :

$$\mathscr{J}_X = \{ \{A_\tau\}_{\tau > 0} \in \mathscr{U}_X \mid \lim_{\tau \to +\infty} \|A_\tau\| = 0 \}.$$

Обозначим через \mathscr{A}_X фактор-алгебру $\mathscr{U}_X/\mathscr{J}_X$. Элементы этой фактор-алгебры имеют вид $a=\{A_\tau\}_{\tau>0}+\mathscr{J}_X$, где $A_\tau\in\operatorname{End}(P_XL_p^m)$ и $\sup_{\tau>0}\|A_\tau\|<+\infty$. Норма в \mathscr{A}_X вычисляется по формуле

$$|\{A_{ au}\}_{ au>0}+\mathscr{J}_X|=\limsup_{ au o+\infty}\|A_{ au}\|.$$

Определим отображение $j_X : \operatorname{End}(L_p^m) \to \mathscr{A}_X$:

$$j_X(A) = \{P_{\tau X} A P_{\tau X}\}_{\tau > 0} + \mathscr{J}_X, \quad A \in \operatorname{End}(L_p^m).$$

Пусть $\dot{\mathbb{R}}^n=\mathbb{R}^n\cup\{\infty\}$ — компакт, полученный при расширении пространства \mathbb{R}^n одной бесконечно удаленной точкой, \overline{X} — замыкание X в $\dot{\mathbb{R}}^n$, Σ_X — множество измеримых подмножеств \overline{X} . Для любого множества $u\in\Sigma_X$ положим

$$p(u) = \{P_{\tau(u \cap X)}\}_{\tau > 0} + \mathscr{J}_X.$$

Лемма 3.1 (см. [11,17]). Пусть $A, B \in \operatorname{End}(L_p^m), Y, Z$ — непересекающиеся измеримые подмножества \mathbb{R}^n . Тогда $\|P_Y A P_Y + P_Z B P_Z\| \leq \max(\|A\|, \|B\|)$.

Предложение 3.1 (см. [13,15]). ($\mathscr{A}_X, \overline{X}, p$) — алгебра c локальной структурой. Если $\varphi \in S(\overline{X})$, то $\mu(\varphi) = \{M(\varphi_\tau)\}_{\tau>0} + \mathscr{J}_X$, где $M(\varphi_\tau)$ — оператор умножения на функцию φ_τ , которая определена формулой

$$\varphi_{\tau}(x) = \varphi(x/\tau), \quad x \in \mu X, \ \tau > 0.$$

Формально новым в предложении 3.1 является лишь то, что для $(\mathscr{A}_X, \overline{X}, p)$ выполняется условие (LS4), а это следует из леммы 3.1.

Обозначим через W_p замыкание в $\operatorname{End}(L_p^m)$ множества матричных операторов свертки, т. е. операторов вида (0.1), где $c \in \mathbb{C}^{m \times m}, k \in L_1^{m \times m}(\mathbb{R}^n)$.

Пусть $\mathscr{C}_X = [P_X W_p P_X]$, $\mathscr{W}_X = [j_X(W_p)]$. Более подробно: \mathscr{C}_X — замкнутая наполненная подалгебра банаховой алгебры $\operatorname{End}(P_X L_p^m)$, порожденная множеством $\{P_X A P_X \mid A \in W_p\}$; \mathscr{W}_X — замкнутая наполненная подалгебра банаховой алгебры \mathscr{A}_X , порожденная множеством $\{j_X(A) \mid A \in W_p\}$.

Предложение 3.2. $\mathscr{W}_X \subset \mathscr{A}_X'$.

Доказательство (см. [10,14,16]). Пусть A — матричный оператор свертки с финитным ядром, т. е. A имеет вид (0.1), где $c \in \mathbb{C}^{m \times m}, \, k \in L_1^{m \times m}, \,$ причем k(x)=0 при $|x| \geq d, \, d>0$. Тогда $P_YAP_Z=0$ при $\mathrm{dist}(Y,Z)>d$, где

$$\operatorname{dist}(Y, Z) = \inf_{y \in Y} \inf_{z \in Z} |y - z|.$$

Если $u,v\subset X$ и $\bar u\cap \bar v=\varnothing$, то $r=\mathrm{dist}(u,v)>0$, и при $\tau>d/r$ имеем $\mathrm{dist}(\tau u,\tau v)>d,$ $P_{\tau u}AP_{\tau v}=0.$ Отсюда $p(u)j_X(A)p(v)=0.$

Итак, $j_X(A) \in \mathscr{A}_X'$, если A имеет указанный вид. Но операторы такого вида образуют плотное подмножество в W_p , поэтому $j_X(W_p) \subset \mathscr{A}_X'$. По теореме 2.1 \mathscr{A}_X' — замкнутая наполненная подалгебра \mathscr{A}_X . Отсюда следует, что $\mathscr{W}_X = [j_X(W_p)] \subset \mathscr{A}_X'$, и предложение доказано.

Предложения 3.1 и 3.2 позволяют использовать для алгебры \mathscr{A}_X обозначения $\S 2$ (в частности, $q(\cdot,x)$ и $\stackrel{x}{\sim}$, где $x\in \overline{X}$), а к элементам из \mathscr{W}_X применять все утверждения об элементах локального типа. Для каждой точки $x\in \overline{X}$ будем обозначать через $(\mathscr{W}_X)_x$ алгебру $\pi_x(\mathscr{W}_X)=\mathscr{W}_X/\stackrel{x}{\sim}$.

§ 4. Случай конусов

Для любых $X \subset \mathbb{R}^n$, $y \in \mathbb{R}^n$ положим

$$con_y(X) = \{\lambda(x - y) : \lambda > 0, \ x \in X\}.$$

Множество $K \subset \mathbb{R}^n$ будем называть конусом с вершиной y, если $K = \operatorname{con}_y(K)$. Пусть K — некоторый измеримый конус в \mathbb{R}^n с вершиной 0, фиксированный до конца параграфа.

Лемма 4.1. Пусть $A \in \text{End}(P_K L_p)$,

$$a = j_K(A) = \{A\}_{\tau > 0} + \mathcal{J}_K. \tag{4.1}$$

Тогда $|a|=q(a,0)=\|A\|$. Если u — некоторая окрестность точки 0 и $a=j_K(A)=\{B_{\tau}\}_{\tau>0}+\mathscr{J}_K$, то

$$A = \operatorname{s-lim}_{\tau \to +\infty} P_{\tau(u \cap K)} B_{\tau} P_{\tau(u \cap K)} = \operatorname{s-lim}_{\tau \to +\infty} P_{\tau(u \cap K)} B_{\tau} = \operatorname{s-lim}_{\tau \to +\infty} B_{\tau} P_{\tau(u \cap K)}. \tag{4.2}$$

(Здесь и далее s-lim обозначает поточечный предел.)

Доказательство. Формула (4.2) следует из соотношений

$$\lim_{\tau \to +\infty} B_{\tau} = A, \quad \text{s-}\lim_{\tau \to +\infty} P_{\tau(u \cap K)} = \text{s-}\lim_{\tau \to +\infty} P_{\tau(u \cap \overline{K})} = P_{K}.$$

Из (4.2) и свойств поточечной сходимости операторов получаем

$$||A|| \le \liminf_{\tau \to +\infty} ||P_{\tau(u \cap K)}B_{\tau}|| \le |p(u \cap K)a|,$$

откуда $\|A\| \le q_L(a,0)$. Аналогично $\|A\| \le q_R(a,0)$. Таким образом, $\|A\| \le q(a,0)$. Неравенства $q(a,0) \le |a| \le \|A\|$ очевидны.

Лемма 4.2. Пусть $A \in \text{End}(P_K L_p)$, $a = j_K(A)$, причем $a \in \mathscr{A}'_K$. Тогда следующие условия равносильны:

- (a) оператор A обратим на K;
- (b) элемент a алгебры \mathscr{A}_K обратим;
- (c) элемент $\pi_0(a)$ фактор-алгебры $(\mathscr{A}_K')_0$ обратим.

Если эти условия выполнены, то $a^{-1} = \{A_K^{-1}\}_{\tau>0} + \mathcal{J}_K$.

Это утверждение в несколько другой формулировке доказано в [13, 15].

Напомним, что
$$(W_K)_0 = (W_K / \stackrel{0}{\sim}) = \pi_0(W_K)$$
.

Предложение 4.1. Отображения $(j_K|\mathscr{C}_K):\mathscr{C}_K \to \mathscr{W}_K$ и $(\pi_0|\mathscr{W}_K):\mathscr{W}_K \to (\mathscr{W}_K)_0$ являются изометрическими морфизмами банаховых алгебр, и тем самым отображение $\mathrm{isocon}_K = (j_K|\mathscr{C}_K)^{-1} \circ (\pi_0|\mathscr{W}_K)^{-1}$ — изометрический изоморфизм $(\mathscr{W}_K)_0$ на \mathscr{C}_K .

Доказательство. Легко видеть, что $j_K(\mathscr{C}_K) \subset \mathscr{W}_K$. Из леммы 4.1 следует, что отображение $j_K : \operatorname{End}(P_K L_p) \to \mathscr{A}_K$ — изометрический морфизм банаховых алгебр. Лемма 4.2 и предложение 3.2 показывают, что морфизм $j_K|\mathscr{C}_K$ согласован с обращением. По предложению 1.1 $j_K|\mathscr{C}_K$ есть изометрический изоморфизм \mathscr{C}_K на \mathscr{W}_K . Утверждение о морфизме $\pi_0|\mathscr{W}_K$ вытекает из лемм 4.1 и 4.2.

Предложение 4.2. Пусть $b \in \mathcal{W}_K$, $b = \{B_{\tau}\}_{{\tau}>0} + \mathcal{J}_K$. Тогда

$$\operatorname{isocon}_K(\pi_0(b)) = \operatorname{s-lim}_{\tau \to +\infty} B_{\tau}.$$

Доказательство. Пусть $A = \mathrm{isocon}_K(\pi_0(b)), \ f \in P_K L_p$. Мы должны показать, что $\lim \|(B_{\tau}-A)f\|=0$. Положим $a=\{A\}_{\tau>0}+\mathscr{J}_{K}$. Тогда $\pi_{0}(a)=$ $\pi_0(b)$. Выберем произвольно $\varepsilon>0$ и найдем такую окрестность нуля u, что $|(a-b)p(u)|<\varepsilon$, T. e.

$$\limsup_{\tau \to +\infty} \|(B_{\tau} - A)P_{\tau u}\| < \varepsilon.$$

Учитывая, что $\lim \|B_{ au}P_{ au u}f-B_{ au}f\|=0$, $\lim \|AP_{ au u}f-Af\|=0$, получим

$$\lim_{\tau \to +\infty} \sup_{\tau \to +\infty} \|(B_{\tau} - A)f\| = \lim_{\tau \to +\infty} \sup_{\tau \to +\infty} \|(B_{\tau} - A)P_{\tau u}f\| < \varepsilon.$$

Так как $\varepsilon>0$ выбрано произвольно, то $\lim_{ au\to +\infty}\|(B_{ au}-A)f\|=0.$

§ 5. Локальный изоморфизм

Этот параграф построен на идеях работы [14] (см. также [10]).

Пусть T_h , где $h \in \mathbb{R}^n$, — оператор сдвига (переноса) на h в пространстве L_p^m :

$$(T_h f)(y) = f(y - h), \quad y \in \mathbb{R}^n, \ f \in L_p^m,$$

 Σ — множество измеримых подмножеств \mathbb{R}^n . Заметим, что если $X \in \Sigma$, $h \in \mathbb{R}^n$, то $T_h P_X = P_{X+h} T_h$.

Пусть $X,Y \subset \mathbb{R}^n, x \in \overline{X}, y \in \overline{Y}$. Будем говорить, что множество X в точке x эквивалентно множеству Y в точке y, если существуют такие $u \in \mathfrak{U}_x$ и $v \in \mathfrak{U}_y$, что $(X \cap u) - x = (Y \cap v) - y$.

Пусть $X,Y\in\Sigma$. Для алгебры \mathscr{A}_Y будем писать p' вместо p и q' вместо q. Если x, y, u, v такие, как в данном выше определении, то рассмотрим отображения $\varphi: u \cap \overline{X} \to v \cap \overline{Y}$ и $\Phi_{uv}: p(u) \mathscr{A}_X p(u) \to p'(v) \mathscr{A}_Y p'(v)$:

$$\varphi(z) = z + y - x, \quad z \in u \cap \overline{X};$$

$$\Phi_{uv}(a) = \{ T_{\tau(y-x)} P_{\tau u} A_{\tau} P_{\tau u} T_{\tau(x-y)} \}_{\tau > 0} + \mathscr{J}_{Y},$$

где $a=\{\mathscr{A}_{\tau}\}_{\tau>0}+\mathscr{J}_X\in p(u)\mathscr{A}_Xp(u)$. Ясно, что определение $\Phi_{uv}(a)$ не зависит от выбора $\{A_{\tau}\}_{\tau>0}$. Очевидно, Φ_{uv} есть изометрический изоморфизм $p(u)\mathscr{A}_X p(u)$ на $p'(v)\mathscr{A}_Y p'(v)$, причем $\Phi_{uv}(p(w))=p'(\varphi(w))$ для всех $w\in \mathfrak{U}_x.$

Пусть $X,Y\in\Sigma$, причем множество X в точке x локально эквивалентно множеству Y в точке y.

Определим отношение $R_{xy} \subset \mathscr{A}'_X \times \mathscr{A}'_Y$, полагая $aR_{xy}b$, если существуют такие $u \in \mathfrak{U}_x, v \in \mathfrak{U}_y$, что $(X \cap u) - x = (Y \cap v) - y$ и $\Phi_{uv}(p(u)ap(u)) \stackrel{y}{\sim} p'(v)bp'(v)$.

Отметим очевидные свойства отношения R_{xy} :

- (a) если $a\in\mathscr{A}_X',\ b\in\mathscr{A}_Y'$ и $aR_{xy}b$, то q(a,x)=q'(b,y); (b) если $a_1,a_2\in\mathscr{A}_X',\ b_1,b_2\in\mathscr{A}_Y',\ a_1R_{xy}a_2,\ b_1R_{xy}b_2$ и $\lambda_1,\lambda_2\in\mathbb{C},$ то

$$(\lambda_1a_1+\lambda_2a_2)R_{xy}(\lambda_1b_1+\lambda_2b_2),\quad a_1a_2R_{xy}b_1b_2.$$

Предложение 5.1. Пусть $X,Y\in \Sigma,\ x\in \overline{X},\ y\in \overline{Y}$ и множество X в точке x эквивалентно множеству Y в точке y. Тогда существует единственный изоморфизм $\log_{xy}: (\mathscr{A}_X')_x \to (\mathscr{A}_Y')_y$ такой, что соотношение $\log_{xy}(\pi_x(a)) = \pi_y(b)$ равносильно соотношению $aR_{xy}b$ для любых $a\in \mathscr{A}_X',\ b\in \mathscr{A}_Y'$.

ДОКАЗАТЕЛЬСТВО. 1. Пусть $\widetilde{R}_{xy}\subset (\mathscr{A}_X')_x\times (\mathscr{A}_Y')_y$ — отношение, определенное правилом

$$\pi_x(a)\widetilde{R}_{xy}\pi_y(b) \Leftrightarrow aR_{xy}b, \quad a \in \mathscr{A}_X', \ b \in \mathscr{A}_Y'.$$

- 2. Для каждого $a\in\mathscr{A}'_X$ существует такой элемент $b\in\mathscr{A}'_Y$, что $aR_{xy}b$, т. е. $\pi_x(a)\widetilde{R}_{xy}\pi_y(b)$. Действительно, пусть $u\in\mathfrak{U}_x,\,v\in\mathfrak{U}_y$ таковы, что $(u\cap X)-x=(v\cap Y)-y$. Тогда элемент $b=\Phi_{uv}(p(u)ab(u))$ является искомым.
- 3. Аналогично доказывается, что для любого $b \in \mathscr{A}'_Y$ существует такой элемент $a \in \mathscr{A}'_X$, что $\pi_x(a) \widetilde{R}_{xy} \pi_y(b)$.
- 4. Из свойств (a), (b) отношения R_{xy} и пп. 2, 3 следует, что \widetilde{R}_{xy} график некоторого изометрического изоморфизма, который мы обозначим через \log_{xy} . Существование доказано.
- 5. Если морфизм \log_{xy} удовлетворяет условиям предложения, то его график, очевидно, совпадает с \widetilde{R}_{xy} . Единственность доказана.

Предложение 5.2. Пусть $X,Y \in \Sigma$, $x \in \overline{X}$, $y \in \overline{Y}$, множество X в точке x эквивалентно множеству Y в точке y и $A \in W_p$. Тогда $j_X(A)R_{xy}j_Y(A)$, τ . е.

$$loc_{xy}(\pi_x(j_X(A))) = \pi_y(j_Y(A)).$$

Доказательство. Пусть $u \in \mathfrak{U}_x, v \in \mathfrak{U}_y, (X \cap u) - x = (Y \cap v) - y$. Используя инвариантность оператора A относительно сдвига, для любого $\tau > 0$ получаем

$$T_{\tau(y-x)}P_{\tau u}P_{\tau X}AP_{\tau X}P_{\tau u}T_{\tau(x-y)} = P_{\tau(v\cap Y)}AP_{\tau(v\cap Y)}.$$

Отсюда $\Phi_{uv}(j_X(A)) = p(v)j_Y(A)p(v) \stackrel{y}{\sim} j_Y(A)$ и $j_X(A)R_{xy}j_Y(A)$.

Предложение 5.3. Пусть $M \in \Sigma$, $x \in \overline{M}$, K — конус c вершиной 0 и множество M в точке x локально эквивалентно конусу K в точке 0. Тогда существует единственный морфизм банаховых алгебр $\theta_x : \mathscr{W}_M \to \operatorname{End}(P_{K_x}L_p)$ такой, что $\theta_x(j_M(A)) = P_K A P_K$ для любого $A \in W_p$. При этом $\theta_x(\mathscr{W}_M) \subset \mathscr{C}_K$ для любого $a \in \mathscr{W}_M$ имеют место соотношения

$$\|\theta_x(a)\| = q(a, x) \le |a|$$

и обратимость $\theta_x(a)$ в $\operatorname{End}(P_K L_p)$ равносильна обратимости элемента $\pi_x(a)$ в фактор-алгебре $(W_M)_x$.

Доказательство. Определим морфизм θ_x формулой

$$\theta_x(a) = \mathrm{isocon}(\mathrm{loc}_{x0}(\pi_x(a))), \quad a \in \mathcal{W}_K.$$
 (5.1)

Из предложений 4.1 и 5.2 следует, что θ_x обладает перечисленным свойствами. Единственность вытекает из предложения 1.2.

Из формулы (5.1) и предложения 4.2 получаем явное описание морфизма θ_x с помощью операции поточечного предела операторов.

Предложение 5.4. Пусть $M\in \Sigma, x\in \overline{M}, K$ — конус c вершиной $0,u\in \mathfrak{U}_0,$ $(M-x)\cap u=K\cap u; a=\{A_\tau\}_{\tau>0}+\mathscr{J}_M.$ Тогда

$$\theta_x(a) = \operatorname{s-lim}_{\tau \to +\infty} P_{\tau u} T_{-\tau x} A_{\tau} T_{\tau x} P_{\tau u} = \operatorname{s-lim}_{\tau \to +\infty} T_{-\tau x} A_{\tau} T_{\tau x}$$

и, следовательно,

$$\|\theta_x(a)\| \le \liminf_{\tau \to +\infty} \|A_\tau\|. \tag{5.2}$$

Далее нам понадобится утверждение о «доминировании» одной точки над другой.

Предложение 5.5. Пусть $M\in \Sigma,\, x,y\in \overline{M},\, u\in \mathfrak{U}_x,\, v\in \mathfrak{U}_0,\, K$ — конус c вершиной $0,\, (M\cap u)-x=K\cap v\,$ и $y\in u.$

Тогда для любого $a \in \mathscr{A}'_M$ имеет место неравенство $q(a,x) \geq q(a,y)$ и из обратимости $\pi_x(a)$ в $(\mathscr{A}'_M)_x$ следует обратимость $\pi_y(a)$ в $(\mathscr{A}'_M)_y$.

Доказательство. Определим отображение $\varphi: u \to v$ формулой $\varphi(z) = z - x$. Тогда соответствующее отображение Φ_{uv} осуществляет изоморфизм алгебры $p(u)\mathscr{A}'_Xp(u)$ на алгебру $p(v)\mathscr{A}'_Kp(v)$. Выберем произвольно $a \in \mathscr{A}'_X$. Из предложения 5.1 и лемм 4.2, 4.1 вытекает, что обратимость элемента p(u)ap(u) в алгебре $p(u)\mathscr{A}'_Xp(u)$ равносильна обратимости $\pi_x(a)$ в $(\mathscr{A}'_X)_x$, и q(a,x) = |p(u)ap(u)|. С другой стороны, так как u — окрестность y, то из обратимости p(u)ap(u) в $p(u)\mathscr{A}'_Xp(u)$ следует обратимость $\pi_y(a)$, при этом $q(a,y) \leq |p(u)ap(u)|$.

§ 6. Основная теорема

В этом параграфе будем считать, что M — многогранник в $\mathbb{R}^n,$ E — множество его вершин.

Лемма 6.1. Пусть $a \in \mathscr{A}'_M$. Тогда обратимость элемента a равносильна тому, что для любой точки $x \in E$ элемент $\pi_x(a)$ обратим в $(\mathscr{A}'_M)_x$. Кроме того, $|a| = \max_{x \in E} q(a,x)$.

Доказательство. Аналогичное утверждение, но с заменой E на M, вытекает из предложения 3.1 и общих теорем локального метода 2.2 и 2.3. Переход от M к E следует из предложения 5.5, так как для любой точки $y \in M$, очевидно, можно найти такую вершину $x \in E$, которая «доминирует» над y в смысле предложения 5.5. Лемма доказана.

В произведении $\prod_{x\in E}\operatorname{End}\left(P_{K_x}L_p^m\right)$ рассмотрим замкнутую наполненную подалгебру $\widetilde{\mathscr{C}}$, порожденную семействами вида $\{P_{K_x}AP_{K_x}\}_{x\in E}$, где $A\in W_p$. Ясно, что

$$\widetilde{\mathscr{C}} \subset \prod_{x \in E} \mathscr{C}_{K_x}.$$

Теорема 6.1. Существует единственный морфизм банаховых алгебр

$$\Theta: \mathscr{W}_M \to \prod_{x \in E} \operatorname{End}(P_{K_x} L_p)$$

такой, что $\Theta(j_M(A)) = \{P_{K_x}AP_{K_x}\}_{x\in E}$ для всех $A\in W_p$. Этот морфизм Θ изометричен, согласован c обращением, имеет образ $\widetilde{\mathscr{C}}$ и является произведением семейства морфизмов $\{\theta_x\}_{x\in E}$.

ДОКАЗАТЕЛЬСТВО. Положим $\Theta = \prod_{x \in E} \theta_x$. Тогда из предложения 5.3 и леммы 6.1 следует, что Θ изометричен и согласован с обращением. По предложению 1.1 $\Theta(\mathscr{W}_M) = \widetilde{\mathscr{C}}_M$. Единственность морфизма Θ вытекает из соотношения $\mathscr{W}_M = [j_M(W_p)]$ и предложения 1.2.

Замечание. Для одномерного случая (n=1, M=[0,1]) утверждение, аналогичное теореме 6.1, доказано в [6] с помощью конструктивного описания алгебр \mathcal{W}_M и \mathcal{C}_K .

Следствие 6.1. Пусть элемент $a \in \mathcal{W}_M$ имеет представление $a = \{A_{\tau}\}_{\tau>0} + \mathcal{J}_M$. Тогда

$$\lim_{\tau \to +\infty} \|A_{\tau}\| = |a| = \max_{x \in E} \|\theta_x(a)\|.$$

Доказательство получается из теоремы 6.1 и формулы (5.2).

Следствие 6.2. Пусть $a \in \mathcal{W}_M$, $a = \{A_{\tau}\}_{{\tau}>0} + \mathcal{J}_M$. Тогда следующие условия равносильны:

- (a) элемент a обратим в \mathcal{A}_M ;
- (b) $\limsup_{\tau \to +\infty} \|(A_{\tau})_{\tau M}^{-1}\| < +\infty$, т. е. существует такое $\tau_0 > 0$, что операторы

 A_{τ} обратимы на τM при $\tau > \tau_0$, и $\sup_{\tau > \tau_0} \|(A_{\tau})_{\tau M}^{-1}\| < +\infty$;

(c) для каждой точки $x \in E$ оператор $\theta_x(a)$ обратим на K_x . Если эти условия выполняются, то для любой точки $x \in E$

$$\theta_x(a)_{K_x}^{-1} = \text{s-lim}_{\tau \to +\infty} T_{-\tau x} (A_\tau)_{\tau M}^{-1} T_{\tau x}.$$

Кроме того,

$$\lim_{\tau \to +\infty} \|(A_{\tau})_{\tau M}^{-1}\| = |a^{-1}| = \max_{x \in F} \|\theta_x(a)_{K_x}^{-1}\|.$$

В частности, при $a=j_M(A), A\in W_p$, получаем

Следствие 6.3. Пусть $A \in W_p$. Тогда следующие условия равносильны:

- (a) элемент $j_M(A)$ обратим в \mathcal{A}_M ;
- (b) $\limsup_{\tau \to +\infty} ||A_{\tau M}^{-1}|| < +\infty;$
- (c) оператор A обратим на K_x для каждой точки $x \in E$.

Если эти условия выполняются, то для любой точки $x \in E$

$$A_{K_x}^{-1} = \text{s-lim}_{\tau \to +\infty} T_{-\tau x} A_{\tau M}^{-1} T_{\tau x}.$$

Кроме того,

$$\lim_{\tau \to +\infty} \|A_{\tau M}^{-1}\| = \max_{x \in E} \|A_{K_x}^{-1}\|. \tag{6.1}$$

Соотношение (6.1) было отмечено во введении как предложение 0.1. Остальные утверждения следствия 6.3 доказал А. В. Козак в работах [13-15]. Аналогичные результаты он доказал также для обобщенных и составных сверток и для множеств M более общей формы, чем многогранники.

§ 7. Пределы псевдоспектров

В этом параграфе из следствия 6.2 выводится теорема о пределе псевдоспектров. Идея доказательства взята из [6].

Сначала приведем необходимые сведения о норме резольвенты, псевдоспектре и метрике Хаусдорфа.

Пусть \mathscr{A} — банахова алгебра (с единицей e и нормой $|\cdot|$), $\dot{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ — расширенная комплексная плоскость. Определим функцию $\mathrm{nr}:\mathscr{A}\times\dot{\mathbb{C}}\to[0,+\infty]$ («норму резольвенты») формулой

$$\operatorname{nr}(a,\lambda) = \left\{ egin{array}{ll} |(\lambda e - a)^{-1}|, & \lambda \in \mathbb{C} \setminus \sigma(a), \ +\infty, & \lambda \in \sigma(a), \ 0, & \lambda = \infty. \end{array}
ight.$$

Нетрудно видеть, что функция $\operatorname{nr}(a,\cdot)$ непрерывна на $\dot{\mathbb{C}}$. В частности,

$$|\operatorname{nr}(a,\mu) - \operatorname{nr}(a,\lambda)| < \frac{|\mu - \lambda| \operatorname{nr}(a,\lambda)^{2}}{1 - |\mu - \lambda| \operatorname{nr}(a,\lambda)}.$$
(7.1)

Теорема 7.1. Пусть (Ω, μ) — пространство с мерой, $p \in (1, +\infty)$, $\mathscr{A} = \operatorname{End}(L_p(\Omega, \mu))$, $a \in \mathscr{A}$. Тогда для резольвенты элемента a выполняется принцип максимума нормы, т. е. функция $\operatorname{nr}(a, \cdot)$ не имеет локальных максимумов на $\mathbb{C} \setminus \sigma(a)$.

Эта теорема доказана в [6]. Понятно, что в теореме 7.1 можно заменить $\operatorname{End}(L_p(\Omega,\mu))$ на $\operatorname{End}(L_p^m(\Omega,\mu))$. Для произвольных операторнозначных аналитических функций принцип максимума нормы может не выполняться (см. контрпример в [6]).

Если $a \in \mathscr{A}$ и $\varepsilon > 0$, то ε -псевдоспектр элемента a определяется равенством

$$\sigma_{\varepsilon}(a) = \{ \lambda \in \mathbb{C} \mid \operatorname{nr}(a, \lambda) \ge 1/\varepsilon \}.$$

Ясно, что $\sigma_{\varepsilon}(a)$ — компакт в \mathbb{C} , причем $\sigma(a) \subset \sigma_{\varepsilon}(a)$.

Напомним определение метрики Хаусдорфа d_H . Пусть $\mathscr K$ — множество непустых компактов в $\mathbb C$. Для любых $X,Y\in\mathscr K$

$$d_H(X,Y) = \max(\sup_{x \in X} \inf_{y \in Y} |x-y|, \sup_{y \in Y} \inf_{x \in X} |x-y|).$$

Таким образом, неравенство $d_H(X,Y)<\delta$ означает, что $X\subset U(Y,\delta)$ и $Y\subset U(X,\delta)$, где $U(X,\delta)=\{z\in\mathbb{C}\mid \inf_{x\in X}|z-x|<\delta\}.$

Хорошо известно, что (\mathcal{K},d_H) — полное метрическое пространство. Если $\{X_{\tau}\}_{\tau>0}$ — направленное семейство в \mathcal{K} и $Y\in\mathcal{K}$, то записи $X_{\tau}\to Y$ и $\lim_{\tau}X_{\tau}=Y$ будут означать, что $d_H(X_{\tau},Y)\to 0$, а это равносильно следующему: для любого $\delta>0$ существует такое $\tau_0>0$, что $X_{\tau}\subset U(Y,\delta)$ и $Y\subset U(X_{\tau},\delta)$ при $\tau>\tau_0$.

Пусть, как и в \S 6, M — многогранник в \mathbb{R}^n , E — множество его вершин. Существенную роль в доказательстве следующей теоремы будет играть тот факт, что множество E конечно. Будем дополнительно предполагать, что $p \in (1, +\infty)$. Это ограничение необходимо, чтобы воспользоваться теоремой 7.1.

Теорема 7.2. Пусть $a \in \mathscr{W}_M$, $a = \{A_{\tau}\}_{{\tau}>0} + \mathscr{J}_M$, ${\varepsilon}>0$. Тогда

$$\lim_{\tau \to +\infty} \sigma_{\varepsilon}(A_{\tau}) = \sigma_{\varepsilon}(a) = \sigma_{\varepsilon}(\Theta(a)) = \bigcup_{x \in E} \sigma_{\varepsilon}(\theta_{x}(a)).$$

Доказательство. 1. Из следствия 6.2 теоремы 6.1 получаем, что

$$\sigma_arepsilon(a) = \sigma_arepsilon(\Theta(a)) = igcup_{x \in E} \sigma_arepsilon(heta_x(a)).$$

Осталось доказать, что $\sigma_{\varepsilon}(A_{\tau}) \to \sigma_{\varepsilon}(a)$ при $\tau \to +\infty$.

2. Докажем, что для любого $\delta>0$ существует такое $\tau_0>0$, что $\sigma_\varepsilon(A_\tau)\subset U(\sigma_\varepsilon(a),\delta)$ при $\tau>\tau_0$. Для каждой точки λ компакта $Q=\dot{\mathbb{C}}\setminus U(\sigma_\varepsilon(a),\delta)$ имеем

$$\lim_{ au o +\infty} \operatorname{nr}(A_{ au},\lambda) = \operatorname{nr}(a,\lambda) = 1/arepsilon - \xi_{\lambda},$$

где $\xi_{\lambda}>0$. Отсюда найдем такое $\tau_{\lambda}>0$, что $\operatorname{nr}(A_{\tau},\lambda)<1/\varepsilon-\xi_{\lambda}/2$ при $\tau>\tau_{\lambda}$. С помощью неравенства (7.1) находим такую окрестность U_{λ} точки λ , что $\operatorname{nr}(A_{\tau},\mu)<1/\varepsilon-\xi_{\lambda}/3$ для всех $\mu\in U_{\lambda}$ и $\tau>\tau_{\lambda}$. Семейство $\{U_{\lambda}\}_{\lambda\in S}$ образует открытое покрытие компакта Q. Выделим конечное множество $\Lambda\subset Q$ такое, что семейство $\{U_{\lambda}\}_{\lambda\in\Lambda}$ также покрывает Q, и положим $\tau_{0}=\max\{\tau_{\lambda}:\lambda\in\Lambda\}$, $\xi=\min\{\xi_{\lambda}:\lambda\in\Lambda\}$. Тогда при $\tau>\tau_{0}$ и $\mu\in Q$

$$\operatorname{nr}(A_{\tau}, \mu) < 1/\varepsilon - \xi/3 < 1/\varepsilon.$$

Этим доказано, что $\sigma_{\varepsilon}(A_{\tau}) \subset \mathbb{C} \setminus Q = U(\sigma_{\varepsilon}(a), \delta)$ при $\tau > \tau_0$.

3. Выберем произвольно $\delta>0,\ x\in E,$ положим $B_x=\theta_x(a)$ и докажем существование такого $\tau_x'>0,$ что $\sigma_\varepsilon(B_x)\subset U(\sigma_\varepsilon(A_\tau),\delta)$ при $\tau>\tau_x'$. Для каждой точки $\lambda\in\sigma_\varepsilon(B_x)$ рассмотрим ее $\delta/2$ -окрестность $U(\lambda,\delta/2)$. С помощью теоремы 7.1 (о норме резольвенты) найдем такое $\mu\in U(\lambda,\delta/2),$ что $\operatorname{nr}(B_x,\mu)>1/\varepsilon$. Далее, пользуясь соотношением

$$\lim_{\tau \to +\infty} \operatorname{nr}(A_{\tau}, \mu) = \operatorname{nr}(a, \mu) \ge \operatorname{nr}(B_x, \mu),$$

возьмем такое $\tau_\lambda'>0$, что $\operatorname{nr}(A_\tau,\mu)>1/\varepsilon$ при $\tau>\tau_\lambda'$. Тогда при $\tau>\tau_\lambda'$ имеем $\mu\in\sigma_\varepsilon(A_\tau),\,\lambda\in U(\sigma_\varepsilon(A_\tau),\delta/2),\,U(\lambda,\delta/2)\subset U(\sigma_\varepsilon(A_\tau),\delta)$. Выбирая из покрытия $\{U(\lambda,\delta/2):\lambda\in\sigma_\varepsilon(B_x)\}$ компакта $\sigma_\varepsilon(B_x)$ конечное подпокрытие, находим такое $\tau_x'>0$, что $\sigma_\varepsilon(B_x)\subset U(\sigma_\varepsilon(A_\tau),\delta)$ при $\tau>\tau_x'$.

4. Теперь выберем произвольно $\delta>0$, для каждой точки $x\in E$ построим такое τ'_x , как в п. 3, и положим $\tau'=\max_{x\in E}\tau'_x$. Тогда при $\tau>\tau'$ получим

$$\sigma_{arepsilon}(a) = igcup_{x \in E} \sigma_{arepsilon}(B_x) \subset U(\sigma_{arepsilon}(A_{ au}), \delta).$$

Вместе с п. 2 это значит, что $\lim_{ au}\sigma_{arepsilon}(A_{ au})=\sigma_{arepsilon}(a).$ Теорема доказана.

Предложение 0.2 получается из теоремы 7.2 при $a=j_M(A)$.

ЛИТЕРАТУРА

- Landau H. The notion of approximate eigenvalues applied to an integral equation of laser theory // Quart. Appl. Math. April 1977. V. 35. P. 165–171.
- Reichel L., Trefethen L. N. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices // Linear Algebra Appl. 1992. V. 162. P. 153–185.
- **3.** Böttcher A. Pseudospectra and singular values of large convolution operators // J. Integral Equations Appl. 1994. V. 6. P. 267–301.
- Böttcher A., Wolf H. Spectral approximation for Segal-Bargmann space Toeplitz operators // Linear Operators, Banach Center Publ (Warsaw). 1997. V. 387. P. 25–48.
- **5.** *Грудский С. М., Козак А. В.* О скорости сходимости норм операторов, обратных к усеченным операторам Тёплица // Интегродифференциальные уравнения и их приложения. Ростов-на-Дону: Изд-во Ростовск. ун-та, 1995. С. 45–55.
- Böttcher A., Grudsky S. M., Silbermann B. Norms of inverses, spectra, and pseudospectra of large truncated Wiener-Hopf operators and Toeplitz matrices // New York J. Math. 1997. V. 3. P. 1–31.

- 7. Böttcher A., Silbermann B. Introduction to large truncated Toeplitz matrices. New York: Springer, 1999.
- Симоненко И. Б. Новый общий метод исследования линейных операторных уравнений типа сингулярных интегральных уравнений // Докл. АН СССР. 1964. Т. 158. С. 790–793.
- **9.** Симоненко И. Б. Новый общий метод исследования линейных операторных уравнений типа сингулярных интегральных уравнений. 1 // Изв. АН СССР. Сер. мат. 1965. Т. 29. С. 567-586.
- **10.** Симоненко И. Б. Операторы типа свертки в конусах // Мат. сб. 1967. Т. 74. С. 298–313.
- Симоненко И. Б., Чинь Нгок Минь. Локальный метод в теории одномерных сингулярных интегральных уравнений с кусочно-непрерывными коэффициентами. Нетеровость. Ростов-на-Дону: Изд-во Ростовск. гос. ун-та, 1986.
- Симоненко И. Б. Теория операторов локального типа и ее приложения / Ростовский гос. университет. Ростов-на-Дону, 1996. 74 С. Деп. в ВИНИТИ 23.01.96, № 275-В96.
- **13.** Козак А. В. Локальный принцип в теории проекционных методов // Докл. АН СССР. 1973. Т. 212. С. 1287–1289.
- **14.** *Козак А. В.* О методе редукции для дискретных многомерных сверток // Мат. иссл. (Кишинев). 1973. Т. 8. С. 157–160.
- **15.** Kозак А. B. Проекционные методы решения многомерных уравнений типа свертки: Дис. . . . канд. физ.-мат. наук. Ростов-на-Дону, 1974.
- **16.** Козак А. В., Симоненко И. Б. Проекционные методы решения многомерных дискретных уравнений в свертках // Сиб. мат. журн. 1980. Т. 21. С. 119–127.
- 17. Крупник H. Я. Точная константа в теореме И. Б. Симоненко об огибающей семейства операторов локального типа // Функцион. анализ и его приложения. 1986. Т. 20. С. 70–71.

Cтатья поступила 14 мая 2003 г.

Максименко Егор Анатольевич

Ростовский гос. университет, механико-математический факультет, кафедра алгебры и дискретной математики, ул. Зорге, 5, Ростов-на-Дону 344090 emaximen@rnd.runnet.ru