ОБ ОКОЛОСТАНДАРТНОСТИ В ГИЛЬБЕРТОВЫХ ПРОСТРАНСТВАХ

В. Э. Лянце, Т. С. Кудрик

Аннотация: Понятия околостандартности и тени служат обобщениями соответственно сходимости и предела. Есть много полезных версий этих понятий (см., например, [1]). Здесь собраны некоторые дополнительные аспекты и свойства тени и околостандартности. Обсуждаются следующие вопросы: тень вектора и оператора, слабая, сильная и равномерная околостандартности, использование нормы Гильберта — Шмидта, свойства отображения $A \mapsto {}^{\circ}A$, околостандартность проекторов и подпространств, условия околостандартности графика. Использована IST (внутренняя теория множеств) — версия нестандартного анализа Э. Нельсона.

Ключевые слова: околостандартный анализ, инфинитезимальный, тень

Понятия околостандартности и тени служат обобщениями соответственно сходимости и предела. Есть много полезных версий этих понятий (см., например, [1]). Здесь собраны некоторые дополнительные аспекты и свойства тени и околостандартности. Обсуждаются следующие вопросы: тень вектора и оператора, слабая, сильная и равномерная околостандартности, использование нормы Гильберта — Шмидта, свойства отображения $A \mapsto {}^{\circ}A$, околостандартность проекторов и подпространств, условия околостандартности графика. Использована IST (внутренняя теория множеств) — версия нестандартного анализа Э. Нельсона (см. [2] или [1, 3–5]).

0. Обозначения. Пусть $a,b\in\mathbb{R}$. Тогда $«a\approx b»\equiv «b-a$ инфинитезимально», $«a\gg 0»\equiv «a>0$ и $a\not\approx 0», «a\approx \infty»\equiv «a^{-1}\approx 0», «a\ll \infty»\equiv «a\not\approx +\infty».$ Положим ${}^{\mathbb{F}}\mathbb{R}:=\{x\in\mathbb{R}:|x|\ll\infty\}$. Для $x\in{}^{\mathbb{F}}\mathbb{R}$ тень (или стандартная часть) ${}^{\circ}x$ элемента x- это такое вещественное число, что $x\approx{}^{\circ}x$. Мы будем использовать аналогичное обозначение для элементов из \mathbb{R}^n и \mathbb{C}^n с $n\in\mathbb{N},$ $n\ll\infty$.

Для подмножества E стандартного множества обозначим через ${}^{\rm st}E$ (${}^{\rm nst}E$) совокупность стандартных (околостандартных) элементов E. Пусть (X,d) — стандартное метрическое пространство. Тень ${}^{\circ}E$ множества $E\subseteq X$ однозначно определяется следующими условиями:

°
$$E$$
 — стандартное подмножество X , т. е. ° E \in $^{\mathrm{st}}(2^X);$ (0.1)

$$(\forall x \in {}^{\mathrm{st}}X) \ (x \in {}^{\circ}E \Longleftrightarrow \exists x_1 \in E \ d(x, x_1) \approx 0). \tag{0.2}$$

- 0.1. Замечание. (i) Тень ${}^{\circ}E$ внутреннего множества E замкнута;
- (ii) $E \subseteq F$ влечет ° $E \subseteq {}^{\circ}F$;
- (ііі) пусть E линейное подпространство стандартного нормированного пространства; тогда ${}^{\circ}E$ также линейно.

Работа второго из авторов частично поддержана Университетом Авейро, Португалия.

1. Тень вектора. Пусть H — стандартное гильбертово пространство над $\mathbb{C}.$ Положим

$$^{F}H := \{x \in H : ||x|| \ll \infty\}.$$
 (1.1)

Из теоремы Рисса вытекает, что каждый элемент $x \in {}^F H$ обладает menь o ${}^\circ x$, которая единственным образом определяется соотношением

$$^{\circ}x \in {}^{\operatorname{st}}H \quad \text{if} \quad \forall y \in {}^{\operatorname{st}}H \ (^{\circ}x|y) = {}^{\circ}(x|y). \tag{1.2}$$

(Внешнее) отображение $x \mapsto {}^{\circ}x$ является гомоморфизмом ${}^FH \to {}^{\text{st}}H$. Вектор $x \in H$ называют *околостандартным* (и используют обозначение $x \in {}^{\text{nst}}H$), если

$$x \in {}^{F}H \quad \text{u} \quad \|x - {}^{\circ}x\| \approx 0. \tag{1.3}$$

В противном случае х называют отдаленным.

1.1. Предложение. Пусть $x \in {}^F H$. Тогда $x \in {}^{\mathrm{nst}} H$ тогда и только тогда, когда

$$\|^{\circ}x\| = ^{\circ}\|x\|. \tag{1.4}$$

Вектор $x \in H$ отдален в том и только в том случае, если

$$||x|| \approx \infty$$
 или $||^{\circ}x|| < ^{\circ}||x||$. (1.5)

Доказательство. Пусть $x \in {}^F H$. Тогда согласно (1.2) $(x|{}^\circ\! x) \approx \|{}^\circ\! x\|^2$. Поэтому

$$||x - {}^{\circ}x||^2 \approx ||x||^2 - ||{}^{\circ}x||^2, \tag{1.6}$$

что доказывает (1.4) и (1.5).

- **1.2.** Замечание. Частный случай предложения 1.1 содержится в следующем стандартном утверждении: пусть $x_n \to x$ слабо, тогда $x_n \to x$ сильно в том и только в том случае, если $||x_n|| \to ||x||$. Из (1.4) и (1.5) получаем неравенство $||^{\alpha}x|| \le {}^{\alpha}||x||$, которое означает, что норма $||\cdot||$ полунепрерывна снизу относительно слабой топологии на H.
- **2. Тень оператора.** Рассмотрим стандартные гильбертовы пространства H и G. Для скалярных произведений и норм в них будем использовать одинаковые обозначения $(\cdot|\cdot)$ и $\|\cdot\|$. Положим

$${}^{F}\mathscr{B}(H;G) := \{ A \in \mathscr{B}(H;G) : ||A|| \ll \infty \}. \tag{2.1}$$

Для $A \in {}^F\mathscr{B}(H;G)$ тень ${}^\circ A$ однозначно определяется соотношением

$${}^{\circ}A \in {}^{\mathrm{st}}\mathscr{B}(H;G) \quad \text{if} \quad \forall x \in {}^{\mathrm{st}}H \,\forall y \in {}^{\mathrm{st}}G \,\,({}^{\circ}Ax|y) = {}^{\circ}(Ax|y). \tag{2.2}$$

Оператор $A \in {}^{F}\mathscr{B}(H;G)$ называют сильно околостандартным, если

$$A \in {}^{F}\mathscr{B}(H;G) \quad \text{if} \quad \forall x \in {}^{\text{st}}H \mid |Ax - {}^{\circ}Ax| \approx 0.$$
 (2.3)

Если

$$A \in {}^{F}\mathscr{B}(H;G) \quad \text{if} \quad ||A - {}^{\circ}A|| \approx 0, \tag{2.4}$$

то A называют равномерно околостандартным.

2.1. Предложение. Пусть
$$A \in {}^F\mathscr{B}(H;G), \ x \in {}^{\mathrm{nst}}H$$
. Тогда
$${}^{\circ}(Ax) = {}^{\circ}A{}^{\circ}x. \tag{2.5}$$

Доказательство. Согласно (1.2) и (2.2) имеем

$$\forall y \in {}^{\mathrm{st}}H \quad ({}^{\circ}(Ax)|y) \approx (Ax|y) \approx (A^{\circ}x|y) \approx ({}^{\circ}A^{\circ}x|y),$$

что доказывает (2.5).

2.1'. Пусть A равномерно околостандартен и $x \in {}^F H$. Тогда (2.5) справедливо.

Доказательство. Пусть $y \in {}^{\mathrm{st}}H$. Тогда

$$(^{\circ}(Ax)|y) \approx (Ax|y) \approx (^{\circ}Ax|y) = (x|^{\circ}A^{*}y) \approx (^{\circ}x|^{\circ}A^{*}y) = (^{\circ}A^{\circ}x|y).$$

- 2.2. Замечание. Предложение 2.1 означает, что (стандартное) отображение $(x,A)\mapsto Ax$ непрерывно относительно сильной топологии в H и слабой в $\mathcal{B}(H;G)$.
- **2.3.** Предложение. Оператор $A \in {}^{F}\mathscr{B}(H;G)$ сильно околостандартен в том и только в том случае, если

$$\forall x \in {}^{\mathrm{st}}H \quad \|{}^{\circ}Ax\| = {}^{\circ}\|Ax\|. \tag{2.6}$$

Доказательство. Формула (1.6) и предложение 2.1 приводят к соотношению

$$\forall x \in {}^{\mathrm{st}}H \quad ||Ax - {}^{\circ}Ax|| \approx ||Ax||^2 - ||{}^{\circ}Ax||^2,$$
 (2.7)

которое обеспечивает очевидность нашего утверждения.

- 2.4. Замечание. Частный случай предложения 2.3 содержится в следующем утверждении. Пусть $A_n, A \in \mathscr{B}(H;G)$ и $A_n \to A$ слабо. Тогда $A_n \to A$ сильно в том и только в том случае, если $\forall x \in H \ \|A_n x\| \to \|Ax\|$.
 - **2.5.** Следствие (из предложения (2.7)). Пусть $A \in {}^F\mathscr{B}(H;G)$. Тогда

$$\|^{\circ}A\| \le {}^{\circ}\|A\|. \tag{2.8}$$

В самом деле, $\forall x \in {}^{\mathrm{st}}H \ \|{}^{\circ}Ax\| \leq {}^{\circ}\|A\| \leq {}^{\circ}\|A\| \cdot \|x\|$. Следовательно, (2.8) выполнено ввиду принципа переноса.

Соотношение (2.8) означает, что $\|\cdot\|_{\mathscr{B}(H:G)}$ полунепрерывна сверху в слабой топологии на $\mathscr{B}(H;G)$.

2.6. Замечание. Если $A \in \mathcal{B}(H;G)$ равномерно околостандартен, то согласно (2.4)

$$\|^{\circ}A\| = ^{\circ}\|A\| \tag{2.9}$$

(т. е. $\|\cdot\|_{\mathscr{B}(H;G)}$ непрерывна в равномерной топологии на $\mathscr{B}(H;G)$). Однако неравенства (2.9) недостаточно для равномерной околостандартности A. Пусть, например, $(e_n)_{n\in\mathbb{N}}$ — стандартный ортонормированный базис в H. Возьмем $n \approx \infty$ и для любого $x \in H$ положим

$$Px = \sum_{k \le n} (x|e_k)e_k.$$

 $Px=\sum_{k\leq n}(x|e_k)e_k.$ Тогда ° $P=\mathbb{I}_H,\;\|$ ° $P\|=1=$ ° $\|P\|,\;$ но $\|P-$ ° $P\|=1\not\approx 0,\;$ так что P лишь сильно околостандартен.

2.7. Замечание. Для сильно околостандартного оператора A неравенство (2.8) может оказаться строгим. Пусть, например, $Qx = (x|e_n)e_n$ (n и e_n — как в 2.6). Тогда Q сильно околостандартен и $\|{}^{\circ}Q\| = 0 < 1 = {}^{\circ}\|Q\|$.

Как обычно, для $A, B \in \mathcal{B}(H)$ мы пишем $A \leq B$ вместо $\forall x \in H \ (Ax|x) \leq$ (Bx|x). Использование символа « \leq » дает достаточное условие сильной околостандартности.

2.8. Предложение. Пусть $A \in {}^F\mathscr{B}(H)$. Если $A \leq {}^\circ A$ или ${}^\circ A \leq A$, то A сильно околостандартен.

Доказательство. Предположим, что $A \leq {}^{\circ}A$. Используем неравенство

$$\forall B \ge 0 \quad \forall x \in H \quad ||Bx||^2 \le ||B|| (Bx|x),$$
 (2.10)

вытекающее из неравенства Буняковского для (Bx|y). Полагая $B = {}^{\circ}A - A$, получим

$$\| Ax - Ax \|^2 \le (\|A\| + \|A\|)((A - A)x | x) \approx 0$$

для $x \in {}^{\mathrm{nst}}H$. В случае ${}^{\circ}A \leq A$ заметим, что $-A \leq -{}^{\circ}A \leq {}^{\circ}(-A)$.

Следующее классическое утверждение вытекает из 2.8.

2.9. Следствие. Пусть $(A_n)_{n\in\mathbb{N}}$ — последовательность операторов $A_n\in \mathscr{B}(H)$ такая, что $A_1\leq A_2\leq \cdots$ и $\sup_n\|A_n\|<\infty$. Тогда (A_n) сильно сходится.

ДОКАЗАТЕЛЬСТВО. Не уменьшая общности, можно считать, что (A_n) — стандартная последовательность. Тогда

$$\gamma := \sup_{n} \|A_n\| \ll \infty \quad \text{if} \quad \forall n \in {}^{\mathrm{st}}\mathbb{N} \ A_n \in {}^{\mathrm{st}}\mathscr{B}(H). \tag{2.11}$$

Фиксируем $k \in \mathbb{N} \setminus {}^{\operatorname{st}}\mathbb{N}$. Для $n \in {}^{\operatorname{st}}\mathbb{N}$ имеем $A_n = {}^{\circ}A_n \leq {}^{\circ}A_k$. Согласно принципу переноса $\forall n \in \mathbb{N}$ $A_n \leq {}^{\circ}A_k$, т. е. $\forall x \in H$ $(A_nx|x) \leq ({}^{\circ}A_kx|x)$ и для $x \in {}^{\operatorname{st}}H$ $({}^{\circ}A_nx|x) \leq ({}^{\circ}A_kx|x)$. Отсюда для $k \in \mathbb{N} \setminus {}^{\operatorname{st}}\mathbb{N}$ тень ${}^{\circ}A_k$ не зависит от k. Обозначим ее через A. Пусть $n \in \mathbb{N} \setminus {}^{\operatorname{st}}\mathbb{N}$. Поскольку $A_n \leq A = {}^{\circ}A_n$, последовательность A_n сильно околостандартна, т. е. $\forall x \in {}^{\operatorname{st}}H$ $\|Ax - A_nx\| \approx 0$, или $A = \lim A_n$ в сильном смысле.

3. Норма Гильберта — Шмидта. Эта норма определяется для $A\in\mathscr{B}(H;G)$ равенством

$$||A||_2 := \left(\sum_{n \in \mathbb{N}} ||Ae_n||^2\right)^{1/2},$$
 (3.1)

где $(e_n)_{n\in\mathbb{N}}$ — произвольный ортонормированный базис в H. Отметим, что подпространство

$$\mathscr{B}_2(H;G) := \{ A \in \mathscr{B}(H;G) : ||A||_2 < \infty \}$$
(3.2)

может быть рассмотрено как (стандартное) гильбертово пространство со скалярным произведением

$$\forall A, B \in \mathscr{B}(H; G) \quad (A|B)_2 := \operatorname{trace} B^*A := \sum_{n \in \mathbb{N}} (Ae_n|Be_n). \tag{3.3}$$

Пусть $A \in {}^F\mathscr{B}_2(H;G)$ (т. е. $||A||_2 \ll \infty$). Тогда A имеет тень относительно $(\cdot|\cdot)_2$, которую временно обозначим через ${}'A$. Таким образом,

$$'A \in {}^{\operatorname{st}}\mathscr{B}_{2}(H;G) \quad \text{if} \quad \forall B \in {}^{\operatorname{st}}\mathscr{B}_{2}(H;G) \quad ('A|B)_{2} = {}^{\circ}(A|B)_{2}. \tag{3.4}$$

Поскольку $||A||_2 \ll \infty$, то $||A|| \ll \infty$. Поэтому если $A \in {}^F\mathcal{B}_2(H;G)$, то A также имеет тень ${}^{\circ}A$, определенную посредством (2.2).

3.1. Предложение. Пусть $A \in {}^{F}\mathscr{B}_{2}(H;G)$. Тогда ${}'A = {}^{\circ}A$.

Доказательство. Пусть $(e_n)_{n\in\mathbb{N}}$ — стандартный ортонормальный базис в H. Фиксируем $p,q\in{}^{\operatorname{st}}\mathbb{N}$ и положим $Bx:=(x|e_q)e_p$ для $x\in H$. Ясно, что $B\in{}^{\operatorname{st}}\mathcal{B}_2(H)$. (Для простоты мы считаем G=H.) Тогда $('A|B)_2={}^{\circ}(A|B)_2$. Однако $(A|B)_2=(Ae_q|e_p)\approx({}^{\circ}Ae_p|e_q)$. Таким образом, для $p,q\in{}^{\operatorname{st}}\mathbb{N}$ имеем $('Ae_q|e_p)=({}^{\circ}Ae_q|e_p)$. Так как стандартный оператор однозначно определяется элементами его матрицы со стандартными элементами, то $'A={}^{\circ}A$.

3.2. Следствие. Пусть $A \in {}^F\mathscr{B}_2(H;G)$. Тогда ${}^\circ\!A \in \mathscr{B}_2(H;G)$ и

$$||A - {}^{\circ}A||_{2}^{2} \approx ||A||_{2}^{2} - ||{}^{\circ}A||_{2}^{2}. \tag{3.5}$$

Кроме того,

$$||A - {}^{\circ}A||_2 \approx 0 \iff ||{}^{\circ}A||_2 = {}^{\circ}||A||_2.$$
 (3.6)

ДОКАЗАТЕЛЬСТВО непосредственно вытекает из предложения 1.1 и формулы (1.6).

3.3. Предложение. Если $A \in {}^F\mathscr{B}_2(H;G)$ и $\|A - {}^\circ A\|_2 \approx 0$, то A равномерно околостандартен. Обратно, пусть $A \in \mathscr{B}(H;G)$ сильно околостандартен. Предположим, что $\|A\|_2 \ll \infty$ и для некоторого стандартного ортонормального базиса $(e_n)_{n \in \mathbb{N}}$ в H

$$\forall n \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N} \quad \sum_{k>n} \|Ae_k\|^2 \approx 0. \tag{3.7}$$

Тогда $||A - {}^{\circ}A||_2 \approx 0$.

Доказательство. Первая часть следует из того, что $\|A\| \leq \|A\|_2$. Для обоснования второй используем неравенство

$$||A - {}^{\circ}A||_{2}^{2} \le \sum_{k \le n} ||(A - {}^{\circ}A)e_{k}||^{2} + 2\sum_{k > n} ||Ae_{k}||^{2} + 2\sum_{k > n} ||{}^{\circ}Ae_{k}||^{2}.$$

Если k стандартно, то $\|(A - {}^{\circ}A)e_k\| \approx 0$ по определению сильной околостандартности оператора. Значит, по лемме Робинсона первая сумма инфинитезимальна для некоторого $n \in \mathbb{N} \setminus {}^{\text{st}}\mathbb{N}$. Однако для такого n вторая сумма инфинитезимальна ввиду (3.7), а третья инфинитезимальна как остаток сходящегося стандартного ряда.

- **4.** Отображение $A \mapsto {}^{\circ}\!A$. Начнем со следующего очевидного утверждения.
 - **4.1.** Предложение (i). Пусть $A,B\in {}^F\mathscr{B}(H;G),\ a,b\in {}^F\mathbb{C}.$ Тогда ${}^\circ(aA+bB)={}^\circa{}^\circ\!A+{}^\circb{}^\circ\!B.$

Eсли A, B сильно (равномерно) околостандартны, то aA + bB таков же.

- (ii) Если $A \in {}^F\mathscr{B}(H;G)$, то ${}^{\circ}(A^*) = ({}^{\circ}A)^*$. Однако A^* необязательно сильно околостандартен, если таков A.
- (iii) Если $A, B \in {}^F\mathscr{B}(H)$ и B сильно околостандартен, то ${}^{\circ}(AB) = {}^{\circ}A{}^{\circ}B$. Если A и B сильно околостандартны, то таковым будет AB.

Докажем, например, первую часть (iii). Пусть $x, y \in {}^{\mathrm{st}}H$. Тогда

$$(^{\circ}(AB)x|y) \approx (ABx|y) \approx (A^{\circ}Bx|y) \approx (^{\circ}A^{\circ}Bx|y).$$

Таким образом, $(^{\circ}(AB)x|y) = (^{\circ}A^{\circ}Bx|y)$.

- **4.2.** Следствие. Пусть $A \in \mathcal{B}(H;G)$ биекция $H \to G$. Если A и A^{-1} одновременно околостандартны, то $^{\circ}A$ биекция $H \to G$ и $(^{\circ}A)^{-1} = ^{\circ}(A^{-1})$.
- **4.3.** Предложение. Пусть A биекция $H \to G$. Если A равномерно околостандартен и $||A^{-1}|| \ll \infty$, то A^{-1} также равномерно околостандартен (и $\circ (A^{-1}) = (\circ A)^{-1}$).

Доказательство. Положим $V:=A-{}^{\circ}\!A.$ Тогда поскольку $\mathbb{I}-A^{-1}V=A^{-1}({}^{\circ}\!A),$ то $({}^{\circ}\!A)^{-1}A=(\mathbb{I}-A^{-1}V)^{-1}$ и

$$({}^{\circ}A)^{-1} = (\mathbb{I} - A^{-1}V)^{-1}A^{-1} = \sum_{n \ge 0} (A^{-1}V)^n A^{-1}.$$

Поэтому

$$\|(^{\circ}A)^{-1} - A^{-1}\| \le \|A^{-1}\|^2 \|V\|. \tag{4.1}$$

4.4. Предложение. Пусть $A \in \mathcal{B}(H;G)$ сильно околостандартен. Тогда $({}^{\circ}A)({}^{\circ}X) \subseteq {}^{\circ}(AX)$ для любого подпространства $X \subset H$.

ДОКАЗАТЕЛЬСТВО. Пусть $x \in {}^{\operatorname{st}} {}^{\circ}X$, $x \approx x_1$ для некоторого $x_1 \in X$. Тогда $({}^{\circ}A)x \approx Ax \approx Ax_1 \in AX$. Это означает, что $({}^{\circ}A)x \in {}^{\circ}(AX)$. Согласно принципу переноса $({}^{\circ}A)({}^{\circ}X) \subseteq {}^{\circ}(AX)$.

4.5. Следствие. Пусть $A \in \mathcal{B}(H)$ сильно околостандартен. Тогда для любого инвариантного подпространства X в A тень ${}^{\circ}X$ является инвариантным подпространством в ${}^{\circ}A$.

Доказательство. Если $AX \subseteq X$, то согласно замечанию 0.1(ii) ° $(AX) \subseteq$ °X. Поэтому (°A)(°X) \subseteq °X.

4.6. Предложение. Пусть $A \in \mathcal{B}(H;G)$ — биекция $H \to G$. Предположим, что A и A^{-1} оба сильно околостандартны. Тогда $({}^{\circ}A)({}^{\circ}X) = {}^{\circ}(AX)$ для любого подпространства $X \subseteq H$.

Доказательство. Пусть $y \in {}^{\text{st}\,\circ}(AX)$. Обозначим через y_1 такой вектор, что $y_1 \in AX$ и $y \approx y_1$. Положим $x_1 := A^{-1}y_1$. Имеем $x_1 \in X$ и $x_1 \approx A^{-1}y \approx {}^{\circ}(A^{-1})y$. Согласно следствию 4.2 ${}^{\circ}(A^{-1}) = ({}^{\circ}A)^{-1}$. По принципу переноса ${}^{\circ}(AX) \subseteq ({}^{\circ}A)({}^{\circ}X)$. Противоположное включение доказано в 4.4.

Для $X = \ker A$ справедливо следующее утверждение.

4.7. Предложение. Пусть $A \in {}^F\mathscr{B}(H;G)$. Тогда

$$^{\circ} \ker A \subseteq \ker {^{\circ}A}.$$
 (4.2)

ДОКАЗАТЕЛЬСТВО. Пусть $x \in {}^{\text{st}} \circ \ker A$. В силу (0.2) $x \approx x_1$ для некоторого $x_1 \in \ker A$. Отсюда $({}^{\circ}Ax|y) \approx (Ax_1|y) = 0$ для любого $y \in {}^{\text{st}}H$. Тогда ${}^{\circ}Ax = 0$ и по принципу переноса (4.2) выполнено.

5. Проекторы и подпространства. Напомним следующее стандартное утверждение. Пусть последовательность $(P_n)_{n\in\mathbb{N}}$ ортопроекторов $P_n\in\mathcal{B}(H)$ слабо сходится к Q. Если Q — ортопроектор, то $P_n\to Q$ сильно. Укажем некоторое обобщение этого результата.

5.1. Предложение. Ортопроектор P, тень которого $Q := {}^{\circ}P$ является ортопроектором, сильно околостандартен. Тень сильно околостандартного ортопроектора является ортопроектором.

Доказательство. Поскольку $\|P\|=1\ll\infty$, тень Q существует. В силу $(2.2)\ \forall x\in {}^{\mathrm{st}}H\ (Px|x)\approx (Qx|x)$. По предположению $Q=Q^*=Q^2$. Поэтому $\|Qx\|=(Qx|x)^{1/2}={}^{\circ}\|Px\|$. Согласно предложению $2.3\ P$ сильно околостандартен. Если $P^2=P$ и $P=P^*$, то по предложению $4.1(\mathrm{ii})$, (iii) имеем $({}^{\circ}P)^2={}^{\circ}P$ и ${}^{\circ}P=({}^{\circ}P)^*$.

5.2. Предостережение. Тень ортопроектора может не оказаться проектором. Например, пусть (e_k) — стандартный ортонормальный базис в H. Положим $f = \alpha e_1 + \beta e_n$, где $|\alpha|^2 + |\beta|^2 = 1$ и $n \in \mathbb{N} \setminus \mathrm{st} \mathbb{N}$. Пусть Fx = (x|f)f. Тогда F — ортопроектор. Для $n \approx \infty$ будет $^\circe_n = 0$. Таким образом, $(^\circF)x = |\alpha|^2(x|e_1)e_1$. Если $|\alpha| \neq 1$, то F не проектор.

Для проекторов укажем следующее уточнение предложения 4.7.

5.3 Предложение. Пусть $J \in \mathcal{B}(H)$ — сильно околостандартный проектор. Тогда $^{\circ}J$ — проектор и

$$^{\circ} \ker J = \ker {^{\circ}} J, \quad ^{\circ} \operatorname{im} J = \operatorname{im} {^{\circ}} J.$$
 (5.1)

Доказательство. Предложение 4.1(iii) влечет равенство $({}^{\circ}J)^2 = {}^{\circ}J$, т. е. ${}^{\circ}J -$ проектор. Пусть $x \in {}^{\text{st}} \ker {}^{\circ}J$. Тогда $Jx \approx {}^{\circ}Jx = 0$. Полагая $x_1 := x - Jx$, находим $x_1 \approx x$ и $Jx_1 = 0$. В силу (0.2) $x \in {}^{\circ} \ker J$ и по принципу переноса $\ker {}^{\circ}J \subseteq {}^{\circ} \ker J$. Предложение 4.7 теперь влечет первое равенство в (5.1). Так как $\mathbb{I}-J$ —сильно околостандартный проектор и іт $J = \ker(\mathbb{I}-J)$, іт ${}^{\circ}J = \ker(\mathbb{I}-{}^{\circ}J)$, второе равенство также выполнено.

5.4. Замечание (полностью стандартное). Пусть $J,\,K$ — проекторы такие, что

$$\ker J = \ker K. \tag{5.2}$$

Положим

$$U := \mathbb{I} - J + K, \quad V = \mathbb{I} - K + J. \tag{5.3}$$

Отображения U и V взаимно обратны:

$$UV = VU = \mathbb{I},\tag{5.4}$$

и проекторы J, K подобны:

$$K = UJV, \quad J = VKU. \tag{5.5}$$

Доказательство. Из (5.2) получаем

$$JK = J, \quad KJ = K, \tag{5.6}$$

что позволяет легко проверить (5.4) и (5.5).

5.5. Следствие. Пусть для проекторов $J, K \in \mathcal{B}(H)$ выполнено (5.2). Если J и K сильно (равномерно) околостандартны, то их подобные U, V также сильно (равномерно) околостандартны и

$$^{\circ}K = ^{\circ}U^{\circ}J^{\circ}V, \quad ^{\circ}J = ^{\circ}V^{\circ}K^{\circ}U$$
 (5.7)

- **5.6.** Определение. Подпространство $G \subset H$ называют s-околостандартным (u-околостандартным), если ортопроектор $P: H \to G$ сильно (равномерно) околостандартен.
- **5.7.** Следствие (из 5.5). Пусть $J \in \mathcal{B}(H)$ сильно (равномерно) околостандартный проектор такой, что $G := \ker J$ s-околостандартен (u-околостандар-тен). Тогда

$$J = VPV^{-1}, (5.8)$$

где P — ортопроектор $H \to G$ и биекции V, V^{-1} сильно (равномерно) околостандартны. B частности, ${}^{\circ}J = {}^{\circ}V{}^{\circ}P({}^{\circ}V)^{-1}$.

Опишем и-околостандартные подпространства.

5.8. Определение. Последовательности $(e_n), (e'_n)$ векторов в H называют n-эквивалентными, если существует $U \in \mathcal{B}(H)$ такой, что $\forall n \ e'_n = U e_n$ и

$$||U - \mathbb{I}|| \approx 0. \tag{5.9}$$

Если U к тому же унитарный оператор, то (e_n) , (e'_n) называют унитарно п-эквивалентными.

Отметим, что из (5.9) вытекает, что U является биекцией $H \to H$ такой, что $U^{-1} \in \mathcal{B}(H)$ и $\|U^{-1} - \mathbb{I}\| \approx 0$. Тем самым n-эквивалентность — это настоящая эквивалентность. То же можно сказать об унитарной n-эквивалентности.

5.9. Предложение. Подпространство $G \subseteq H$ u-околостандартно в том и только в том случае, если оно обладает ортонормальным базисом, унитарно n-эквивалентным некоторой стандартной ортонормальной последовательности.

Для доказательства нам будет нужно следующее утверждение.

5.10. Лемма. Пусть P — равномерно околостандартный ортопроектор. Тогда существует унитарный оператор $U \in \mathcal{B}(H)$, для которого выполнено (5.9) и

$$^{\circ}P = UPU^*. \tag{5.10}$$

Очевидно, из (5.9) и (5.10) вытекает, что ортопроектор P равномерно околостандартен: $\|P - {}^{\circ}P\| \approx 0$.

Доказательство. Используем конструкцию Като [6]. Для ортопроекторов $P,Q\in \mathscr{B}(H)$ положим

$$U' := QP + (\mathbb{I} - Q)(\mathbb{I} - P), \quad R := (P - Q)^2. \tag{5.11}$$

Если ||R|| < 1, то можно определить

$$U := U'(\mathbb{I} - R)^{-1/2},\tag{5.12}$$

где

$$(\mathbb{I} - R)^{-1/2} := \sum_{n \ge 0} {\binom{-1/2}{n}} R^n.$$

Непосредственными вычислениями можно проверить, что R коммутирует с P, Q, U' и $UU^* = U^*U = \mathbb{I}$. Взяв $Q := {}^{\circ}P$, с учетом того, что $\|P - {}^{\circ}P\| \approx 0$, получаем $U' \approx {}^{\circ}P^2 + (\mathbb{I} - {}^{\circ}P)^2 = \mathbb{I}$, $R \approx 0$, $U \approx \mathbb{I}$, где « \approx » понимается в смысле $\|\cdot\|_{\mathscr{B}(H)}$. Это доказывает (5.9) и (5.10).

5.11. Следствие. Пусть $P \in \mathcal{B}(H)$ — равномерно околостандартный ортопроектор. Тогда существуют стандартная ортонормальная последовательность (e_n) в H и унитарный оператор $U \in \mathcal{B}(H)$, для которых выполнено (5.9), такие, что

$$\forall x \in H \quad Px = \sum_{n} (x|e'_n)e'_n, \quad \text{где } e'_n = Ue_n.$$
 (5.13)

ДОКАЗАТЕЛЬСТВО. Достаточно в качестве (e_n) взять стандартный базис в $({}^{\circ}P)H$. Выполнимость (5.9) немедленно следует из 5.6 и 5.10.

Рассмотрим ортопроекторы конечного ранга. Если $\operatorname{rank} P = n \in \mathbb{N},$ то ортопроектор P можно представить так:

$$\forall x \in H \quad Px = \sum_{k \le n} (x|e_k)e_k \tag{5.14}$$

с попарно ортогональными единичными векторами e_k . Очевидно, если $n \ll \infty$, то

$$\forall x \in H \quad {}^{\circ}Px = \sum_{k \le n} (x|{}^{\circ}e_k)^{\circ}e_k. \tag{5.15}$$

В частности,

$$\operatorname{rank}{}^{\circ}P < \operatorname{rank}P. \tag{5.16}$$

5.12. Предложение. Пусть G- s-околостандартное подпространство в H такое, что $\dim G \ll \infty$. Тогда

$$\dim{}^{\circ}G \le \dim G. \tag{5.17}$$

Доказательство. Обозначим через P ортопроектор $H \to G$. Тогда P сильно околостандартен и $\operatorname{rank} P = \dim G$. В силу (5.16) $\operatorname{rank} {}^{\circ}P \leq \dim G$. Но ввиду (5.1) $\operatorname{rank} {}^{\circ}P = \dim {}^{\circ}P = \dim {}^{\circ}P = \dim {}^{\circ}G$.

5.13. Предложение. Пусть G — s-околостандартное подпространство в H. Тогда ${}^{\circ}(G^{\perp}) = ({}^{\circ}G)^{\perp}$.

Доказательство. Обозначая через P ортопроектор $H \to G$, согласно предложению 5.3 имеем

$${}^{\circ}(G^{\perp}) = {}^{\circ} \ker P = \ker {}^{\circ}P = \operatorname{im}(\mathbb{I} - {}^{\circ}P) = [\ker(\mathbb{I} - {}^{\circ}P)]^{\perp}$$
$$= (\operatorname{im}{}^{\circ}P)^{\perp} = ({}^{\circ} \operatorname{im} P)^{\perp} = ({}^{\circ}G)^{\perp},$$

поскольку тень сильно околостандартного ортопроектора является ортопроектором.

5.14. Следствие. Пусть G — s-околостандартное подпространство в H такое, что $\operatorname{codim} G \ll \infty$. Тогда

$$\operatorname{codim}^{\circ} G \le \operatorname{codim} G. \tag{5.17'}$$

ДОКАЗАТЕЛЬСТВО. Имеем $\operatorname{codim} G = \dim G^{\perp} \ge \dim^{\circ}(G^{\perp}) = \dim({}^{\circ}G)^{\perp} = \operatorname{codim}^{\circ}G$.

5.15. Предложение. Пусть P- сильно околостандартный ортопроектор такой, что

$$\operatorname{rank}{}^{\circ}P = \operatorname{rank}P < \infty. \tag{5.18}$$

Tогда P равномерно околостандартен.

Доказательство. Из (5.18) вытекает, что $n:=\operatorname{rank} P\ll\infty$. По предложению 5.3 °P — (орто)проектор. Поэтому

$$\forall k \le n \quad {}^{\circ}e_j = {}^{\circ}P^{\circ}e_j = \sum_{k \le n} ({}^{\circ}e_j | {}^{\circ}e_k)^{\circ}e_k.$$

Ввиду (5.18) элементы ${}^{\circ}e_k$ линейно независимы, так что $({}^{\circ}e_j|{}^{\circ}e_k) = \delta_{jk}$ (символ Кронекера). В частности, $\forall k \leq n \ \|{}^{\circ}e_k\| = 1 = \|e_k\|$. По предложению 1.1 $\forall k \leq n \ \|e_k - {}^{\circ}e_k\| \approx 0$. В силу (5.14) и (5.15)

$$||P - {}^{\circ}P|| \le 2 \sum_{k \le n} ||e_k - {}^{\circ}e_k||.$$
 (5.19)

5.16. ПРИМЕР (подпространство, не являющееся s-околостандартным). Пусть $G:=f^{\perp}$, где $f:=\alpha e_1+\beta e_n$ такие, как в п. 5.2. Там мы показали, что тень $^{\circ}P$ ортопроектора $P:H\to G$ не будет проектором. Поэтому в силу предложения 5.3 P не является сильно околостандартным. Отсюда G не s-околостандартен.

Покажем, что ${}^{\circ}G = e_1^{\perp}$. В самом деле, пусть $x \in {}^{\text{st}}{}^{\circ}G$. Тогда $x \approx x_1$ для некоторого $x_1 \in G$. Поскольку $(x|e_n) \approx 0$, имеем

$$(x|e_1) \approx \frac{1}{\alpha}(x_1|\alpha e_1 + \beta e_n) = 0.$$

Отсюда $x \perp e_1$. Обратно, пусть $x \in {}^{\operatorname{st}}H$ и $(x|e_1) = 0$. Положим $x_1 := x - (x|f)f$. Тогда $(x_1|f) = 0$, т. е. $x_1 \in G$. Кроме того, $x - x_1 = (x|\alpha e_1 + \beta e_n) = \overline{\beta}(x|e_n) \approx 0$, так что $x \in {}^{\circ}G$. Отметим, что *углом* между G и ${}^{\circ}G$ будет $\operatorname{arccos}\alpha$ (в частности, если α около 0, то этот угол около $\pi/2$).

5.17. Предложение. Пусть ортопроектор P задан равенством

$$Px := \sum_{k \le n} (x|e_k)e_k,$$

где $n=\operatorname{rank} P\ll\infty$. Если $\forall k\leq n\parallel^{\circ}e_{k}\parallel<1\Rightarrow^{\circ}e_{k}=0,$ то P сильно околостандартен.

Доказательство. Пусть $\|{}^{\circ}e_{k}\| = 1$ для $k \leq n'$ и ${}^{\circ}e_{k} = 0$ для $n' < k \leq n$. Тогда $\forall k \leq n'$ $\|e_{k} - {}^{\circ}e_{k}\| \approx 0$. Так как $\forall k \leq n \ \forall x \in {}^{\mathrm{st}}H$ $(x|e_{k} - {}^{\circ}e_{k}) \approx 0$, имеем

$$\forall x \in {}^{\mathrm{st}}H \quad Px - {}^{\circ}Px \approx \sum_{k \leq n'} (x|{}^{\circ}e_k)(e_k - {}^{\circ}e_k) \approx 0.$$

5.18. Следствие. Пусть подпространство $G \subset H$ имеет ортонормальный базис $(e_k)_{k \leq n}, \ n \ll \infty$, такой, что $\forall k \leq n \ \|^{\circ}e_k\| < 1 \Rightarrow {}^{\circ}e_k = 0$. Тогда G s-околостандартен.

- **5.19.** ПРИМЕР (ядро функционала). Пусть $G:=\{x\in H:\ell(x)=0\}$, где $\ell\in H^*$. Можно считать, что $\|\ell\|=1$.
 - (i) Если $\| e \ell \| = 1$, то G u-околостандартен.
 - (ii) Если $0 < \| ^{\circ} \ell \| < 1$, то G не будет s-околостандартным.
 - (iii) Если $\circ \ell = 0$, то G = H.

ДОКАЗАТЕЛЬСТВО. Имеем $\ell(x) = (x|e)$, где e — единичные векторы. Тогда $G = \ker P$, где Px := (x|e)e (P — одномерный ортопроектор). Кроме того, ${}^{\circ}\ell(x) = (x|{}^{\circ}e)$, $\|{}^{\circ}\ell\| = \|{}^{\circ}e\|$, ${}^{\circ}Px = (x|{}^{\circ}e){}^{\circ}e$.

- (i) Из $\|\circ\ell\|=1$ вытекает, что $\|\circ e\|=\|e\|$, поэтому $\|e-\circ e\|\approx 0$ и $\|Px-\circ Px\|\leq 2\|x\|\cdot\|e-\circ e\|\approx 0$. Отсюда P равномерно околостандартен.
 - (ii) Из соотношения $0 < \|^{\circ} \ell \| < 1$ следует, что $\|e {}^{\circ} e\| \gg 0$. Поэтому

$$||P^{\circ}e - {}^{\circ}P^{\circ}e|| = ||({}^{\circ}e|e)e - ||{}^{\circ}e||^{2} \circ e|| \approx ||{}^{\circ}e||^{2} ||e - {}^{\circ}e|| \gg 0.$$

Отсюда P не сильно околостандартен.

(iii) Из ° $\ell=0$ вытекает, что °e=0 и °P=0. Так как °P — ортопроектор, по предложению 5.1 P сильно околостандартен. Поэтому по предложению 5.3 °G= ° ker $P=\ker$ °P=H.

Рассмотрим теперь бесконечномерные (или гиперконечномерные) подпространства.

5.20. Предложение. Пусть подпространство $G \subseteq H$ имеет ортонормальный базис (e_n) такой, что

$$\forall n \in {}^{\mathrm{st}}\mathbb{N} \quad \|^{\circ}e_n\| = 1, \tag{5.20}$$

$$\forall n \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N} \quad \forall x \in {}^{\mathrm{st}}H \quad \sum_{k \ge n} |(x|e_k)|^2 \approx 0.$$
 (5.21)

Тогда G s-околостандартен и последовательность

$$(e_n^{\circ})_{n \in \mathbb{N}} := \text{st. ext.}({}^{\circ}e_n)_{n \in {}^{\text{st}}\mathbb{N}}$$
 (5.22)

является ортонормальным базисом в °G. Иными словами, пусть P — ортопроектор, заданный соотношением $\forall x \in H$ $Px = \sum_{n} (x|e_n)e_n$, где (e_n) удовлетворяет условиям (5.20), (5.21). Тогда P сильно околостандартен и его тень дается соотношением

$$\forall x \in H \quad {}^{\circ}Px = \sum_{n \in \mathbb{N}} (x | \mathring{e_n}) \mathring{e_n}, \tag{5.23}$$

где $(\stackrel{\circ}{e_n})_{n\in\mathbb{N}}$ определено в (5.22).

ДОКАЗАТЕЛЬСТВО. Согласно предложению 1.1 из условия (5.20) вытекает, что $\forall n \in {}^{\mathrm{st}}\mathbb{N} \ \|e_n - \mathring{e}_n\| = \|e_n - \mathring{e}_n\| \approx 0$. Поэтому $\forall n, k \in {}^{\mathrm{st}}\mathbb{N} \ (\mathring{e}_n|\mathring{e}_k) \approx (e_n|e_k)$. По принципу переноса стандартная последовательность $(\mathring{e}_n)_{n \in \mathbb{N}}$ ортонормальна. Пусть P — ортопроектор $H \to G$ и $x, y \in {}^{\mathrm{st}}H$. Тогда

$$({}^{\circ}Px|y)\approx (Px|y)=\sum_{k\leq n}(x|e_k)(e_k|y)+\sum_{k>n}(x|e_k)(e_k|y).$$

Отсюда для $n \in {}^{\mathrm{st}}\mathbb{N}$ имеем

$$({}^{\circ}Px|y) \approx \sum_{k \le n} (x|e_k^{\circ})(e_k^{\circ}|y) + \sum_{k > n} (x|e_k)(e_k|y).$$

По лемме Робинсона это выполнено также для некоторого $n \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N}$. Но для такого n по условию (5.21) второе слагаемое инфинитезимально. Тем самым существует $n \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N}$ такое, что

$$({}^{\circ}Px|y) \approx \sum_{k \le n} (x|\overset{\circ}{e_k})(\overset{\circ}{e_k}|y).$$

В силу неравенства Бесселя стандартный ряд

$$\sum_{n\in\mathbb{N}} (x|e_n^\circ)(e_n^\circ|y)$$

сходится. Так как (${}^{\circ}Px|y$) также стандартно, приходим к (5.23). В частности, ${}^{\circ}P$ — ортопроектор и по предложению 5.1 P сильно околостандартен. Из (5.23) вытекает также, что $(e_n^{\circ})_{n\in\mathbb{N}}$ — ортонормальный базис в im ${}^{\circ}P = {}^{\circ}$ im $P = {}^{\circ}G$.

Дадим достаточные условия сильной околостандартности.

5.21. Предложение. Пусть $J \in {}^F\mathscr{B}(H)$ — проектор такой, что $J^{\circ}J = J$. Тогда J сильно околостандартен.

Доказательство. Поскольку $\|J\| \ge 1$, имеем $\forall x \in H \ \|Jx\| \le \|°Jx\|$, поэтому $°\|Jx\| \le \|°Jx\|$. Ввиду (2.7) имеем также $°\|Jx\|^2 - \|°Jx\|^2 \ge 0$ для $x \in {}^{\mathrm{st}}H$. Таким образом, $\forall x \in {}^{\mathrm{st}}H \ \|°Jx\| = {}^{\mathrm{o}}\|Jx\|$, и в силу предложения 2.3 J сильно околостандартен.

5.22. Следствие. Пусть $J \in {}^F\mathscr{B}(H)$ — проектор такой, что $({}^\circ\!J)J = J$. Тогда J^* сильно околостандартен.

Доказательство. Сопряженный J^* также является проектором, и по утверждению $4.1(ii)\ J^*({}^\circ\!J)^* = J^*,\ ({}^\circ\!J)^* = {}^\circ(J^*).$

5.23. Следствие (полностью стандартное). Пусть $(J_n)_{n\in\mathbb{N}}$ — последовательность проекторов $J_n\in\mathcal{B}(H)$ такая, что $\sup_n\|J_n\|<\infty$ и $\forall k\leq n\ J_kJ_n=J_nJ_k=J_k$. Тогда (J_n) сильно сходится.

ДОКАЗАТЕЛЬСТВО. Не уменьшая общности, можно считать, что (J_n) стандартна. Поэтому $\forall n \in {}^{\mathrm{st}}\mathbb{N}$ $J_n \in {}^{\mathrm{st}}\mathbb{N}$. Фиксируем некоторое $k \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N}$. Для $n \in {}^{\mathrm{st}}\mathbb{N}$ имеем $J_nJ_k = J_n$, откуда $J_n = J_n{}^{\circ}(J_k)$. По принципу переноса это выполнено для всех $n \in \mathbb{N}$. Отсюда по утверждению $4.1(\mathrm{ii}) \ \forall k, n \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N}$ ° $J_n = {}^{\circ}J_n{}^{\circ}J_k$. Мы видим, что ° J_n для $n \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N}$ не зависит от n. Обозначим его через J. Поскольку $J_n = J_n{}^{\circ}J_n$, согласно примеру $5.19 \ J_n$ сильно околостандартен, т. е.

$$\forall n \in \mathbb{N} \setminus {}^{\mathrm{st}}\mathbb{N} \ \forall x \in {}^{\mathrm{st}}H \ \|J_n x - J x\| \approx 0.$$

Это означает, что $J=\lim_{n\to\infty}J_n$ в сильном смысле.

Пусть $\Gamma \in \mathscr{B}(H;G)$, где G — вспомогательное гильбертово пространство, таков, что

$$\Gamma\Gamma^* = \mathbb{I}_G. \tag{5.24}$$

Тогда произведение

$$P := \Gamma^* \Gamma \tag{5.25}$$

является ортопроектором в H. Можно считать, что

$$\Gamma H = G. \tag{5.26}$$

Тогда

$$PH = \Gamma^* G. \tag{5.27}$$

Очевидно,

$$\forall x \in H \quad \|Px\| = \|\Gamma x\|,\tag{5.28}$$

$$\ker P = \ker \Gamma, \quad \ker \Gamma^* = \{0\}. \tag{5.29}$$

5.24. Предложение. *Если* Γ — *сильно* (равномерно) околостандартен, то P такой же.

Доказательство. По предложению 4.1 (° Γ)* = °(Γ *) и

$$^{\circ}P = ^{\circ}(\Gamma^*)^{\circ}\Gamma. \tag{5.30}$$

Из (5.24) вытекает, что ${}^{\circ}\Gamma({}^{\circ}\Gamma)^* = \mathbb{I}_G$. Поэтому ${}^{\circ}P$ — ортопроектор. По предложению 5.1 P сильно околостандартен. Утверждение относительно равномерной околостандартности очевидно.

6. Околостандартность графиков. Для распространения предыдущих рассмотрений на случай не всюду определенных операторов используем их графики. Рассмотрим стандартные метрические пространства (X, d_X) , (Y, d_Y) и отображение $f: X \to Y$. $\mathit{График}\ f$ — это подмножество $\{(x,y) \in X \times Y: x \in \mathrm{dom}\ f,\ y = f(x)\}$ в $Z = X \times Y$, имеющее тень относительно, например, метрики $d(z_1, z_2) = \{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2\}^{1/2}$. Такое отображение f называют $\mathit{графически}\ oкoлocmandapmным$, если тень его графика является графиком некоторого отображения. В этом случае тень f будет (единственным) отображением ${}^{\circ}f$, определенным соотношением

$$graph(^{\circ}f) = {^{\circ}graph}f. \tag{6.1}$$

6.1. Предостережение. Стандартное отображение может не обладать околостандартным графиком (см. ниже 6.4).

Положим

$$\operatorname{dom}_{\operatorname{nst}} f := \{ x \in {}^{\operatorname{nst}} \operatorname{dom} f : f(x) \in {}^{\operatorname{nst}} Y \}. \tag{6.2}$$

Следующее $\langle \text{nst} \rangle$ -условие необходимо и достаточно для того, чтобы f было графически околостандартным (см., например, [1]):

$$\forall x_1, x_2 \in \operatorname{dom}_{\operatorname{nst}} f \quad d_X(x_1, x_2) \approx 0 \Rightarrow d_Y(f(x_1), f(x_2)) \approx 0. \tag{6.3}$$

Пусть H — стандартное гильбертово пространство и L — оператор в H (т. е. линейное отображение $H \to H$). Для L $\langle nst \rangle$ -условие можно упростить следующим образом:

$$\forall x \in \text{dom}_{\text{nst}} L \quad ||x|| \approx 0 \Rightarrow ||Lx|| \approx 0. \tag{6.4}$$

Обозначим через $\|\cdot\|_L$ норму графика L, т. е.

$$\forall x \in \text{dom } L \quad ||x||_L := \{||x||^2 + ||Lx||^2\}^{1/2}. \tag{6.5}$$

6.2. Замечание. Внешнее множество $\operatorname{dom}_{\mathrm{nst}}$ — это совокупность $\|\cdot\|_L$ - околостандартных $x \in \operatorname{dom} L$. $\langle \operatorname{nst} \rangle$ -Условие для L эквивалентно такому:

$$\forall x \in \text{dom}_{\text{nst}} L \quad ||x|| \approx 0 \Rightarrow ||x||_{L} \approx 0. \tag{6.4'}$$

6.3. ПРИМЕР (проектор $J \in \mathcal{B}(H)$, не графически околостандартный). Пусть $\varphi \in {}^{\mathrm{st}}H$, $\psi \in H$, $\|\psi\| \approx \infty$, $(\varphi|\psi) = 1$. Положим $\forall x \in H$ $Jx = (x|\psi)\varphi$. Тогда $J^2 = J$. Для $x := \varphi \|\psi\|^{-2}$ имеем $Jx = \varphi \in {}^{\mathrm{st}}H \subset {}^{\mathrm{nst}}H$. Тогда $\|x\| \approx 0$, но $\|Jx\| \gg 0$.

Для графически околостандартного оператора $L: H \to H$ его тень $^{\circ}L$ однозначно определяется соотношением

$$^{\circ}L$$
 стандартное отображение $H \to H$, (6.6)

$$x \in {}^{\mathrm{st}}\mathrm{dom}^{\circ}L \iff \exists x_1 \in \mathrm{dom}_{\mathrm{nst}}L \,\,{}^{\circ}\!x_1 = x,$$
 (6.7)

$$x \in \operatorname{dom}_{\operatorname{nst}} L \Rightarrow {}^{\circ}x \in \operatorname{dom} {}^{\circ}L, \quad {}^{\circ}L{}^{\circ}x = {}^{\circ}(Lx).$$
 (6.8)

6.4. Замечание. Стандартный оператор имеет околостандартный график в том и только в том случае, если он обладает замыканием. Для стандартного оператора L с замыканием имеем $L \subseteq {}^{\circ}L = \overline{L}$, где \overline{L} — замыкание L.

ДОКАЗАТЕЛЬСТВО. Заметим, что для стандартного L $\langle nst \rangle$ -условие — это в точности наличие замыкания. Так как тень стандартного множества совпадает с его замыканием, замыкание \overline{L} стандартного L — это ${}^{\circ}L$.

6.5. Замечание. Если L стандартен и замкнут, то

$$\forall x \in \mathrm{dom}_{\mathrm{nst}} L \quad ^{\circ} x \in \mathrm{dom} L, \tag{6.9}$$

что вытекает из замечания 6.4 и (6.8).

- **6.6.** Замечание. Тень графически околостандартного оператора является стандартным замкнутым оператором.
- **6.7.** ЗАМЕЧАНИЕ. Пусть A ограничение графически околостандартного оператора L. Тогда A графически околостандартный и $^{\circ}A \subseteq ^{\circ}L$. Кроме того, если A ограничение L на подпространство $V \subseteq \text{dom } L$ (т. е. $A = L|_V$), то $\text{dom } ^{\circ}A \subset ^{\circ}V$.

Доказательство. Очевидно, A удовлетворяет $\langle \operatorname{nst} \rangle$ -условию, так что будет графически околостандартным. Рассмотрим $x \in \operatorname{st} \operatorname{dom} {}^{\circ}A$. Пусть $x_1 \in \operatorname{dom}_{\operatorname{nst}}A$ и $x \approx x_1$ (см. (6.7)). Тогда $x_1 \in \operatorname{dom}_{\operatorname{nst}}L$, $x \in \operatorname{dom} {}^{\circ}L$ и (${}^{\circ}L$) $x = {}^{\circ}(Lx_1) = {}^{\circ}(Ax_1) = {}^{\circ}Ax$ (см. (6.8)). Так как взятое x принадлежит $\operatorname{dom} A = V$, имеем $x \in {}^{\circ}V$, и по принципу переноса $\operatorname{dom} {}^{\circ}A \subseteq {}^{\circ}V$.

6.8. Предложение. Пусть L- стандартный замкнутый оператор $H\to H,\ V-$ подпространство в H и $A=L|_V$. Тогда A графически околостандартный, $^\circ A\subseteq L$ и dom $^\circ A$ является тенью $^\circ V$ в смысле $\|\cdot\|_L$.

Доказательство. Ввиду замечания 6.6 достаточно доказать, что ${}^{\circ}V \subseteq \text{dom }{}^{\circ}A$. Пусть $x \in {}^{\text{st}}{}^{\circ}V$, т. е. $x \approx x_1$ для некоторого $x_1 \in V$. Так как $\|x - x_1\| \approx 0$ и $\|Ax_1 - Lx\| = \|Lx_1 - Lx\| \approx 0$, имеем $x \in \text{dom}_{\text{nst}}A$. Поэтому $x \in \text{dom }{}^{\circ}A$, и в силу принципа переноса приходим к требуемому.

Следующее утверждение можно сравнить с предложением 4.4.

6.9. Предложение. Пусть $L \in \mathcal{B}(H)$ сильно околостандартен и (как и выше) $A = L|_V$. Тогда A графически околостандартный и

$$\operatorname{dom}{}^{\circ}A = {}^{\circ}V. \tag{6.10}$$

ДОКАЗАТЕЛЬСТВО. Поскольку $||L|| \ll \infty$ и $A \subset L$, то A графически околостандартный. Ввиду замечания 6.5 dom ${}^{\circ}A \subseteq {}^{\circ}V$. Пусть $x \in {}^{\operatorname{st}}{}^{\circ}V$. Тогда $x \approx v$ для некоторого $v \in V = \operatorname{dom} A$. Имеем $Av = Lv \approx Lx \approx ({}^{\circ}L)x$. Поэтому $x \in \operatorname{dom} {}^{\circ}A$, и по принципу переноса ${}^{\circ}V \subseteq \operatorname{dom} {}^{\circ}A$.

Дадим обобщение предложения 4.1(iii).

6.10. Предложение. Пусть A — графически околостандартный оператор $H \to H$ и $B \in \mathcal{B}(H)$ сильно околостандартен. Тогда AB графически околостандартный и

$$^{\circ}(AB) \subseteq {}^{\circ}A^{\circ}B. \tag{6.11}$$

Доказательство. Пусть $x\approx 0,\ x\in {\rm dom}\, AB$ и $ABx\in {}^{\rm nst}H.$ Так как $\|B\|\ll\infty$, имеем $Bx\approx 0$. Поскольку A графически околостандартный, то $ABx\approx 0$. Тем самым для AB выполнено $\langle {\rm nst} \rangle$ -условие, т. е. AB графически околостандартный. Пусть $x\in {}^{\rm st}{\rm dom}\,{}^{\circ (AB)}.$ Тогда $x\approx x_1$ для некоторого $x_1\in {\rm dom}_{\rm nst}AB$ и ${}^{\circ}(AB)x\approx ABx_1.$ Так как $Bx_1\approx Bx\approx {}^{\circ}Bx$ и A графически околостандартный, получаем ${}^{\circ}Bx\in {\rm dom}\,{}^{\circ}A$ и $ABx_1\approx {}^{\circ}A^{\circ}Bx.$ Поэтому ${}^{\circ}(AB)x={}^{\circ}A^{\circ}Bx$, и в силу принципа переноса (6.11) выполнено.

- **7. Условия графической околостандартности.** Обозначим через $\mathscr{C}(H)$ множество плотно определенных замкнутых операторов $H \to H$, где H стандартное гильбертово пространство.
 - 7.1. Предложение. Пусть $A \in \mathscr{C}(H)$ и
 - (i) $\ker A = \{0\}, B := A^{-1} \in \mathcal{B}(H);$
- (ii) B равномерно околостандартен и $\ker{}^{\circ}\!B=\{0\}.$ Тогда
 - (iii) A графически околостандартный и $\ker {}^{\circ}A = \{0\};$
 - (iv) $({}^{\circ}A)^{-1} = {}^{\circ}(A^{-1}).$

Доказательство. Пусть $x\in \text{dom }A,\ x\approx 0$ и $Ax\in ^{\text{nst}}(H)$. Положим y=Ax. Тогда x=By и ввиду равномерной околостандартности B будет $x\approx x_1$, где $x_1:={}^{\circ}By$. Таким образом, ${}^{\circ}B{}^{\circ}y\approx x$, откуда ${}^{\circ}B{}^{\circ}y\approx 0$ и ввиду (ii) ${}^{\circ}y=0$. Мы видим, что Ax=0, т. е. A удовлетворяет $\langle \text{nst} \rangle$ -условию, так что A графически околостандартный.

Пусть теперь $x \in {}^{\text{st}} \operatorname{dom}^{\circ}A$. Тогда $x \approx x_1$ для некоторого $x_1 \in \operatorname{dom}_{\mathrm{nst}}A$. Имеем $y_1 := Ax_1 \in {}^{\mathrm{nst}}(H), \ y := {}^{\circ}y_1 = {}^{\circ}(Ax_1) = {}^{\circ}Ax$. Кроме того, $x_1 = By_1 \approx {}^{\circ}By_1$, откуда $x = {}^{\circ}By = {}^{\circ}Ax$. По принципу переноса $\forall x \in \operatorname{dom}^{\circ}A \, {}^{\circ}B \, {}^{\circ}Ax = x$. В силу того, что $\ker^{\circ}B = \{0\}$, если $y \in H$ и ${}^{\circ}By \in \operatorname{dom}^{\circ}A$, то ${}^{\circ}A \, {}^{\circ}By = y$.

Обозначим через $\rho(A)$ резольвенту и через $\sigma(A)$ — спектр $A \in \mathcal{C}(H)$. Пусть $z_0, z \in \rho(A) \cap {}^F\mathbb{C}$ такие точки, что существует гладкий путь Γ из z_0 в z такой, что $\operatorname{dist}(\Gamma, \sigma(A)) \gg 0$.

7.2. Предложение. Пусть $(A-z_0)^{-1}$ равномерно околостандартен и $\ker^{\circ}[(A-z_0)^{-1}]=\{0\}$ (в частности, ввиду предложения 7.1 A графически околостандартен). Тогда $(A-z_0)^{-1}$ будет равномерно околостандартным, $\ker^{\circ}[(A-z_0)^{-1}]=\{0\}, \ \ ^{\circ}z\in \rho(\ ^{\circ}A)$ и

$${}^{\circ}[(A-z)^{-1}] = ({}^{\circ}A - {}^{\circ}z)^{-1}. \tag{7.1}$$

ДОКАЗАТЕЛЬСТВО. Очевидно, достаточно доказать утверждение для $z \in \mathbb{C}$ такого, что $\mathrm{dist}(z_0,z) \ll \mathrm{dist}(z_0,\sigma(A))$. (В общем случае мы используем цепочку (z_0,z_1,\ldots,z_n) такую, что $n\ll\infty,\ z_n=z$ и $\forall k< n\ \mathrm{dist}(z_k,z_{k+1})\ll \mathrm{dist}(z_k,\sigma(A))$.) Пусть z обладает указанным свойством. Обозначим

$$B_0 := (A - z_0)^{-1}, \quad B := (A - z)^{-1}, \quad h := z - z_0.$$

Так как $||B_0|| = [\operatorname{dist}(z_0, \sigma(A))]^{-1}$, имеем $||hB_0|| \ll 1$. Таким образом, имеет место разложение

$$B = B_0 \sum_{n>0} (hB_0)^n.$$

Положим

$$B_1 := {}^{\circ}B_0 \sum_{n \ge 0} ({}^{\circ}h^{\circ}B_0)^n.$$

Тогда $B_1 \in {}^{\mathrm{st}}\mathscr{B}(H)$. Для любого $N \in \mathbb{N}$ имеем

$$||B - B_1|| \le \sum_{0 \le n \le N} [B_0(hB_0)^n - {}^{\circ}B_0({}^{\circ}h{}^{\circ}B_0)^n] + \sum_{n > N} [|h|^n ||B_0||^{n+1} + ||{}^{\circ}h|^n ||{}^{\circ}B_0||^{n+1}].$$

Для $N \in {}^{\text{st}}\mathbb{N}$ первая сумма инфинитезимальна. Поэтому по лемме Робинсона она должна быть таковой для некоторого $N \in \mathbb{N} \setminus {}^{\text{st}}\mathbb{N}$. Но для такого N вторая сумма инфинитезимальна, потому что $\|hB_0\| \ll 1$. Таким образом, B равномерно околостандартен, и ${}^{\circ}B = B_1$. Теперь

$$({}^{\circ}A-z){}^{\circ}B = [({}^{\circ}A-{}^{\circ}z_0)+({}^{\circ}z_0-{}^{\circ}z)]{}^{\circ}B_0 \sum_{n\geq 0} ({}^{\circ}h{}^{\circ}B_0)^n \\ = \sum_{n\geq 0} -\sum_{n\geq 1} {}^{\circ}B_0 ({}^{\circ}h{}^{\circ}B_0)^n = \mathbb{I}_H.$$

Сформулируем условие графической околостандартности, использующее «почти сопряженность».

7.3. Предложение. Пусть A — линейный оператор $H \to H$. Предположим, что существует линейный оператор $B: H \to H$ такой, что

$$\forall x \in \text{dom } A \,\forall y \in \text{dom } B \quad (Ax|y) = (x|By), \tag{7.2}$$

$$Cl^{S} dom B = H, (7.3)$$

$$\forall y \in {}^{\mathrm{st}} \operatorname{dom} B \quad By \in {}^{F}H. \tag{7.4}$$

Тогда A графически околостандартен. (B (7.3) ^{S}E означает стандартизацию множества E.)

Доказательство. Рассмотрим $x\in \mathrm{dom}\,A$ такой, что $x\approx 0$ и $Ax\in {}^\mathrm{nst}(H).$ Пусть $y\in {}^\mathrm{st}\,\mathrm{dom}B.$ Тогда

$$|(Ax|y)| = |(x|By)| \le ||x|| \, ||By||.$$

Отсюда ввиду 7.4 будет $(Ax|y) \approx 0$. Поэтому $(^{\circ}(Ax)|y) = 0$, и по принципу переноса $\forall y \in ^{S} \text{ dom } B \ (^{\circ}(Ax)|y) = 0$. Из (7.3) вытекает, что $^{\circ}(Ax) = 0$, т. е. A удовлетворяет $\langle \text{nst} \rangle$ -условию.

7.4. Замечание. Предположим, что для оператора B в предложении 7.3 существует стандартный линейный оператор B_0 такой, что

$$S \operatorname{dom} B = \operatorname{dom} B_0 \tag{7.5}$$

И

$$\forall x \in {}^{\text{st}} \operatorname{dom} B \quad ||Bx - B_0 x|| \approx 0. \tag{7.6}$$

Тогда тень A является замкнутым ограничением $(B_0)^*$:

$$^{\circ}A \subseteq (B_0)^*. \tag{7.7}$$

Доказательство. Как известно, °A существует и замкнут. Пусть $x \in {}^{\mathrm{st}} \operatorname{dom} {}^{\circ}A$. Тогда $x \approx x_1$ для некоторого $x_1 \in \operatorname{dom}_{\mathrm{nst}}A$ и (°A) $x = {}^{\circ}(Ax_1)$. Отсюда для $y \in {}^{\mathrm{st}} \operatorname{dom} B$ имеем

$$((^{\circ}Ax|y) \approx (Ax_1|y) = (x_1|By) \approx (x|By) \approx (x|B_0y),$$

т. е. $(({}^{\circ}A)x|y) = (x|B_0y)$. По принципу переноса это равенство выполнено для любых $x \in \operatorname{dom} {}^{\circ}A$ и $y \in \operatorname{dom} B_0$, что доказывает (7.7).

Опишем ситуацию, в которой предложение 7.3 и замечание 7.4 могут быть применены. Пусть Ω — стандартное открытое множество в \mathbb{R}^N , где $N \in {}^{\mathrm{st}}\mathbb{N}$. Обозначим через H стандартное гильбертово пространство $L_2(\Omega)$. Рассмотрим оператор A, заданный соотношениями

$$dom A = C_0^{(\infty)}(\Omega), \tag{7.8}$$

$$\forall x \in C_0^{(\infty)}(\Omega) \quad Ax(t) = \sum_{|\alpha| \le n} a_{\alpha}(t) \partial^{\alpha} x(t). \tag{7.9}$$

Здесь

$$t = (t_0, \dots, t_n) \in \Omega, \quad \partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial t_1^{\alpha_1} \dots \partial t_n^{\alpha_n}}, \quad |\alpha| := \alpha_1 + \dots + \alpha_n, \quad a_{\alpha} \in C_0^{(\infty)}(\Omega).$$

Определим оператор $B: H \to H$, полагая

$$dom B = C_0^{(\infty)}(\Omega), \tag{7.10}$$

$$\forall y \in C_0^{(\infty)}(\Omega) \quad By(t) = \sum_{|\alpha| \le n} (-1)^{|\alpha|} \partial^{\alpha} (\overline{a_{\alpha}(t)}y(t)). \tag{7.11}$$

7.5. Предложение. Пусть

$$\forall t \in \Omega \,\forall \alpha, \beta \,|\alpha| < n \quad |\partial^{\beta} a_{\alpha}(t)| \ll \infty. \tag{7.12}$$

Тогда дифференциальный оператор (7.8), (7.9) графически околостандартен.

Доказательство. Ввиду (7.10) dom B стандартно и S dom B= dom $B=C_0^{(\infty)}(\Omega)$, так что (7.3) выполнено. Соотношения (7.9), (7.11) и интегрирование по частям приводят к (7.2). Пусть $y\in {}^{\rm st}C_0^{(\infty)}(\Omega)$. Тогда $\forall \alpha \ |\alpha|\ll\infty\Rightarrow\|\partial^\alpha y\|\ll\infty$. Отсюда (7.12) влечет (7.4). Мы видим, что условия предложения 7.3 выполнены.

Зададим более сильное, чем (7.12), условие, а именно

$$\forall t \in \Omega \,\forall \alpha, \beta \quad |\alpha| \le n, \, |\beta| \le n+1 \Rightarrow |\partial^{\beta} a_{\alpha}(t)| \ll \infty. \tag{7.13}$$

Используя формулу Лейбница для производных произведения, приведем (7.11) к виду

$$\forall y \in C_0^{(\infty)}(\Omega) \quad By(t) = \sum_{|\alpha| \le n} b_{\alpha}(t) \partial^{\alpha} y(t). \tag{7.14}$$

Из (7.13) и теоремы о непрерывности тени выводим, что существуют ${}^{\circ}b_{\alpha},$ являющиеся стандартными элементами $C_0^{(n)}(\Omega)$, для которых $\|b_{\alpha} - {}^{\circ}b_{\alpha}\|_{\infty} \approx 0$ $(\|\cdot\|_{\infty}-$ равномерная норма). Зададим оператор B_0 такой, что

$$dom B_0 = C_0^{(n)}(\Omega), (7.15)$$

$$\operatorname{dom} B_0 = C_0^{(n)}(\Omega), \tag{7.15}$$

$$\forall y \in C_0^{(n)}(\Omega) \quad B_0 y(t) = \sum_{|\alpha| \le n} b_{\alpha}(t) \partial^{\alpha} y(t). \tag{7.16}$$

Очевидно, что B_0 стандартен. Так как (7.6) выполнено, ввиду замечания 7.4 получаем следующее утверждение.

7.6. Предложение. Пусть выполнено условие (7.6). Тогда оператор A(cм. (7.8), (7.9)) является замкнутым ограничением оператора B_0^* (cм. (7.15),(7.16)).

ЛИТЕРАТУРА

- 1. Lyantse W., Kudryk T. Introduction to nonstandard analysis. Lviv: VNTL Publishers, 1997. (Mathematical Studies, Monograph Series, V. 3).
- $Nelson\ E.$ Internal set theory: a new approach to nonstandard analysis // Bull. Amer. Math. Soc. 1977. V. 83, N 6. P. 1165-1198.
- 3. Diener F., Reeb G. Analyse nonstandard. Paris: Sci. Arts, 1989.
- 4. Кусраев А. Г., Кутателадзе С. С. Нестандартные методы анализа. Новосибирск: Наука, 1990.
- 5. Lutz R., Goze M. Nonstandard Analysis: a practical guide with applications. Berlin a. o.: Springer-Verl., 1981. (Lect. Notes in Math.; N 881).
- Kato T. Perturbation theory for linear oparators. Berlin; Heidelberg; New York: Springer-Verl., 1966.

Статья поступила 26 сентября 2000 г.

Лянце Владислав Элиевич, Кудрик Тарас Степанович Львовский национальный университет, математический факультет ул. Университетская, 1, Львов 79001, Украина wlanc@litech.lviv.ua, kudryk@mail.lviv.ua