ХОРОШИЕ ЛОКАЛЬНО–ГЛОБАЛЬНЫЕ ПОЛЯ. IV **Ю. Л. Ершов**

Аннотация: Понятие хорошего локально-глобального поля, введенного и изученного в предыдущих работах, расширяется на поля, у которых семейство всех квазиклассических колец нормирования является почти булевым. Основной результат работы — теорема о разрешимости элементарной теории класса всех таких полей, удовлетворяющих условию максимальности. Библиогр. 10.

В настоящей работе расширяются некоторые результаты работы [1] на случай почти булевых семейств квазиклассических колец нормирования. Знакомство с серией работ [1–3] не обязательно, но в доказательствах будут существенно использоваться результаты из книги [4] и статьи [5]. Все не определяемые ниже понятия определены в [4].

Кольцо нормирования R поля F называется квазиклассическим (см. [1]), если поле F имеет характеристику 0, группа нормирования Γ_R является Z-группой и если поле вычетов F_R

- а) имеет характеристику p>0, то F_R простое поле характеристики p (т. е. $|F_R|=p$) и норма $v_R(p)$ элемента $p\in Q\leq F$ является наименьшим положительным элементом группы Γ_R ;
 - b) имеет характеристику 0, то F_R является псевдоконечным полем.

Поле F характеристики 0 назовем xорошим локально-глобальным полем, если

- а) семейство $W_{qc}(F)$ всех квазиклассических колец нормирования поля F является почти булевым;
- b) семейство $W_{qc}(F)$ удовлетворяет локально-глобальному принципу $LG_A(W_{qc}(F) \models LG_A);$
- с) семейство $W_{qc}(F)$ имеет почти непрерывные локальные элементарные свойства.

Через H_{qc} (= $H_{qc}(F)$) обозначим кольцо голоморфности $R(W_{qc}(F))$ семейства $W_{qc}(F)$, через $\mathbb{F}_{qc} \rightleftharpoons \langle F, H_{qc}, \sqsubseteq_{H_{qc}} \rangle$ — соответствующее кратно нормированное поле. Семейство всех таких кратно нормированных полей \mathbb{F}_{qc} (когда F—хорошее локально-глобальное поле) обозначим через $NLGF^*$. Через $mNLGF^*$ обозначим подкласс класса $NLGF^*$, состоящий из кратно нормированных полей \mathbb{F}_{qc} таких, что $W_{qc}(F)$ удовлетворяет условию максимальности M.

Основным результатом настоящей работы является следующая теорема, которая расширяет основную теорему работы [2] на класс $mNLGF^*$.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 99–01–0600), Совета по грантам Президента РФ и государственной поддержки ведущих научных школ (грант № 00–15–96184) и программы «Университеты России — фундаментальные исследования».

Теорема. Kла $cc\ mNLGF^*$ имеет разрешимую теорию.

Из определения и рассмотрений, проведенных в книге [4], без труда следует, что элементарные теории $Th(NLGF^*)$ и $T_* \rightleftharpoons Th(mNLGF^*)$ классов $NLGF^*$ и $mNLGF^*$ являются вычислимо перечислимыми (= рекурсивно перечислимыми). Поэтому для доказательства разрешимости теории T_* достаточно установить вычислимую перечислимость семейства предложений (языка сигнатуры $\sigma_R \rightleftharpoons \sigma_f \cup \langle R^1 \rangle$ (кратно) нормированных полей), выполнимых на кратно нормированных полях из $mNLGF^*$. Основным средством доказательства этого факта будет теорема 4.6.3 из [4], которая дает критерий элементарной эквивалентности для кратно нормированных полей из класса $mNLGF^*(\subseteq \mathfrak{V}_{NB}^*)$.

Теорема 4.6.3 из [4] сводит вопрос об элементарной эквивалентности кратно нормированных полей из \mathfrak{V}_{NB}^* к вопросу об элементарной эквивалентности некоторых обогащенных решеток, формульно определимых в них. Решать вопрос об элементарной эквивалентности таких обогащенных решеток оказывается значительно проще. Начнем с некоторых общих теоретико-модельных рассмотрений (и напоминаний).

Дистрибутивную решетку с относительными дополнениями и наименьшим элементом (нулем) для краткости будем называть *E-peuemko*й.

С каждой E-решеткой $\mathbb{E} = \langle E, \vee, \wedge, \perp \rangle$ можно связать (см. [6, гл. 2]) ее элементарную характеристику $\chi(E) = \langle \varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4 \rangle; \varepsilon_i \leq \omega, i < 5$, так, что $\mathbb{E} \equiv \mathbb{E}^1 \iff \chi(\mathbb{E}) = \chi(\mathbb{E}^1)$ и существует эффективная операция \oplus на характеристиках такая, что $\chi(\mathbb{E} + \mathbb{E}') = \chi(\mathbb{E}) \oplus \chi(\mathbb{E}')$.

Пусть B — булева алгебра; B-оснащением E-решетки будем называть всякую систему вида $\langle E, \vee, \wedge, \perp; T_b | b \in b \rangle$ такую, что

- 1) $\mathbb{E} \rightleftharpoons \langle E, \vee, \wedge, \perp \rangle E$ -решетка;
- 2) для любого $b \in B$ $T_b \subseteq E$ является идеалом E-решетки \mathbb{E} ; $T_0 = \{\bot\}$, $T_1 = E$; здесь 0 и 1 обозначают наименьший и наибольший элементы булевой алгебры B;
 - 3) для любых $b_0, b_1 \in B$

$$T_{b_0 \wedge b_1} = T_{b_0} \cap T_{b_1}, \ T_{b_0 \vee b_1} = T_{b_0} \vee T_{b_1} (\rightleftharpoons \{e_0 \vee e_1 | e_0 \in T_{b_0}, e_1 \in T_{b_1}\}).$$

Замечание. Если $\langle E,\vee,\wedge,\perp;\; T_b|b\in B\rangle-B$ -оснащенная E-решетка, то для любого $b\in B$ идеал T_b является локально главным, т. е. для любого $e\in E$ пересечение $T_b\cap \hat{e}$ идеала T_b с главным идеалом \hat{e} , порожденным в E элементом e, является главным, т. е. имеет вид \hat{e}_0 для подходящего $e_0\in E$.

Действительно, так как $T_b \cap T_{c(b)} = \{\bot\}$ и $T_b \vee T_{c(b)} = E$ (здесь c(b) — дополнение к b в булевой алгебре B), то элемент e однозначно представим в виде $e = e_0 \vee e_1, \, e_0 \in T_b, \, e_1 \in T_{c(b)};$ элемент e_0 и является нужным.

Предложение 1. Две *B*-оснащенных *E*-решетки $\langle \mathbb{E}; T_b : b \in B \rangle$ и $\langle \mathbb{E}'; T_b' : b \in B \rangle$ элементарно эквивалентны тогда и только тогда, когда для любого $b \in B$ идеалы T_b и T_b' , рассматриваемые как *E*-решетки, элементарно эквивалентны.

НАБРОСОК ДОКАЗАТЕЛЬСТВА. Утверждение легко сводится к случаю конечной булевой алгебры B. Пусть B конечна и a_0, \ldots, a_n — это все атомы булевой алгебры B. Тогда из условий 2 и 3 определения легко следует, что для любого $b \in B$

$$T_b = \sum_{a_i \le b} T_{a_i}, \quad T_b' = \sum_{a_i \le b} T_{a_i}';$$

в частности,

$$E = \sum_{i \le n} T_{a_i}, \quad E' = \sum_{i \le n} T'_{a_i}.$$

Отсюда и из замечаний, сделанных ранее, вытекает, что

$$\langle \mathbb{E}; T_b | b \in B \rangle \equiv \langle \mathbb{E}'; T_b' : b \in B \rangle$$

в случае, когда $T_{a_i} \equiv T'_{a_i}$ для всех $i \leq n.$

В обратную сторону утверждение очевидно.

Теперь установим нужное для дальнейшего следствие теоремы 4.3.6 из [4]. Пусть T_0 — теория всех абсолютно неразветвленных гензелевых нормированных полей $\mathbb{F} = \langle F, R \rangle$; если Γ — линейно упорядоченная абелева группа, то через T_{Γ} обозначим теорию класса $\{\mathbb{F} \mid \mathbb{F} = \langle F, R \rangle \models T_0, \Gamma_R \equiv \Gamma\}$.

Предложение 2. Для любого предложения Φ сигнатуры σ_R найдется предложение Ψ сигнатуры теории полей σ_f такое, что Φ и Ψ_R эквивалентны относительно теории T_{Γ} .

Здесь Ψ_R — предложение сигнатуры σ_R , определенное в разд. 4.3 книги [4] (с основным свойством: $\mathbb{F} = \langle F, R \rangle \models \Psi_R \iff F_R \models \Psi$ для любого нормированного поля \mathbb{F}).

Рассмотрим множество $S \rightleftharpoons \{\Psi \mid \Psi - \text{предложение сигнатуры } \sigma_f$ такое, что $T_{\Gamma} \cup \{\Psi_R\} \vdash \Phi\}$. Заметим, что из теоремы о дедукции (и определения S) следует, что $\Psi_0 \vee \Psi_1 \in S$, если Ψ_0 и $\Psi_1 \in S$.

Установим, что найдется $\Psi \in S$ такое, что $T_{\Gamma} \cup \{\Phi\} \vdash \Psi_R$ (тогда это предложение Ψ и будет искомым). Предположим противное; тогда для любого $\Psi \in S$ множество предложений $T_{\Gamma} \cup \{\Phi, \neg \Psi_R\}$ совместно; следовательно, и множество $T_{\Gamma} \cup \{\Phi\} \cup \{\neg \Psi_R \mid R \in S\}$ совместно. Пусть $\mathbb{F} \models T_{\Gamma} \cup \{\Phi\} \cup \{\neg \Psi_R \mid \Psi \in S\}$; полагаем $S_0 \rightleftharpoons \{\Psi \mid \Psi -$ предложение сигнатуры σ_f такое, что $F_R \models \Psi\}$. Из теоремы 4.3.6 следует, что теория, определенная системой аксиом $T_{\Gamma} \cup \{\Psi_R \mid \Psi \in S_0\}$, является теорией нормированного поля \mathbb{F} . Так как $\mathbb{F} \models \Phi$, существует $\Psi \in S_0$ такое, что $T_{\Gamma} \cup \{\Psi_R\} \vdash \Phi$. Но тогда $\Psi \in S$, $\mathbb{F} \models \neg \Psi_R$, что противоречит принадлежности Ψ множеству S_0 .

Предложение доказано.

Замечание. Если Γ имеет разрешимую теорию, то нахождение предложения Ψ по предложению Φ в предложении 2 может быть осуществлено эффективно (с алгоритмической (но не сложностной) точки зрения).

Пусть $\mathbb{F} = \langle F, H, \sqsubseteq \rangle \in mNLGF^*$; обозначим (изменяя обозначение $L^*(H)$ из [4]) через $\mathbb{E}(H) = \langle E(H), \wedge, \vee, \bot \rangle$ E-решетку, полученную из предупорядоченного множества $\langle H^\times (\rightleftharpoons H \setminus \{0\}), \sqsubseteq_H \rangle$ факторизацией по отношению эквивалентности \equiv_H . Пусть $\mathrm{Abs}\, F$ — алгебраическое замыкание поля \mathbb{Q} в F и A — целое замыкание кольца \mathbb{Z} в $\mathrm{Abs}\, F$. Для любой формулы $\Phi = \Phi(x_0, \ldots, x_{n-1})$ сигнатуры σ_f и набора элементов $\bar{a} = a_0, \ldots, a_{n-1} \in A^\times (= A \setminus \{0\})$ полагаем

$$T^F_{\Phi;\bar{a}} \Longrightarrow \big\{[d]_H \mid d \in H^\times, \forall R \in W^F_d(F_R \models \Phi(\bar{a} + \mathfrak{m}(R))\big\};$$

для любой формулы $\Psi=\Psi(x_0,\dots,x_{n-1})$ сигнатуры σ_l и набора элементов $\bar{a}\in A^{\times}$ полагаем

$$T^F_{\Psi;\bar{a}} \leftrightharpoons \big\{ [d]_H \mid d \in H^\times, \forall R \in W^F_d(\Gamma_R \models \Psi(v_R(\bar{a})) \big\}.$$

Нетрудно видеть, что $T_{\Phi;\bar{a}}^F$ ($T_{\Psi;\bar{a}}^F$) является идеалом E-решетки $\mathbb{E}(H)$ и выполняются следующие соотношения для $\Phi_0,\Phi_1\in L_{\sigma_f}(L_{\sigma_l}),\ \bar{a}\in A^\times$:

$$T^F_{\Phi_0;\bar{a}} \ \cap T^F_{\Phi_1;\bar{a}} = T^F_{\Phi_0 \wedge \Phi_1;\bar{a}}; \quad T^F_{\Phi_0;\bar{a}} \ \vee T^F_{\Phi_1;\bar{a}} = T^F_{\Phi_0 \vee \Phi_1;\bar{a}};$$

$$T^F_{\Phi_0;\bar{a}} \cap T^F_{\neg\Phi_0;\bar{a}} = \{\bot\} = \{[1]_H\}; T^F_{\Phi_0 \vee \neg\Phi_0;\bar{a}} = E(H).$$

Таким образом, систему $\mathbb{E}(F) \rightleftharpoons \langle \mathbb{E}(H); T^F_{\Phi;\bar{a}} | \Phi \in L_{\sigma_f} \cup L_{\sigma_l}, \bar{a} \in A^\times \rangle$ можно рассматривать как B-оснащенную решетку, где B — алгебра Линденбаума — Тарского. Анализ доказательства теорем 4.6.3 (и 4.5.4) в [4] позволяет следующую переформулировку теоремы 4.6.4.

Теорема 1. Пусть $\mathbb{F}, \mathbb{F}' \in \mathfrak{V}_{NB}^*$; эти кратно нормированные поля элементарно эквивалентны тогда и только тогда, когда существует изоморфизм λ полей $\mathrm{Abs}\,F$ и $\mathrm{Abs}\,F'$ такой, что системы

$$\mathbb{E}(F) = \left\langle \mathbb{E}(H); T_{\Phi;\bar{a}}^F | \Phi \in L_{\sigma_f} \cup L_{\sigma_l}, \bar{a} \in A^{\times} \right\rangle$$

И

$$\mathbb{E}(F') = \left\langle \mathbb{E}(H'); T_{\Phi: \lambda(\bar{a})}^{F'} \middle| \Phi \in L_{\sigma_f} \cup L_{\sigma_l}, \bar{a} \in A^{\times} \right\rangle$$

элементарно эквивалентны.

В соответствии с предложением 1 теорему 1 можно переформулировать так.

Теорема 1'. Пусть $\mathbb{F}, \mathbb{F}' \in \mathfrak{V}_{NB}^*$; $\mathbb{F} \equiv \mathbb{F}'$ тогда и только тогда, когда существует изоморфизм $\lambda: \mathrm{Abs}\, F \to \mathrm{Abs}\, F'$ такой, что для любых формул $\Phi \in L_{\sigma_f}$ и $\Psi \in L_{\sigma_l}$ и любого набора $\bar{a} \in A^{\times}$ *E*-решетки

$$T_{\Phi;\bar{a}}^F \cap T_{\Psi;\bar{a}}^F$$

И

$$T^{F'}_{\Phi;\lambda(\bar{a})} \cap T^{F'}_{\Psi;\lambda(\bar{a})}$$

элементарно эквивалентны.

Пусть $\widetilde{\mathbb{Q}}$ — алгебраическое замыкание поля рациональных чисел \mathbb{Q} , а $\widetilde{\mathbb{Z}}$ — целое замыкание кольца целых чисел \mathbb{Z} в поле \mathbb{Q} ; т. е. $\widetilde{\mathbb{Z}}$ — кольцо всех целых алгебраических чисел. Обозначим через $(\widetilde{\mathbb{Z}}^{\times})^{<\omega}$ семейство всех конечных упорядоченных последовательностей элементов из $\widetilde{\mathbb{Z}}^{\times}$; тогда существует (фиксированное для дальнейшего) отображение

$$\alpha: (\widetilde{\mathbb{Z}}^{\times})^{<\omega} \longrightarrow \widetilde{\mathbb{Z}}^{\times},$$

которое удовлетворяет следующим условиям:

- 1) для любого $\bar{a} = a_0, \dots, a_{n-1} \in (\widetilde{\mathbb{Z}}^{\times})^{<\omega} \quad \mathbb{Q}(\bar{a}) = \mathbb{Q}(\alpha(\bar{a}));$
- 2) $\alpha(\Lambda) = 1(\Lambda \text{пустая последовательность});$ для $\bar{a} \in (\widetilde{\mathbb{Z}}^{\times})^n, \ n > 0$, если существует i < n такое, что $\mathbb{Q}(\bar{a}) = \mathbb{Q}(\bar{a}) = \mathbb{Q}(a_i)$, то $\alpha(\bar{a}) = a_i$ для наименьшего такого i;
- 3) отображение α вычислимо, если считать кратно нормированное поле $\langle \widetilde{\mathbb{Q}}, \widetilde{\mathbb{Z}} \rangle$ разрешимым (определение см. в [7]); так можно считать ввиду результата Ван ден Дриса [8] о разрешимости теории кольца $\widetilde{\mathbb{Z}}$.

Пусть $\bar{a} \in (\widetilde{\mathbb{Z}}^{\times})^{<\omega}$, полагаем $h_{\bar{a}} \in \mathbb{Z}[x]$ — минимальный многочлен для $\alpha(\bar{a})$ над \mathbb{Q} ; $g_{\bar{a},i} \in \mathbb{Q}[x]^{\times}$ — многочлены такие, что $\deg g_{\bar{a},i} < \deg h_{\bar{a}}$ и $a_i = g_{\bar{a},i}(\alpha(\bar{a}))$, i < n.

Расширим сигнатуру σ_f до сигнатуры σ_f^* , добавив к σ_f новые константы c_a , соответствующие элементам a из $\widetilde{\mathbb{Z}}^{\times} = \widetilde{\mathbb{Z}} \setminus \{0\}$.

Условимся о следующей семантике для формул из $L_{\sigma_f^*}$. Пусть F — поле характеристики $0,\,B\subseteq\widetilde{\mathbb{Z}}^\times;\langle F,c_a^F|a\in B\rangle$ — B-обогащение F; это B-обогащение

назовем ∂ опустимым, если существует вложение $\lambda: \mathrm{Abs}\, F \longrightarrow \widetilde{\mathbb{Q}}$ такое, что $c_a^F = \lambda^{-1}(a)$ для всех $a \in B$.

Пусть $B \subseteq \widetilde{\mathbb{Z}}^{\times}$ (B может быть пустым множеством), пусть

$$\Phi = \Phi(x_0, \dots, x_{m-1}; c_{a_0}, \dots, c_{a_{m-1}})$$

— формула сигнатуры σ_f^* ; c_{a_i} , i < n, — все константы вида c_a , $a \in \widetilde{\mathbb{Z}}^{\times}$, которые явно входят в эту формулу Φ , положим $\bar{a} = a_0, \dots, a_{n-1}$. B-редукцией формулы Ф назовем следующую формулу:

$$\Phi_B \rightleftharpoons \exists y \Big(h_{\bar{a}}(y) = 0 \land \Big(\bigwedge_{a_i \in B} c_{a_i} = g_{\bar{a},i}(y) \Big)$$
$$\land \Phi(\bar{x}; g_{\bar{a},0}(y), \dots, g_{\bar{a},n-1}(y)) \quad (= \Phi(\bar{x}; \bar{g}(y))) \Big).$$

Заметим, что формула Φ_B содержит в точности константы c_{a_i} для i < nтакие, что $a_i \in B$.

Если $B\subseteq\widetilde{\mathbb{Z}}^{ imes}$ и $\langle F,c_a^F|a\in B
angle-B$ -допустимое обогащение F, то для любой формулы $\Phi(\bar{x})$ сигнатуры σ_f^* , любых $\bar{b} \in F$ полагаем

$$\langle F, c_a^F | a \in B \rangle \models \Phi(\bar{b}) \iff \langle F, c_a^F | a \in B \rangle \models \Phi_B(\bar{b}).$$

Аналогичные соглашения будем применять и для формул сигнатуры $\sigma_R^* =$ $\sigma_R \cup \langle c_a | a \in \widetilde{\mathbb{Z}}^{\times} \rangle.$

Справедливо следующее техническое, но очень важное

Предложение 3. Пусть $\Phi = \Phi(x_0, \dots, x_{n-1}) \in L_{\sigma_f}, \Psi = \Psi(x_0, \dots, x_{n-1}) \in$ $L_{\sigma_l}; a_0, \dots, a_{n-1} \in \widetilde{\mathbb{Z}}^{\times}$. Тогда по Φ, Ψ, \bar{a} и любой пятерке χ , которая может быть элементарной характеристикой какой-нибудь Е-решетки, можно эффективно выписать множество $\tau(\Phi, \Psi, \bar{a}, \chi)$ предложений сигнатуры $\sigma_R \cup \langle c_{a_i} | i < n \rangle$ такое, что для любого $\mathbb{F} \in mNLGF^*$ и любого $\{a_i|i< n\}$ -допустимого обогащения $\langle \mathbb{F}, c_{a_i}^F | i < n \rangle$ справедлива эквивалентность следующих двух утверждений:

1)
$$\langle \mathbb{F}, c_{a_i}^{\bar{F}} | i < n \rangle \models \tau(\Phi, \ \Psi, \bar{a}, \chi);$$

2) $\chi(T_{\Phi; \bar{b}}^F \cap T_{\Psi; \bar{b}}^F) = \chi, \text{ rate } \bar{b} \rightleftharpoons b_0, \dots, b_{n-1}; b_i \rightleftharpoons c_{a_i}^F, \ i < n.$

Это предложение следует из формульности (в \bar{a}) предикатов $T_{\Phi;\bar{a}}^{F}$ и $T_{\Psi;\bar{a}}^{F}$ [4, разд. 4.6] и (эффективной) элементарности класса E-решеток, имеющих заданную элементарную характеристику χ (см. [6, гл. 2, § 4]).

Пусть $\mathbb{F} \in mNLGF^*$; $\lambda : \mathrm{Abs}\, F \longrightarrow \mathbb{Q}$ — некоторое (фиксированное) вложение; оно определяет допустимое $\lambda(A^{ imes})$ -обогащение \mathbb{F} , где $A=\lambda^{-1}(\widetilde{\mathbb{Z}})$ — целое замыкание $\mathbb Z$ в Abs F. Для $\Psi\in L_{\sigma_f},\,\Psi\in L_{\sigma_l},\,\bar a\in A^{ imes}$ пусть $\chi_F(\Phi,\Psi,\bar a)$ обозначает элементарную характеристику E-решетки $T^F_{\Phi;\bar{a}} \cap T^F_{\Psi;\bar{a}}$. Определим множество $T(\mathbb{F})$ предложений сигнатуры $\sigma_R \cup \langle c_a | a \in A^{\times} \rangle$ следующим образом. Пусть

$$P(F) \rightleftharpoons \left\{ \varphi_{\bar{a}} \rightleftharpoons \exists x \Big(h_{\bar{a}}(x) = 0 \land \Big(\bigwedge_{i < n} c_{a_i} = g_{\bar{a},i}(x) \Big) \Big) \mid \bar{a} = a_0, \dots, a_{n-1} \in \lambda(A^{\times}) \right\}$$

и $N(F) \rightleftharpoons \{ \forall x (h(x) \neq 0) \mid h \in \mathbb{Z}[x]$ — унитарный многочлен такой, что $F \models$ $\forall x(h(x) \neq 0)$; полагаем

$$T(\mathbb{F}) \rightleftharpoons T_* \cup P(F) \cup N(F) \cup \bigcup \{\tau(\Phi, \Psi, \lambda(\bar{a}), \chi_{\mathbb{F}}(\Phi, \Psi, \bar{a})) \mid \Phi \in L_{\sigma_f}, \Psi \in L_{\sigma_l}, \; \bar{a} \in A^\times \}.$$

Предложение 4. Пусть $\mathbb{F}' = \langle F', H', \sqsubseteq' \rangle$ — кратно нормированное поле. Тогда следующие утверждения эквивалентны:

- 1) существует $\lambda(A^{\times})$ -обогащение $\langle \mathbb{F}', c_{\lambda(a)}^{F'} | a \in A^{\times} \rangle$, в котором истинны все предложения из $T(\mathbb{F})$;
 - 2) \mathbb{F}' элементарно эквивалентно \mathbb{F} .

ДОКАЗАТЕЛЬСТВО. 1) \Rightarrow 2). Пусть $\langle \mathbb{F}', c_{\lambda(\bar{a})}^{F'} | a \in A^{\times} \rangle - \lambda(A^{\times})$ -обогащение, в котором истинны все предложения из $T(\mathbb{F})$. Из того, что в этом обогащении выполнены все предложения из P(F), нетрудно видеть, что оно является $\lambda(A^{\times})$ -допустимым, т. е. существует вложение λ' : Abs $F \longrightarrow \widetilde{\mathbb{Q}}$ такое, что $\lambda'(c_{\lambda(a)}^{F'}) = \lambda(a)$ для всех $a \in A^{\times}$.

Так как $\lambda(A^{\times}) \subseteq \lambda'(\mathrm{Abs}\,F')$, то и $\lambda(\mathrm{Abs}\,F) \subseteq \lambda'(\mathrm{Abs}\,F')$, а следовательно, можно (однозначно) определить вложение $\bar{\lambda}:\mathrm{Abs}\,F\longrightarrow\mathrm{Abs}\,F'$ такое, что $\lambda'\bar{\lambda}(a)=\lambda(a)$ для любого $a\in\mathrm{Abs}\,F$. Из этого факта и того, что $F'\models N(F)$, следует, что $\bar{\lambda}$ является изоморфизмом $\mathrm{Abs}\,F$ и $\mathrm{Abs}\,F'$.

Покажем, что для любых $\Phi \in L_{\sigma_f}, \Psi \in L_{\sigma_l}, \bar{a} \in A^{\times}$ справедливо

$$T^F_{\Phi;\bar{a}} \cap T^F_{\Psi;\bar{a}} \equiv T^{F'}_{\Phi;\bar{\lambda}(\bar{a})} \cap T^{F'}_{\Psi;\bar{\lambda}(\bar{a})}.$$

Для этого достаточно (теорема 1') установить, что

$$\chi(T_{\Phi;\bar{a}}^F \cap T_{\Psi;\bar{a}}^F) = \chi(T_{\Phi;\bar{\lambda}(\bar{a})}^{F'} \cap T_{\Psi;\bar{\lambda}(\bar{a})}^{F'}).$$

Но из того, что

$$\left\langle \mathbb{F}', c_{\bar{\lambda}(a)}^{F'} | a \in A^{\times} \right\rangle \models \tau(\Phi, \Psi, \bar{a}, \ \chi_F(\Phi, \Psi, \bar{a})),$$

по предложению 3 следует, что

$$\chi \left(T^{F'}_{\Phi;\bar{\lambda}(\bar{a})} \cap T^{F'}_{\Psi;\bar{\lambda}(\bar{a})} \right) = \chi_{\mathbb{F}}(\Phi,\Psi,\bar{a}) = \chi \left(T^F_{\Phi;\bar{a}} \ \cap T^F_{\Psi;\bar{a}} \right).$$

Импликация $1) \Rightarrow 2$) установлена.

Импликация 2) ⇒ 1) очевидна. \square

Из предложения 4 следует, что $T(\mathbb{F})$ является системой аксиом для допустимого $\lambda(A^{\times})$ -обогащения $\langle \mathbb{F}, c_{\lambda(a)}^F (=a) | a \in A^{\times} \rangle$ в сигнатуре $\sigma_R \cup \langle c_{\lambda(a)} | a \in A^{\times} \rangle$. Пусть Ψ — предложение сигнатуры σ_R такое, что $\mathbb{F} \models \Phi$; тогда $T(\mathbb{F}) \vdash \Phi$ и, следовательно, существуют конечное подмножество $P_0 \subseteq P(F)$, конечное подмножество $N_0 \subseteq N(F)$; $\Phi^0, \ldots, \Phi^{k-1} \in L_{\sigma_f}$; $\Psi_0, \ldots, \Psi_{k-1} \in L_{\sigma_l}$; наборы $\bar{a}_0, \ldots, \bar{a}_{k-1} \in A^{\times}$ такие, что

$$T_* \cup P_0 \cup N_0 \cup \bigcup_{i < k} \tau(\Phi^i, \Psi_i, \bar{a}_i, \chi_{\mathbb{F}}(\Phi^i, \Psi^i, \bar{a}_i)) \vdash \Psi.$$

Не уменьшая общности, можно предполагать, что выполнены следующие условия 1–6.

- 1. $N_0 = \{ \forall x (h(x) \neq 0) \}$, т. е. N_0 состоит из одной формулы.
- 2. $P_0 = \{ \varphi_{\bar{a}} \}$, т. е. P_0 тоже состоит из одной формулы.
- 3. $\bar{a} = \bar{a}_0 = \cdots = \bar{a}_{k-1}$.
- 4. Если F_0 наименьшее расширение Галуа поля \mathbb{Q} , содержащее $\mathbb{Q}(\bar{a})$ и поле разложения многочлена h, то $F \cap F_0 = \mathbb{Q}(\bar{a})$.
- 5. Если $S \rightleftharpoons \{\Gamma \mid \Gamma \leq G_0 \rightleftharpoons G(F_0/\mathbb{Q}(a))$, существует кольцо нормирования $R \in W(H)$ такое, что Γ является группой разложения кольца нормирования R в поле $F_0F\}$, то группа $G_0 \rightleftharpoons G(F_0F/F)$ инвариантно порождается семейством

подгрупп S (см. [9]), т. е. если $H \leq G_0$ подгруппа такая, что для любой $\Gamma \in S$ найдется $g_0 \in G_0$ такое, что $\Gamma^{g_0} \leq H$, то $H = G_0$.

Замечание. Это следует из условия максимальности для Г.

Для любой подгруппы $\Gamma \leq G_0$ можно эффективно указать формулу $\delta_{\Gamma}(x_0,\ldots,x_{n-1})$ сигнатуры σ_R такую, что для любого гензелева нормированного поля $\mathbb{F}'=\langle F',R'\rangle$ такого, что $\mathbb{Q}(\bar{a})\leq F'$, справедлива эквивалентность: $F'\models \delta_{\Gamma}(\bar{a})\Leftrightarrow$ подгруппа $G(F'F_0/F')\leq G(F_0/Q(\bar{a})=G_0$ сопряжена в G_0 с подгруппой Γ .

6. Система формул $\overline{\Phi}_i \rightleftharpoons \Phi_R^i \wedge \Psi_i^R, i < k$, сигнатуры σ_R является разбиением, т. е. формула $\bigvee_{i < k} \overline{\Phi}_i$ тождественно истинна, а формулы , $\overline{\Phi}_i \wedge \overline{\Phi}_j, i < j < k$,

тождественно ложны, и для любого i < k существует подгруппа $\Gamma_i \leq G$ такая, что $T_* \vdash \varphi_{\bar{a}} \land \forall x (h(x) \neq 0) \land \overline{\Phi}_i(\bar{c}_{\bar{a}}) \to \delta_{\Gamma_i}(\bar{c}_{\bar{a}}).$

Замечание 1. Чтобы удовлетворить условие 6, нужно воспользоваться предложением 2.

Замечание 2. $\{\Gamma_i \mid \chi(\Phi^i, \bar{a}) \neq \langle \bar{0} \rangle, \ i < k\} \subseteq S$, и для любой $\Gamma \in S$ найдется i < k такое, что $\chi(\Phi^i, \Psi_i, \bar{a}) \neq \langle \bar{0} \rangle$ и Γ сопряжена с Γ_i в G.

Проведенные рассмотрения показывают, что множество предложений Φ сигнатуры σ_R , выполнимых на классе $mNLGF^*$, будет вычислимо перечислимым, если можно будет эффективно решать следующую проблему:

(*) по заданному унитарному многочлену $h \in \mathbb{Z}[x]$, набору элементов $\bar{a} = a_0, \dots, a_{n-1} \in \widetilde{\mathbb{Z}}^{\times}$, наборам формул $\Phi^i \in L_{\sigma_f}, \ \Psi_i \in L_{\sigma_l}, \ i < k$, и набору подгрупп $\Gamma_i \leq G_0 = G(F_0/\mathbb{Q}(\bar{a}))$, где F_0 определено выше, таким, что выполнено условие 6, семейство $\{\Gamma_i \mid \chi_i \neq \langle \bar{0} \rangle, \ i < k\}$ подгрупп группы $H \rightleftharpoons G(F_0/\mathbb{Q}(\bar{a}))$ инвариантно порождает H; наборам пятерок (допустимых элементарных характеристик) $\chi_0, \dots, \chi_{k-1}$ определить, существуют ли кратно нормированное поле $\mathbb{F} \in mNLGF^*$ и его $\{\bar{a}\}$ -обогащение $\langle \mathbb{F}, c_{a_i}^F | i < n \rangle$ такие, что для $\bar{b} = b_0, \dots, b_{n-1}, b_i \rightleftharpoons c_i^F, i < n$, выполнено

$$\left\langle \mathbb{F}, c_{a_i}^F | i < n \right\rangle \models \varphi_{\bar{a}}, \quad \chi \left(T_{\Phi^i, \bar{b}}^F \cap T_{\Psi_i; \bar{b}}^F \right) = \chi_i, \quad i < k.$$

ЗАМЕЧАНИЕ 3. Если $\langle \mathbb{F}, c_{a_i}^F | i < n \rangle$ — решение проблемы $(*), b_i \rightleftharpoons c_{a_i}^F, i < n$, то $G' \rightleftharpoons G(F_0/\mathbb{Q}(\bar{b})) \backsimeq G_0, \ F \cap F_0 = \mathbb{Q}(\bar{b})$ и $F \models \forall x (h(x) \neq 0)$; это следует из условия инвариантной порождаемости группы G_0 семейством $\{\Gamma_i | \chi_i \neq \langle \bar{0} \rangle, \ i < k \}$.

Предложение 5. Проблема (*) разрешима тогда и только тогда, когда выполнены следующие условия:

- (1) множество подгрупп $\{\Gamma_i \mid \chi_i \neq \langle \bar{0} \rangle, i < k\}$ инвариантно порождает группу $G_0 = G(F_0/Q(\bar{a}));$
- (2) если $\chi_i \neq \langle \bar{0} \rangle$, i < k, то существует простое число p такое, что $\langle \mathbb{Q}_p, \mathbb{Z}_p \rangle \models (\varphi_{\bar{a}} \wedge \bar{\Phi}_i(\bar{c}_{\bar{a}}))_{\phi} (+_p);$
- (3) если χ_i характеристика E-решетки, не являющейся булевой, то множество простых p, для которых выполнено $(+_p)$, бесконечно.

Здесь $(\varphi_{\bar{a}} \wedge \bar{\Phi}_i(\bar{c}_{\bar{a}}))_{\phi}$ обозначает ϕ -редукцию (определение B-редукции см. выше) предложения $(\varphi_{\bar{a}} \wedge \Phi_R^i(c_{a_0}, \dots, c_{a_{n-1}}) \wedge \Psi_i^R(c_{a_0}, \dots, c_{a_{n-1}}))$ сигнатуры $\sigma_R \cup \langle c_{a_i} | i < n \rangle$.

Установим необходимость условий (1)–(3). Пусть $\mathbb{F} \in mNLGF^*$ и $\{\bar{a}\}$ -обогащение $\langle \mathbb{F}, c_{a_i}^F | i < n \rangle$ решают проблему (*). Из справедливости $\langle \mathbb{F}, c_{a_i}^F | i < n \rangle \models \varphi_{\bar{a}}$ следует, что это $\{\bar{a}\}$ -обогащение допустимо. Пусть $\lambda : \mathrm{Abs}\, F \longrightarrow \widetilde{\mathbb{Q}}$ — вложение такое, что $\lambda(b_i) = \lambda(c_{a_i}^F) = a_i, i < n$.

Пусть $i < k, W_i \rightleftharpoons \{R \mid R \in W(H), \ \mathbb{H}_R(F) \models \overline{\Phi}_i(\overline{b})\}$. Тогда для любого $h \in H^{\times}$ имеет место эквивалентность

$$W_h^F \subseteq W_i \Longleftrightarrow [h]_H \in T_{\Phi^i;\bar{b}}^F \cap T_{\Psi_i;\bar{b}}^F.$$

Так как $\chi(T_{\Phi^i;\bar{b}}^F \cap T_{\Psi_i;\bar{b}}^F) = \chi_i$, то $W_i = \phi \iff \chi_i = \langle \bar{0} \rangle$. Отсюда следует, что $\{\Gamma \mid \Gamma \leq G_0 = G(F_0F/F), \text{ существует } R \in W(H) \text{ такой, что } \Gamma - \text{группа разложения } R \text{ в } F_0F\} = \{\Gamma_i^{g_0} \mid g_0 \in G_0, \ \chi_i \neq \langle \bar{0} \rangle \}$. Поскольку первое множество подгрупп инвариантно порождает G_0 (ибо W(H) удовлетворяет условию максимальности), то и $\{\Gamma_i | \chi_i \neq \langle \bar{0} \rangle \}$ инвариантно порождает G_0 , т. е. выполнено условие (1).

Если $\chi_i \neq \langle \bar{0} \rangle$, то $W_i \neq \phi$; пусть $R \in W_i$. Если $\mathbb{Q} \not\leq R$, то $R \cap \mathbb{Q} = \mathbb{Z}_p$ для подходящего p; и имеет место $\mathbb{H}_{\mathbb{Z}_p}(\mathbb{Q}) \preccurlyeq \mathbb{H}_{R \cap \mathbb{Q}(\bar{b})}(\mathbb{Q}(\bar{b})) \preccurlyeq \mathbb{H}_R(F)$, $\mathbb{H}_{\mathbb{Z}_p}(\mathbb{Q}) \preccurlyeq \langle \mathbb{Q}_p, \mathbb{Z}_p \rangle$, кроме того, $\mathbb{H}_R(F) \models \overline{\Phi}_i(\bar{b})$, тогда

$$\langle \mathbb{H}_{R}(F), c_{i}^{F}(=b_{i})|i < n \rangle \models \varphi_{\bar{a}} \wedge \overline{\Phi}_{i}(\bar{c}_{\bar{a}}), \quad \mathbb{H}_{R}(F) \models (\varphi_{\bar{a}} \wedge \overline{\Phi}_{i}(\bar{c}_{\bar{a}}))_{\phi}, \\ \mathbb{H}_{Z_{p}}(\mathbb{Q}) \models (\varphi_{\bar{a}} \wedge \overline{\Phi}_{i}(\bar{c}_{\bar{a}}))_{\phi}, \quad \langle \mathbb{Q}_{p}, \mathbb{Z}_{p} \rangle \models (\varphi_{\bar{a}} \wedge \overline{\Phi}_{i}(\bar{c}_{\bar{a}}))_{\phi},$$

т. е. в этом случае выполнено условие (2).

Пусть $\mathbb{Q} \leq R$. Как и выше, заметим, что $\mathbb{H}_R(F) \models (\varphi_{\bar{a}} \wedge \overline{\Phi}_i(\bar{c}_{\bar{a}}))_{\phi}$. Но R — квазиклассическое кольцо нормирования, следовательно, $\mathbb{H}_R(F)$ элементарно эквивалентно подходящему ультрапроизведению $\Pi(\mathbb{Q}_p, \mathbb{Z}_p)/\Omega$ по подходящему неглавному ультрафильтру Ω на множестве всех простых чисел. Тогда по теореме Лося существует бесконечно много простых p таких, что $\langle \mathbb{Q}_p, \mathbb{Z}_p \rangle \models (\varphi_{\bar{a}} \wedge \bar{\Phi}_i(\bar{c}_{\bar{a}}))_{\phi}$.

Пусть χ_i — характеристика E-решетки, не являющейся булевой. Если найдется $R \in W_i$ такое, что $\mathbb{Q} \leq R$, то, как выше, устанавливается условие (3). Если для бесконечно многих простых p найдется $R \in W_i$ такое, что $R \cap Q = \mathbb{Z}_p$, то условие (3) также справедливо. Остается заметить, что оставшийся случай: $\mathbb{Q} \not\leq R$ для любого $R \in W_i$, и существует конечное число простых чисел p_0, \ldots, p_{s-1} такое, что для любого $R \in W_i$ $R \cap \mathbb{Q} = Z_{p_j}$, для подходящего j < s невозможен. Действительно, пусть $\pi \rightleftharpoons \prod_{j < s} p_j \in \mathbb{Z}^\times$. Если выполнен рассматриваемый случай, то $T_{\Phi^i;\bar{b}}^F \cap T_{\Psi_i;\bar{b}}^F \subseteq \widehat{[\pi]}_H$. Идеал $T_{\Phi^i;\bar{b}}^F \cap T_{\Psi_i;\bar{b}}^F$ E-решетки

рассматриваемый случай, то $T_{\Phi^i,\bar{b}}^F \cap T_{\Psi_i,\bar{b}}^F \subseteq \widehat{[\pi]}_H$. Идеал $T_{\Phi^i,\bar{b}}^F \cap T_{\Psi_i,\bar{b}}^F$ E-решетки $\mathbb{E}(H)$ локально главный, следовательно, $\chi_i = \chi \big(T_{\Phi^i,\bar{b}}^F \cap T_{\Psi_i,\bar{b}}^F \big)$ — элементарная характеристика булевой решетки, что приводит к противоречию.

Необходимость условий (1)–(3) установлена.

Пусть выполнены условия (1)–(3). Полагаем $F=\mathbb{Q}(\bar{a}),\ H\rightleftharpoons R(W_{qc}(F));$ $W_i \rightleftharpoons \{R\in W_{qc}(F);\ \mathbb{H}_R(F)\models \bar{\Phi}_i(\bar{a})\},\ i< k.$ Так как формулы $\bar{\Phi},\dots,\bar{\Phi}_{k-1}$ образуют разбиение, то $W_0\cup\dots\cup W_{k-1}$ — разбиение семейства $W_{qc}(F)$. Из условия (2) следует, что если $\chi_i\neq \langle \bar{0}\rangle$, то $W_i\neq \phi$, а из условия (3) — что если χ_i — характеристика не булевой E-решетки, то W_i бесконечно (следовательно, почти булево, но не булево).

Установим теперь предложение, имеющее и самостоятельный интерес.

Предложение 6. Пусть $\langle F, H, \sqsubseteq \rangle$ — счетное кратно нормированное поле, W(H) — независимое почти булево семейство. Тогда существует расширение $\langle F, H, \sqsubseteq \rangle \leq \langle F' = F(\eta_0, \dots, \eta_n, \dots), H', \sqsubseteq' \rangle$ такое, что $\eta_0, \dots, \eta_n, \dots$ алгебраически независимы над $F; H' \geq H$ — геометрическое расширение NB-колец; для

любого $R' \in W(H')$ расширение $\mathbb{H}_{R' \cap F}(F) \leq \mathbb{H}_{R'}(F')$ является непосредственным; W(H') как топологическое пространство не имеет изолированных точек.

Для доказательства предложения отметим справедливость следующей леммы.

Лемма 1. Если $\langle F, H, \sqsubseteq \rangle$, как в предложении, и характеристика F отлична от 2, то существует такое непосредственное расширение

$$\langle F, H, \sqsubseteq \rangle \le \langle F(\xi), H', \sqsubseteq' \rangle,$$

что ξ трансцендентно над F и для любого кольца нормирования $R' \in W(H')$ элемент ξ является квадратом в $H_{R'}(F')$.

Для доказательства леммы нужно воспользоваться предложением 9 из [5] и сделать выбор $V_0 \rightleftharpoons W(H) \supseteq V_1 \supseteq \dots$ последовательности подсемейств W(H) и элементов c^0, c^1, \dots так, чтобы выполнялись условия предложения 9 и следующие условия: V_0, V_1, \dots базисные открытые подсемейства; $\bigcap_{n \in W} V_n = \phi$;

 $V_1\rightleftharpoons V_{2^{-1}}^F$ (тогда $W_0\rightleftharpoons V_0\setminus V_1=W_2^F=\{R|R\in W(H),\ 2\in \mathfrak{m}(R)\}\};\ c_0\rightleftharpoons 1,\ \eta_0\rightleftharpoons 2^3;\ c_n+\mathfrak{m}(R)\in F_R^2$ для любого $R\in W_n\rightleftharpoons V_n\setminus V_{n+1},\ n>0.$ Возможность выполнения условий предложения 9 следует из леммы 4 в [5] («бесконечность полей вычетов в бесконечности» для почти булевых, но не булевых семейств). \square

В случае, когда F имеет характеристику 2, можно доказать утверждение, аналогичное лемме 1, с заключением о том, что ξ «локально» является кубом.

Возвращаемся к доказательству предложения 6. Пусть

$$\langle F_0, H_0, \sqsubseteq_0 \rangle \rightleftharpoons \langle F, H, \sqsubseteq \rangle,$$

пусть $\langle F, H, \Box \rangle < \langle F(\xi_0), H', \Box' \rangle$ — расширение, как в лемме 1; полагаем

$$F_1 \rightleftharpoons F(\eta_0 \rightleftharpoons \sqrt{\xi_0}), \quad H_1 \rightleftharpoons R(W'),$$

где W' — семейство всех колец нормирования R_1 поля F_1 таких, что $R_1\cap F(\xi_0)\in W(H')$. Тогда для любого $R_1\in W'$

$$R_1 \cap F \in W(H), \quad \mathbb{H}_{R_1 \cap F}(F) \le \mathbb{H}_{R_1 \cap F(\xi_0)}(F(\xi_0)) = \mathbb{H}_{R_1}(F_1)$$

— непосредственное расширение и для любого $R \in W(H)$ существует точно два кольца нормирования R_1 и R'_1 в $W(H_1)$ таких, что $R = R_1 \cap F = R'_1 \cap F$.

Далее строим последовательность

$$\langle F_0, H_0, \sqsubseteq_0 \rangle \le \langle F_1, H_1, \sqsubseteq_1 \rangle \le \cdots \le \langle F_n, H_n, \sqsubseteq_n \rangle \le \langle F_{n+1}, H_{n+1}, \sqsubseteq_{n+1} \rangle \ge \cdots, \quad n \in W,$$

проделывая на каждом переходе от $\langle F_n, H_n, \sqsubseteq_n \rangle$ к $\langle F_{n+1}, H_{n+1}, \sqsubseteq_{n+1} \rangle$ ту же процедуру, что при построении $\langle F_1, H_1, \sqsubseteq_1 \rangle$ по $\langle F_0, H_0, \sqsubseteq_0 \rangle$ $(F_{n+1} = F_n(\eta_n = \sqrt{\xi_n}), \dots)$.

Если положить

$$F' \rightleftharpoons \bigcup_{n \in W} F_n, \quad H' \rightleftharpoons \bigcup_{n \in W} H_n,$$

то расширение $\langle F, H, \sqsubseteq \rangle \leq \langle F', H', \sqsubseteq' \rangle$ удовлетворяет заключению предложения. \square

Возвращаемся к доказательству предложения 5. Пусть $\langle F', H', \sqsubseteq' \rangle$ — кратно нормированное поле такое, что расширение $\langle F, H, \sqsubseteq \rangle \leq \langle F', H', \sqsubseteq' \rangle$ удовлетворяет заключению предложения 6. Пусть $\langle F'', H'', \sqsubseteq'' \rangle \geq \langle F', H', \sqsubseteq' \rangle$ — счетное e-замкнутое непосредственное расширение (по теореме 1 из [5] H'' является кольцом Безу). Обозначим через π отображение ограничения из W(H'') на W(H) ($\pi: R'' \mapsto R'' \cap F, R'' \in W(H'')$); полагаем $W_i'' = \pi^{-1}(W_i), H_i'' = R(W_i''), i < k$. Для любого i < k семейство W_i'' является булевым или почти булевым семейством колец нормирования поля F'' (в зависимости от того, булево или почти булево семейство W_i), которое как топологическое пространство в топологии Зарисского не имеет изолированных точек. Тогда если $W_i'' \neq \phi$, то $\mathbb{E}(H_i'')$ является свободной булевой или свободной E-решеткой соответственно со счетным числом свободных порождающих. Тем самым для любого i < k существуют идеалы I_i E-решетки $\mathbb{E}(H_i'')$ такие, что фактор-решетка $\mathbb{E}(H_i'')/I_i$ имеет характеристику χ_i (если $\chi_i = \langle \overline{0} \rangle$, то $I_i = \mathbb{E}(H_i'')$). По соответствию Галуа (теорема 2.5.1 в [4]) идеалам I_i соответствуют компактные подсемейства $W_i^0 \subseteq W_i''$ такие, что для $H_i^0 \rightleftharpoons R(W_i^0)$ имеем $\chi(\mathbb{E}(H_i^0)) = \chi_i, i < k$. Пусть $W^0 \rightleftharpoons \bigcup_{i < k} W_i^0$; W^0 — компактное (следовательно, почти булево) подсемейство семейства W(H''); полагаем $H_0 \rightleftharpoons R(W^0)$.

Находим счетное e-замкнутое непосредственное расширение $\langle F_1, H_1, \sqsubseteq_1 \rangle \geq \langle F'', H_0, \sqsubseteq_0 \rangle$. Тогда по теореме 2 из [5] (заметим, что у семейства $W^0 = W(H_0)$ поля вычетов регулярно замкнуты в бесконечности, в частности, обильны в бесконечности) семейство $W(H_1)$ удовлетворяет принципу LG_A . По следствию 2 теоремы 1 в [5] для $\langle F_1, H_1, \sqsubseteq_1 \rangle$ существует M-подъем $\langle F', H', \sqsubseteq' \rangle$; тогда W(H') удовлетворяет условию (M), а также условию LG_A по теореме 3.4.1 из [4]. Кроме того, для любого кольца нормирования R' из W(H') кольцо $R \rightleftharpoons R' \cap F$ принадлежит $W_{qc}(F), \langle F', R' \rangle$ является непосредственным расширением $\langle F, R \rangle$. Следовательно, R' квазиклассическое, $W(H') \subseteq W_{qc}(F')$. Используя доказательство следствия 3.5.3 в [4], можно установить, что для любого кольца нормирования R' поля F' такого, что $R' \not\in W(H')$, поле $H_{R'}(F')$ является алгебраически замкнутым, значит, R' не является квазиклассическим, и $W(H') = W_{qc}(F')$. Итак, $\mathbb{F}' = \langle F', H', \sqsubseteq' \rangle \in mNLGF^*$ и выполнены следующие условия: для любого i < k семейство

$$W_i' \rightleftharpoons \{R' \mid R' \in W(H'), \ \mathbb{H}_{R'}(F') \models \overline{\Phi}_i(\bar{a})\}$$

гомеоморфно семейству W_i^0 и, следовательно,

$$\chi(\mathbb{E}(R(W_i')) = \chi(\mathbb{E}(H_i^0)) = \chi_i.$$

Из определения W'_i следует, что

$$\mathbb{E}(R(W_i')) = T_{\Phi;\bar{a}}^{F'} \cap T_{\Psi;\bar{a}}^{F'}.$$

Итак, $\chi \left(T^{F'}_{\Phi^i;\bar{a}} \cap T^{F'}_{\Psi_i;\bar{a}}\right) = \chi_i$ для всех i < k и \mathbb{F}' является решением проблемы (*).

Предложение доказано.

Заметим теперь, что условия (1)–(3) проверяются эффективно. Относительно условий (1) это очевидно. Эффективность проверки условия (2) вытекает из разрешимости теории класса $\{\mathbb{Q}_p \mid p - \text{простое число}\}$ всех полей p-адических чисел. Для эффективности проверки условия (3) установим, что можно эффективно по предложению Φ сигнатуры σ_R узнавать, является ли множество

$$\mathscr{P}_{\Phi} \rightleftharpoons \{ p \mid \langle \mathbb{Q}_p, \mathbb{Z}_p \rangle \models \Phi \}$$

бесконечным. По предложению 2 по Φ можно эффективно найти предложение Ψ сигнатуры σ_f такое, что для любого гензелева абсолютно неразветвленного поля $\mathbb F$ такого, что $\Gamma_R - Z$ -группа (т. е. Γ_R элементарно эквивалентна $\mathbb Z$), имеют место эквивалентности

$$\mathbb{F} \models \Phi \Longleftrightarrow \mathbb{F} \models \Psi_R \Longleftrightarrow F_R \models \Psi.$$

Тогда вопрос о бесконечности множества \mathscr{P}_{Φ} сводится к вопросу о бесконечности множества $\mathbb{Q}_{\Psi} \rightleftharpoons \{p \mid F_p \models \Psi\} \ (=\mathscr{P}_{\Phi}),$ здесь F_p — конечное поле из p элементов. Возможность эффективной проверки бесконечности множества \mathbb{Q}_{ψ} вытекает из рассмотрений, проведенных в доказательстве теоремы 26.9 из [4]: по предложению Ψ эффективно находится целое l>0, конечное расширение Галуа L поля \mathbb{Q} и семейство Con циклических подгрупп из $G(L/\mathbb{Q})$, замкнутое относительно сопряженности, такие, что выполнена эквивалентность (4) из этого доказательства. Из этой эквивалентности и теоремы Чеботарева о плотности вытекает, что множество \mathbb{Q}_{Ψ} бесконечно тогда и только тогда, когда соответствующее множество Con непустое.

Из всех этих рассмотрений следует, что множество всех предложений сигнатуры σ_R , выполнимых на классе $mNLGF^*$, является вычислимо перечислимым. Этого, как отмечено в начале доказательства теоремы, достаточно для утверждения разрешимости элементарной теории $T_* = Th(mNLGF^*)$.

Теорема доказана. □

Рассмотрим кратно нормированное поле $\langle \mathbb{Q}, \mathbb{Z}, \sqsubseteq_{\mathbb{Z}} \rangle$; как в доказательстве теоремы, можно найти счетное непосредственное расширение $\langle \mathbb{Q}, \mathbb{Z}, \sqsubseteq_{\mathbb{Z}} \rangle \leq \mathbb{F} = \langle F, H, \sqsubseteq \rangle$ такое, что $\mathbb{F} \in mNLGF^*$, т. е. $W(H) \models LG_A \wedge M$. Заметим, что если $\langle \mathbb{Q}, \mathbb{Z}, \sqsubseteq_{\mathbb{Z}} \rangle \leq \mathbb{F}'$ — другое такое расширение, то по теореме 4.6.3 из [4] \mathbb{F} и \mathbb{F}' элементарно эквивалентны. Назовем такое \mathbb{F} *W-расширением* кратно нормированного поля $\langle \mathbb{Q}, \mathbb{Z}, \sqsubseteq_{\mathbb{Z}} \rangle$.

Замечание. Такое W-расширение \mathbb{F} «почти» является удивительным расширением поля \mathbb{Q} (отсутствует только порядок) (см. [10]).

Теорема 2. Теория T_W любого W-расширения (т. е. теория всех W-расширений) разрешима.

Так как рассматриваемая теория T_W является полной, то для доказательства разрешимости T_W достаточно указать вычислимо перечислимую систему аксиом для T_W .

Установим сначала утверждение, имеющее и самостоятельный интерес.

Предложение 7. Пусть F — поле алгебраических чисел (конечное расширение \mathbb{Q}); $F_0 \geq F$ — конечное расширение Галуа поля \mathbb{Q} . Пусть $W \subseteq W_{qc}(F)$ таково, что $W_{qc}(F) \setminus W$ конечно; тогда найдутся кольца нормирования $R_0, \ldots, R_{k-1} \in W$ такие, что если F' — алгебраическое расширение F и для любого i < k существует $R'_i \in W_{qc}(F')$ такое, что $R'_i \cap F = R_i$, то $F' \cap F_0 = F$.

Пусть $G \rightleftharpoons G(F_0/\mathbb{Q}), \ H \rightleftharpoons G(F_0/F) \le G$; из теоремы Чеботарева о плотности следует, что для любого $\sigma \in H$ существует бесконечно много простых p таких, что подгруппа $\langle \sigma \rangle \le G$ является группой разложения кольца нормирования $\mathbb{Z}_p < \mathbb{Q}$ в F_0 . Так как $\langle \sigma \rangle \le H$, то существует кольцо нормирования R поля F, доминирующее \mathbb{Z} и такое, что $\langle \sigma \rangle$ является группой разложения R в F_0 . Заметим, что тогда $R \in W_{qc}(F)$. Так как $W_{qc}(F) \setminus W$ конечно, то можно найти p и R такие, что $R \in W$; обозначим одно из таких колец через R_σ . Установим, что конечное семейство колец $\{R_\sigma \mid \sigma \in H\}$ удовлетворяет заключению предложения.

Пусть F' — алгебраическое расширение F такое, что для любого $\sigma \in H$ кольцо нормирования R_{σ} имеет расширение до кольца нормирования R'_{σ} поля F' такого, что $\langle F, R_{\sigma} \rangle \leq \langle F', R'_{\sigma} \rangle$ — непосредственное расширение. Переходя от поля F' к полю $F' \cap F_0$, можно считать, что $F' \leq F_0$, и достаточно доказать, что в этом случае F' = F. Пусть $H' \rightleftharpoons G(F_0/F') \leq H$. Пусть $\sigma' \in H'$ таково, что $\langle \sigma' \rangle$ — группа разложения кольца R'_{σ} в F_0 ; тогда $\langle \sigma' \rangle$ будет и группой разложения кольца R_{σ} в F_0 и, следовательно, $\langle \sigma' \rangle$ сопряжена с σ в H. Итак, для любого $\sigma \in H$ существует $\sigma' \in H'$ ($\leq H$), сопряженный с σ в H. Тогда по лемме Мазурова (см. [10]) H = H' и F' = F.

Предложение доказано.

Следствие. Для любого поля алгебраических чисел F если семейство W колец нормирования поля F такое, что $W_{qc}(F)\backslash W$, конечно, то W удовлетворяет свойству максимальности.

Из этого следствия вытекает, что $\mathbb Q$ алгебраически замкнуто в F, т. е. $\mathrm{Abs}\,F=\mathbb Q.$ Тогда $H\cap\mathrm{Abs}\,F=H\cap\mathbb Q=\mathbb Z.$

Система аксиом для теории $Th(\mathbb{F})$ состоит из теории $T_*(=Th(mNLGF^*)),$ $N(\mathbb{Q})$ и описания элементарных характеристик $\chi(\Phi,\Psi,\bar{a})$ идеалов $T_{\Phi;\bar{a}}^F$ $\cap T_{\Psi;\bar{a}}^F$ \mathbb{E} -решетки $\mathbb{E}(H)$, где $\Phi(\bar{x})\in L_{\sigma_f},\,\Psi(\bar{x})\in L_{\sigma_l},\,\bar{a}\in\mathbb{Z}^{\times}$.

Заметим, что $\mathbb{E}(H) \cong \mathbb{E}(\mathbb{Z})$, а \mathbb{E} -решетка $\mathbb{E}(\mathbb{Z})$ естественно изоморфна E-решетке $P\omega(\mathscr{P})$ всех конечных подмножеств множества \mathscr{P} всех простых чисел. Отсюда следует, что всякий идеал $\mathbb{E}(H)$ либо конечен, либо является атомной E-решеткой, не являющейся булевой (все такие E-решетки элементарно эквивалентны, т. е. имеют одну и ту же характеристику).

Поэтому описание элементарных характеристик $\chi(\Phi, \Psi, \bar{a})$ будет эффективным, если по Φ , Ψ и \bar{a} можно эффективно узнать, конечно или бесконечно множество $T_{\Phi;\bar{a}}^F$ \cap $T_{\Psi;\bar{a}}^F$ и, если оно конечно, сколько элементов оно содержит.

Пусть
$$\Phi(\bar{x}) \in L_{\sigma_f}, \Psi(\bar{x}) \in L_{\sigma_l}, \bar{a} \in \mathbb{Z}^{\times}$$
. Пусть

$$\mathscr{P}(\Phi,\Psi,\bar{a})
ightleftharpoons \{p \mid p$$
— простое число, $\langle \mathbb{Q}_p,\mathbb{Z}_p \rangle \models \Phi_R(\bar{a}) \wedge \Psi^R(\bar{a}) \}.$

Нетрудно видеть, что идеал $T_{\Phi;\bar{a}}^F \cap T_{\Psi;\bar{a}}^F$ порождается в $\mathbb{E}(H)$ множеством $\{[p]_H \mid p \in \mathscr{P}(\Phi,\Psi,\bar{a})\}$. Заметим, что $\Phi_R(\bar{a}) \wedge \Psi^R(\bar{a})$ является предложением сигнатуры σ_R .

Поэтому достаточно по любому предложению Φ сигнатуры σ_R эффективно узнавать

1) конечно или бесконечно множество

$$\mathscr{P}_{\Phi} \rightleftharpoons \{p \mid p - \text{простое число}, \langle \mathbb{Q}_p, \mathbb{Z}_p \rangle \models \Phi\};$$

2) если \mathscr{P}_{Φ} конечно, то сколько элементов оно содержит?

То, что первый вопрос решается эффективно, отмечено в доказательстве теоремы.

Если известно, что \mathscr{P}_{Φ} конечно, то, используя разрешимость теории T^* всех полей p-адических чисел, можно эффективно найти натуральное N такое, что $\langle \mathbb{Q}_p, \mathbb{Z}_p \rangle \models \Phi \Longrightarrow p \leq N$. Тогда

$$\mathscr{P}_{\Phi} = \{ p \mid p \leq N, \ \langle \mathbb{Q}_p, \mathbb{Z}_p \rangle \models \Phi \}$$

и разрешимость теории T^* позволяет вычислить это множество \mathscr{P}_{Φ} и, в частности, узнать число элементов этого множества.

Теорема доказана. □

Замечание. Разрешимость теории удивительных расширений поля \mathbb{Q} , объявленная в [10], устанавливается аналогично.

ЛИТЕРАТУРА

- 1. Ершов Ю. Л. Хорошие локально-глобальные поля. І // Алгебра и логика. 1996. Т. 35, № 4. С. 411–423.
- **2.** *Ершов Ю. Л.* Хорошие локально-глобальные поля. II // Алгебра и логика. 1996. Т. 35, N² 5. С. 503–528.
- 3. *Ершов Ю. Л.* Хорошие локально-глобальные поля. III // Сиб. мат. журн. 1997. Т. 38, № 3. С. 526–532.
- 4. Ершов Ю. Л. Кратно нормированные поля. Новосибирск: Научная книга, 2000.
- 5. *Ершов Ю. Л.* Непосредственные расширения прюферовых колец // Алгебра и логика. 2001. Т. 40, № 3. С. 262–289.
- 6. Ершов Ю. Л. Проблемы разрешимости и конструктивные модели. М.: Наука, 1980.
- **7.** Гончаров С. С., Ершов Ю. Л. Конструктивные модели. Новосибирск: Научная книга, 1999.
- 8. Van den Dries L. Elimination theory for the ring of algebraic integers // J. Reine Angew. Math. 1988. V. 388. P. 189–205.
- 9. Ершов Ю. Л. Инвариантная порождаемость // Сиб. мат. журн. 1988. Т. 29, № 5. С. 109–111.
- 10. Ершов Ю. Л. Об удивительных расширениях поля рациональных чисел // Докл. РАН. 2000. Т. 373, № 1. С. 15–16.

Статья поступила 5 ноября 2001 г.

Ершов Юрий Леонидович Институт математики им. С. Л. Соболева СО РАН, Новосибирск 630090 ershov@math.nsc.ru