КРИТИЧЕСКИЕ ТЕОРИИ МНОГООБРАЗИЙ ПОЛУГРУПП С ПЕРЕСТАНОВОЧНЫМ ТОЖДЕСТВОМ

В. Ю. Попов

Аннотация: Доказано, что произвольное конечно базируемое периодическое многообразие полугрупп, удовлетворяющее перестановочному тождеству, либо имеет пустую границу разрешимости (т. е. его элементарная теория разрешима), либо его граница разрешимости равна $\{\exists \forall \neg \land \lor\}$. Библиогр. 7.

Многообразия полугрупп с разрешимой элементарной теорией описаны в [1]. В [2] доказана разрешимость позитивной теории произвольного конечно базируемого многообразия полугрупп с перестановочным тождеством. Эти результаты делают актуальной задачу описания всех, в рамках некоторой иерархии [3], разрешимых теорий многообразий полугрупп. В работах [4,5] указанная задача решена в терминах границы разрешимости (см. [6]) для многообразия всех полугрупп и периодических многообразий коммутативных полугрупп. Следующая теорема обобщает результат работы [5] на случай многообразий с перестановочным тождеством.

Теорема. Произвольное конечно базируемое периодическое многообразие полугрупп \mathfrak{X} , удовлетворяющее перестановочному тождеству, либо имеет пустую границу разрешимости (т. е. его элементарная теория разрешима), либо его граница разрешимости равна $\{\exists \forall \neg \land \lor \}$.

Заметим, что имеются примеры многообразий, упомянутых в теореме, как с пустой границей разрешимости, так и с границей разрешимости $\{\exists \forall \neg \land \lor\}$ (см. [1]).

ДОКАЗАТЕЛЬСТВО. Напомним, что граница разрешимости класса $\mathscr K$ алгебраических систем — это список всех языков L из схемно-альтернативной иерархии SA таких, что теория $L\mathscr K$ является критической, т. е. минимальной в иерархии $SA\mathscr K$ неразрешимой теорией. Описание границы разрешимости дает описание всех в рамках иерархии SA разрешимых теорий данного класса $\mathscr K$: теория $L\mathscr K$ для $L\in SA$ разрешима тогда и только тогда, когда L не включает ни одного из языков, принадлежащих границе разрешимости класса $\mathscr K$.

Допустим, что многообразие \mathfrak{X} имеет неразрешимую элементарную теорию. Убедимся, что теория $\exists \forall \neg \land \lor \mathfrak{X}$ неразрешима. Пусть \mathfrak{C} — многообразие коммутативных полугрупп. Тогда в силу [1] элементарная теория многообразия $\mathfrak{X} \cap \mathfrak{C}$ неразрешима. Поэтому из [2] получаем неразрешимость теории $\exists \forall \neg \land \lor \mathfrak{X} \cap \mathfrak{C}$. Обозначим через φ произвольное предложение языка $\exists \forall \neg \land \lor \mathsf{N}$. Рассмотрим предложение $\psi \Rightarrow \exists xyxy \neq yx \lor \varphi$. Легко понять, что предложение ψ истинно на

всех некоммутативных полугруппах, а на коммутативных полугруппах ψ истинно тогда и только тогда, когда на них истинно предложение φ . Следовательно, $\mathfrak{X} \models \psi \Leftrightarrow \mathfrak{X} \cap \mathfrak{C} \models \varphi$. Так как теория $\exists \forall \neg \land \lor \mathfrak{X} \cap \mathfrak{C}$ неразрешима, не существует алгоритма, определяющего по предложению ψ истинность его на \mathfrak{X} . Поскольку ψ является $\exists \forall \neg \land \lor \neg$ предложением, теория $\exists \forall \neg \land \lor \mathfrak{X}$ неразрешима.

Перейдем к доказательству критичности теории $\exists \forall \neg \land \lor \mathfrak{X}$. Для этого докажем утверждение, имеющее самостоятельный интерес.

Лемма. Пусть $F_{\alpha}\mathfrak{X}$ — полугруппа конечного ранга α , свободная в многообразии \mathfrak{X} . Тогда существует рекурсивная функция $f(\alpha)$ со свойством $|F_{\alpha}\mathfrak{X}| \leq f(\alpha)$.

Доказательство леммы. Пусть $x_1 \dots x_n = u(x_1, \dots, x_n)$ и $x^p = x^q$, где p < q, — тождества перестановочности и периодичности, которым удовлетворяет многообразие \mathfrak{X}, w — произвольный элемент полугруппы $F_{\alpha}\mathfrak{X}, \{a_1, \dots, a_{\alpha}\}$ — множество свободных образующих полугруппы $F_{\alpha}\mathfrak{X}$. Обозначим через $l_i(w)$ число вхождений a_i в слово w и, считая для определенности p < q, покажем следующее. Если $l_i(w) > n + q$, то существует слово w^* такое, что $w = w^*$, $l_j(w) = l_j(w^*)$ для любого $j \neq i$ и $l_i(w^*) \leq n + q$. Для этого достаточно показать, что по слову w можно построить слово w^* такое, что $w = w^*, l_j(w) = l_j(w^*)$ для любого $j \neq i$ и $l_i(w^*) < l_i(w)$.

Заметим, что функция $l_j(w)$ удовлетворяет следующему условию: если слово w графически равно слову $w_1 \dots w_t$, где для любого $r \in \{1, \dots, t\}$ w_r — подслово слова w, то $l_j(w) = \sum_{r=1}^t l_j(w_r)$.

Предположим, что $u(x_1,\ldots,x_n)=x_kv(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n)$, где $k\neq 1$. Представим слово w в виде $A_1a_iA_2a_iA_3$, где A_1 — возможно пустое слово, не содержащее образующего $a_i,\ A_2$ — слово, длина которого не меньше k=1. Мы можем сделать это, поскольку $l_i(w)>n+q$ и, следовательно, длина слова $a_iA_2a_iA_3$ больше n+q. Применим к слову $A_2a_iA_3$ тождество $x_1\ldots x_n=u(x_1,\ldots,x_n)$, полагая $A_2=x_1\ldots x_{k-1},\ a_i=x_k,\ A_3=x_{k+1}\ldots x_n$. Получим, что $A_1a_iA_2a_iA_3=A_1a_i^2A_4$, при этом $l_j(A_2A_3)=l_j(A_4)$ для любого j.

Индукцией по r покажем, что для любого $r \in \{2, \ldots, q\}$ найдется такое слово A_{r+2} , что выполняется равенство $w = A_1a_i{}^rA_{r+2}$ и $l_j(w) = l_j(A_1a_i{}^rA_{r+2})$ для любого j. Базу индукции мы уже проверили. Допустим, что данное утверждение справедливо для некоторого r. Покажем, что оно выполняется и для r+1. В самом деле, так как $w = A_1a_i{}^rA_{r+2}$, причем $l_j(w) = l_j(A_1a_i{}^rA_{r+2})$ для любого j, то $l_i(A_{r+2}) > n+q-r$. Поскольку $r \le q$ и $k \le n$, слово A_{r+2} можно представить в виде Ba_iC , где B— слово, длина которого не меньше k-1. Применим к слову Ba_iC тождество $x_1 \ldots x_n = u(x_1, \ldots, x_n)$, полагая $B = x_1 \ldots x_{k-1}$, $a_i = x_k$, $C = x_{k+1} \ldots x_n$. Получим, что $A_1a_i{}^rBa_iC = A_1a_i{}^{r+1}A_{r+3}$, при этом $l_i(BC) = l_i(A_{r+3})$ для любого j.

Итак, мы показали, что для любого $r \in \{2,\ldots,q\}$ найдется такое слово A_{r+2} , что выполняется равенство $w = A_1 a_i{}^r A_{r+2}$ и $l_j(w) = l_j(A_1 a_i{}^r A_{r+2})$ для любого j. Следовательно, имеет место равенство $w = A_1 a_i{}^q A_{q+2}$, причем $l_j(w) = l_j(A_1 a_i{}^q A_{q+2})$ для любого j. Применение тождества $x^p = x^q$ завершает рассмотрение случая. Нам осталось рассмотреть случай, когда

$$u(x_1,\ldots,x_n) = x_1x_2\ldots x_sx_kv(x_{s+1},\ldots,x_{k-1},x_{k+1},\ldots,x_n),$$

где k>s+1. Представим слово w в следующем виде: $A_1a_iA_2a_iA_3$, где A_1 — наименьшее подслово слова w такое, что его длина больше s-2 и выполняется

равенство $w=A_1a_iA_2a_iA_3$, A_2 — слово, длина которого не меньше k-s-1. Мы можем сделать это, поскольку $l_i(w)>n+q$ и, следовательно, длина слова $a_iA_2a_iA_3$ больше n+q-s-1. Аналогично предыдущему случаю конечной индукцией мы можем показать, что $w=A_1a_i{}^qA_{q+2}$, причем для любого j $l_j(w)=l_j(A_1a_i{}^qA_{q+2})$. Применение тождества $x^p=x^q$ завершает доказательство требуемого.

Пусть $l_1(w) > n+q$. Тогда по доказанному существует слово w_1^* такое, что $l_1(w_1^*) \le n+q$ и $w=w_1^*$. Теперь применим доказанное для i=2 к слову w_1^* и т. д. В итоге получим слово w_r^* такое, что $l_i(w_r^*) \le n+q$ и $w=w_r^*$ для любого i. Следовательно, длина слова w_r^* не превосходит (q+n)r. Полагая

$$f(\alpha) = \sum_{i=1}^{(n+q)\alpha} \sum_{n_1 + \dots + n_{\alpha} = i} \frac{i!}{n_1! \dots n_{\alpha}!},$$

в силу произвольности слова w отсюда получаем $|F_{\alpha}\mathfrak{X}| \leq f(\alpha)$. Легко понять, что функция $f(\alpha)$ рекурсивна. Лемма доказана.

Воспользовавшись строением схемно-альтернативной иерархии [6], легко понять, что для того чтобы показать, что $\exists \forall \neg \land \lor \mathfrak{X}$ — единственная критическая теория многообразия \mathfrak{X} , достаточно убедиться в разрешимости теорий типов $\overline{\omega} \land \lor, \overline{\omega} \land \neg, \overline{\omega} \lor \neg, \forall \exists \neg \land \lor$. Разрешимость $\overline{\omega} \land \lor$ -теории доказана в [4]. Ввиду леммы из [7] вытекает разрешимость $\overline{\omega} \lor \neg$ -теории. Произвольное предложение языка $\overline{\omega} \land \neg$ либо является предложением языка $\overline{\omega} \land \lor$, либо ложно на одноэлементной полугруппе. Произвольное предложение языка $\forall \exists \neg \land \lor$ имеет вид $\psi \rightleftharpoons$ $\forall x_1 \dots x_n \exists y_1 \dots y_m \varphi(x_1, \dots, x_n, y_1, \dots, y_m),$ где $\varphi(x_1, \dots, x_n, y_1, \dots, y_m)$ — атомная формула. Допустим, что $\mathfrak{X} \not\models \psi$. Тогда найдется полугруппа $S \in \mathfrak{X}$ такая, что $S \models \neg \psi$. Заметим, что $\neg \psi$ имеет вид $\exists x_1 \dots x_n \forall y_1 \dots y_m \neg \varphi(x_1, \dots, x_n, y_1, \dots, y_n)$ y_m). Отсюда в силу соотношения $S \models \neg \psi$ вытекает существование элементов $x_{1_0},\ldots,x_{n_0}\in S$ таких, что $S\models \forall y_1\ldots y_m \neg \varphi(x_{10},\ldots,x_{n0},y_1,\ldots,y_m)$. Легко понять, что из последнего соотношения вытекает соотношение $S_n \models \forall y_1 \dots y_m \neg \varphi$ $(x_{10},\ldots,x_{n0},y_1,\ldots,y_m)$, где S_n-n -порожденная подполугруппа полугруппы S с множеством образующих x_{10},\ldots,x_{n0} . Используя лемму, легко убедиться в том, что все n-порожденные полугруппы из многообразия $\mathfrak X$ конечны, их конечное число, и, кроме того, мощности п-порожденных полугрупп из многообразия $\mathfrak X$ и их число ограничены рекурсивными функциями. Следовательно, $\forall \exists \neg \land \lor$ теория многообразия \mathfrak{X} разрешима. Теорема доказана.

ЛИТЕРАТУРА

- 1. Замятин А. П. Предмногообразия полугрупп, элементарная теория которых разрешима // Алгебра и логика. 1973. Т. 12, № 4. С. 417–432.
- 2. Розенблат Б. В. Позитивные теории некоторых многообразий полугрупп // Исследования по современной алгебре. Свердловск, 1981. С. 117–132.
- 3. Важенин Ю. М. Критические теории // Сиб. мат. журн. 1988. Т. 29, № 1. С. 23–31.
- Важенин Ю. М. Алгоритмические проблемы и иерархии языков первого порядка // Алгебра и логика. 1987. Т. 26, № 4. С. 419–434.
- 5. Баясгалан Б. Критические теории некоторых многообразий полугрупп // Conf. on algebra: Thes. of reports. Ulaanbaatar, 1990. P. 1–2.
- 6. Важенин Ю. М. Множества, логика, алгоритмы. Екатеринбург: УрГУ, 1997.

Статья поступила 16 января 1998 г.