e-ИММУННЫЕ МНОЖЕСТВА

Б. Я. Солон

Аннотация: Изучаются свойства множеств, e-степени которых нетотальны. Введение класса e-иммунных множеств связано с рассмотрением проблемы описания нетотальных e-степеней.

Будем придерживаться терминологии и обозначений, принятых в монографии [1]. Напомним те из них, которые используются в данной статье. N множество натуральных чисел; A, B, C (с индексами или без них) — подмножества N; D_u — конечное множество с каноническим индексом u; $\langle x,y\rangle$ канторовский номер упорядоченной пары (x,y). Если z — канторовский номер упорядоченной пары (x,y), то положим $\langle z \rangle_1 = x, \langle z \rangle_2 = y$. Пусть $\delta \alpha$ — область определения, $\rho \alpha$ — множество значений частичной арифметической функции $\alpha, \tau \alpha = \{\langle x, y \rangle : x \in \delta \alpha \land y = \alpha(x)\}$ — график α . Множество A называется $o\partial$ нозначным, если A= aulpha для некоторой функции lpha. Если A — однозначное множество и $A = \tau \alpha$, то будем использовать обозначение $A(x) = \alpha(x)$. Для сокращения записи вместо $x \in \delta \alpha$ будем писать $!\alpha(x)$. Тот факт, что A не является однозначным множеством, будем записывать символически $\forall \alpha [A \neq \tau \alpha]$. Символы f и q будем использовать только для обозначения тотальных функций $(\delta f = \delta g = N)$. Если A — конечное множество, то через |A| будем обозначать число элементов A. Если A — бесконечное множество, то будем писать $|A| = \infty$. Напомним, что A e-cводится κ B nосредством n, если

$$\forall x [x \in A \iff \exists u [\langle x, u \rangle \in W_n \land D_u \subseteq B]],$$

и A e-сводится κ B ($A \leq_e B$), если существует $n \in N$ такое, что A e-сводится κ B посредством n. Через Φ_n будем обозначать оператор перечисления (или e-оператор), для которого

$$\Phi_n(B) = \{x : \exists u [\langle x, u \rangle \in W_n \land D_u \subseteq B] \}.$$

Таким образом, $A \leq_e B \iff \exists n[A = \Phi_n(B)]$. Будем писать $A <_e B$, если $A \leq_e B \land B \not\leq_e A$; $\alpha \leq_e A$, если $\tau \alpha \leq_e A$. Обозначим через $d_e(A) = \{B: B \leq_e A \land A \leq_e B\}$ е-степень множества A. Частично упорядоченное множество е-степеньй образует верхнюю полурешетку L_e с наименьшим элементом $\mathbf{0} - e$ -степенью, состоящей их всех рекурсивно перечислимых множеств. е-Степень называется тотальной, если она содержит график тотальной функции.

Дадим некоторое обобщение понятия квазиминимального множества. Множество A называется B-квазиминимальным, если $B <_e A$ и для любой тотальной функции g если $g \le_e A$, то $g \le_e B$. Ясно, что если B — произвольное рекурсивно перечислимое множество, то B-квазиминимальное множество A является просто квазиминимальным. Существование B-квазиминимальных множеств для любого B впервые доказано L. P. Sasso [4].

Пусть $a_0, a_1, \ldots, a_n, \ldots$ — элементы множества A, расположенные в порядке возрастания, или npsmoй nepecuem A. Множество A называется pempaccu-pyemыm, если существует частично рекурсивная функция ψ такая, что $A \subseteq \delta \psi$, $\psi(a_0) = a_0$ и $\psi(a_n) = a_{n-1}$ для всех n>0. Легко увидеть, что если B — бесконечное подмножество ретрассируемого множества A, то $A \leq_e B$. В статье [5] вводится понятие e-гипериммунного множества: бесконечное множество A называется e-гипериммунным, если не существует тотальной функции g такой, что $g \leq_e A \land \forall n[a_n \leq g(n)]$. Если для некоторой функции g выполнено $a_n \leq g(n)$ для всех $n \in N$, то будем говорить, что функция g мажсорирует множество A. Таким образом, бесконечное множество A e-гипериммунно тогда и только тогда, когда оно не мажорируется никакой тотальной функцией $g \leq_e A$.

В [5] доказано существование e-гипериммунных множеств и нетотальность любой e-степени, содержащей e-гипериммунного множества. В статье сформулирован вопрос, каждая ли нетотальная e-степень содержит e-гипериммунное множество. Дадим отрицательный ответ на этот вопрос. Для этого расширим класс e-гипериммунных множеств так, чтобы любое множество из этого класса принадлежало нетотальной e-степени.

Определение. Бесконечное множество A называется e-иммунным, если

$$\rho f \subseteq A \to |\rho f| < \infty$$

для любой тотальной функции $f \leq_e A$.

Существование и простейшие свойства e-иммунных множеств докажем в следующем предложении.

Предложение 1. (a) *Если A* -e-гипериммунное, то A-e-иммунное;

- (б) если A e-иммунное, то A иммунное;
- (в) если A e-иммунное, то $d_e(A)$ нетотальная e-степень;
- (Γ) если A иммунное квазиминимальное, то A e-иммунное.

Доказательство. (а) Предположим, что бесконечное множество A не является e-иммунным и a_0,\ldots,a_n,\ldots — прямой пересчет A. Тогда существует тотальная функция $f\leq_e A$ такая, что $\rho f\subseteq A$ и ρf — бесконечное множество. Определим тотальную функцию $g\leq_e A$, мажорирующую A. Пусть g(0)=f(0). Предположим, что значения $g(0),\ldots,g(n-1)$ уже определены. Так как ρf бесконечно, существует $x_n=\min\{x:f(x)>g(n-1)\}$. Определим $g(n)=f(x_n)$. Ясно, что g — тотальная строго возрастающая функция, $g\leq_e f$, $\rho g\subseteq\rho f\subseteq A$ и ρg — бесконечное множество. Докажем, что g мажорирует $g(0)\in A$, то $g(0)\in A$, то $g(0)\in A$, то $g(0)\in A$, для некоторого $g(0)\in A$. Предположим, что $g(0)\in A$, тогда $g(0)\in A$, для некоторого $g(0)\in A$, из $g(0)\in A$, то $g(0)\in A$, для некоторого $g(0)\in A$, для некото

(б) Пусть $W\subseteq A$ — бесконечное рекурсивно перечислимое подмножество и общерекурсивная функция f перечисляет W. Тогда $\rho f=W\subseteq A$ и $f\leq_e A$. Следовательно, A не является e-иммунным.

- (в) Предположим, что $d_e(A)$ тотальная e-степень. Тогда по любому перечислению A можно эффективно получить пересчет A в некотором фиксированном порядке $\{a'_n:n\in N\}$ [3]. Определим $f(n)=a'_n$ для всех $n\in N$. Ясно, что $f\equiv_e A$, $\rho f\subseteq A$ и ρf бесконечное множество, что противоречит e-иммунности A.
- (г) Предположим, что A не является e-иммунным множеством. Тогда существует тотальная функция $f \leq_e A$ такая, что $\rho f \subseteq A$ и ρf бесконечное множество. Так как A квазиминимальное множество, то f общерекурсивная функция, и тогда ρf бесконечное рекурсивно перечислимое подмножество A, что противоречит иммунности A.

Предложение 2. Если A-e-иммунное множество, B-A-квазимини-мальное, то $\exists C[C \in d_e(B) \land C-e$ -иммунное].

Доказательство. Пусть a_0, a_1, \ldots — прямой пересчет A и $C = \{\langle a_n, y \rangle : y \in B \land y \leq n \}$. Так как A e-иммунное, то, в частности, A бесконечное, поэтому $B = \{y : \exists x [\langle x, y \rangle \in C] \}$ и $B \leq_e C$. С другой стороны, опишем процедуру, эффективную относительно произвольного перечисления B, позволяющую перечислить множество C. Используя $A \leq_e B$, перечисляем элементы A. Если обнаружим числа x и y такие, что y находится среди перечисленных элементов B, x находится среди перечисленных элементов A и среди перечисленных элементов A есть не менее y различных чисел, меньших x, то зачисляем $\langle x, y \rangle$ в множество C. Следовательно, $C \leq_e B$ и $C \in d_e(B)$.

Докажем, что C-e-иммунное множество. Пусть f — тотальная функция, $f \leq_e C$ и $\rho f \subseteq C$. Рассмотрим $f_1(x) = \langle f(x) \rangle_1$, тогда $f_1 \leq_e C$ и $f_1 \leq_e B$. Так как B-A-квазиминимальное множество, то $f_1 \leq_e A$. Из определения f_1 следует, что $\rho f_1 \subseteq A$, поэтому $|\rho f_1| < \infty$. Но при любом x множество $\{z: \langle z \rangle_1 = x \land z \in C\}$ конечно, тем самым $|\rho f| < \infty$, т. е. C - e-иммунное множество.

Несмотря на предложение 2, свойство e-степени содержать e-иммунное множество не наследуется вверх в L_e . Из предложения $1(\mathbf{B})$ следует, что любая тотальная e-степень не содержит e-иммунных множеств. Но, как показывает следующая теорема, для любого e-иммунного множества A можно указать такую нетотальную e-степень $d_e(B)$, что $A <_e B$ и $d_e(B)$ не содержит e-иммунных множеств.

Теорема 1. Для любого ретрассируемого множества B существует множество A такое, что $B <_e A$, $d_e(A)$ — нетотальная e-степень, и если множество C таково, что $B <_e C \le_e A$, то оно не является e-иммунным множеством.

ДОКАЗАТЕЛЬСТВО. Пусть B — бесконечное ретрассируемое множество. Построим по шагам множество A так, чтобы выполнялась конъюнкция следующих условий:

- (i) $A \subset B$ и A бесконечное множество;
- (ii) $A \not\leq_e B$;
- (iii) A B-квазиминимальное множество;
- (iv) $\forall n[B <_e \Phi_n(A) \leq_e A \to \exists g[\rho g \subseteq \Phi_n(A) \land |\rho g| = \infty \land g \leq_e \Phi_n(A)]].$

Если такое множество A построено, то из (i) следует, что $B \leq_e A$, из (ii) — что $B <_e A$, из (iii) — что $d_e(A)$ — нетотальная e-степень и из (iv) — что $\forall C[B <_e C \leq_e A \to C$ — не e-иммунное множество].

Пусть A_t — часть A, построенная к началу шага t+1, причем A_t может быть бесконечным множеством, $A_t \subseteq A_{t+1} \subset B$ и $B-A_t$ бесконечно для всех $t \in N$. В ходе конструкции будет построена последовательность конечных множеств

 $Z_n, n \in N$, такая, что $Z_n \subseteq Z_{n+1} \subset B$ и $Z_n \cap A_t = \emptyset$ для всех $n, t \in N$. На каждом шаге t конструкции будем добиваться, чтобы существовало бесконечное множество U такое, что

$$U \subseteq B - (A_t \cup Z_t) \land U \le_e B. \tag{1}$$

Шаг 0. Полагаем $A_0=Z_0=\varnothing$. Ясно, что условие (1) выполнено.

ШАГ 4n+1. Пусть t=4n и $a=\min(B-(A_t\cup Z_t))$. Так как $B-A_t$ бесконечно и Z_t конечно, то $B-(A_t\cup Z_t)\neq\varnothing$ и такое a найдется. Полагаем $A_{t+1}=A_t\cup\{a\}$ и $Z_{t+1}=Z_t$. Ясно, что в этом случае выполнено (1). Шаги $4n+1,\ n\in N$, обеспечивают бесконечность множества A. Поскольку $A\subset B$, условие (i) будет в результате построения выполнено.

ШАГ 4n+2. Пусть t=4n+1. Проверим, что

$$\Phi_n(B) \subseteq A_t \vee \Phi_n(B) \not\subseteq B. \tag{2}$$

Если (2) выполнено, то полагаем $A_{t+1}=A_t$ и $Z_{t+1}=Z_t$. Если (2) не выполнено, то

$$\exists z[z \in (\Phi_n(B) - A_t) \cap B]. \tag{3}$$

Пусть z^* — наименьшее z, удовлетворяющее условию (3). Полагаем $A_{t+1}=A_t$ и $Z_{t+1}=Z_t\cup\{z^*\}$. Ясно, что в любом случае условие (1) выполняется. Шаги $4n+2,\,n\in N$, обеспечивают выполнение (ii). В самом деле, если (2) выполнено, то либо $\Phi_n(B)$ — конечное множество, если $\Phi_n(B)\subseteq A_t$, и тогда $\Phi_n(B)\neq A$, либо $\exists x[x\in\Phi_n(B)-B]$, а так как $A\subseteq B$, то $\Phi_n(B)\neq A$. Если (2) не выполнено, то $z^*\in\Phi_n(B)$ и $z^*\not\in A$, и тогда также $\Phi_n(B)\neq A$.

ШАГ 4n + 3. Пусть t = 4n + 2. Проверим, что

$$(\exists D \subseteq B)[D \cap Z_t = \emptyset \land \forall \alpha [\Phi_n(A_t \cup D) \neq \tau \alpha]]. \tag{4}$$

Если (4) выполнено, то пусть D^* имеет наименьший канонический индекс среди конечных множеств D, удовлетворяющих (4). Полагаем $A_{t+1} = A_t \cup D^*$ и $Z_{t+1} = Z_t$. Если (4) не выполнено, то $A_{t+1} = A_t$ и $Z_{t+1} = Z_t$. При этом, как легко увидеть, выполнено условие (1). Тогда

$$(\forall D \subseteq B)[D \cap Z_t = \varnothing \to \exists \alpha [\Phi_n(A_t \cup D) = \tau \alpha]] \tag{5}$$

и поэтому $\Phi_n(A)$ — однозначное множество.

Шаги 4n+3 обеспечивают B-квазиминимальность множества A. В самом деле, пусть $g \leq_e A$. Тогда $\tau g = \Phi_n(A)$ для некоторого $n \in N$. Рассмотрим шаг 4n+3. Ясно, что в этом случае (4) не выполнено. Покажем, что тогда $\Phi_n(B-Z_t)$ — однозначное множество. Если это неверно, то существуют $x,y',y'' \in N$ и конечное множество D такие, что $D \subseteq B-Z_t$ и $\langle x,y' \rangle, \langle x,y'' \rangle \in \Phi_n(A_t \cup D)$ и $y' \neq y''$. Тогда $\Phi_n(A_t \cup D)$ — неоднозначное множество, что противоречит предположению о выполнимости условия (5). Итак, $\Phi_n(B-Z_t)$ — однозначное множество. Так как $A \subseteq B-Z_t$, то $\tau g = \Phi_n(A) \subseteq \Phi_n(B-Z_t)$, следовательно, $\tau g = \Phi_n(B-Z_t)$. Поскольку Z_t — конечное множество, то $g \leq_e B-Z_t \leq_e B$. Таким образом, для A выполнено (iii).

ШАГ 4n + 4. Пусть t = 4n + 3. Проверим, что

$$(\exists D \subseteq B)[D \cap A_t = \emptyset \land Z_t \subseteq D \land |\Phi_n(B - D)| < \infty]. \tag{6}$$

Пусть D^* имеет наименьший канонический индекс среди D, удовлетворяющих (6). Полагаем $A_{t+1} = A_t$ и $Z_{t+1} = D^*$. Если (6) не выполнено, то

$$(\forall D \subseteq B)[D \cap A_t = \emptyset \land Z_t \subseteq D \to |\Phi_n(B - D)| = \infty]. \tag{7}$$

Определим тотальную функцию $g \leq_e B$ так, чтобы $|\rho g| = \infty$ и $\rho g \subseteq \Phi_n(A_{t+1}) \subseteq \Phi_n(A)$. Для этого построим последовательности $\{g^k : k \in N\}$ начальных сегментов функции g, $\{Q^k : k \in N\}$ конечных множеств и $\{A_t^k : k \in N\}$ по шагам, причем $Q = \bigcup_{k \in N} Q^k \leq_e B$ — бесконечное подмножество $B - A_{t+1}$, где $A_{t+1} = A_t \cup \bigcup_{k \in N} A_t^k$, которое подтверждает выполнимость условия (1).

Подшаг 0. Перечисляем W_n в стандартном порядке до тех пор, пока не встретим пару $\langle x^*,y^* \rangle$ такую, что $D_{y^*} \subseteq B-Z_t$. Полагаем $g^0=\{\langle 0,x^* \rangle\}$ и $A_t^0=D_{y^*}$. Заметим, что такая пара $\langle x^*,y^* \rangle$ обязана появиться в стандартном перечислении W_n , так как условие (7) должно быть выполнено, в частности, для $D=Z_t$. Пусть $U \leq_e B$ — бесконечное подмножество $B-A_t$, существование которого следует из выполнимости условия (1). Перечисляем U (используя произвольное перечисление B) до тех пор, пока не найдем такое $u \in U$, что $u \notin A_t^0$. Такое u найдется, ибо A_t^0 — конечное, а U — бесконечное множества. Полагаем $Q^0=\{u\}$.

Подшаг k+1. Пусть $g^k = \{\langle 0, g(0) \rangle, \dots, \langle k, g(k) \rangle\}$. Перечисляем W_n в стандартном порядке до тех пор, пока не встретим пару $\langle x^*, y^* \rangle$ такую, что $x^* > g(k)$ и $D_{y^*} \subseteq B - (Z_t \cup Q^k), D_{y^*} \cap A_t = \emptyset$. Такая пара должна появиться обязательно, так как из выполнимости условия (7) следует, что $|\Phi_n(B - (Z_t \cup Q^k))| = \infty$ (для $D = Z_t \cup Q^k$). Полагаем $g(k+1) = x^*$ и $A_t^{k+1} = A_t^k \cup D_{y^*}$. Перечисляем U (используя произвольное перечисление B) до тех пор, пока не найдем такое $u \in U$, что

$$u \notin A_t^{k+1} \cup Z_t \cup Q^k. \tag{8}$$

Такое z найдется, поскольку конструкция гарантирует, что $|A_t^{k+1} \cup Z_t \cup Q^k| < \infty$, а U — бесконечное множество. Полагаем $Q^{k+1} = Q^k \cup \{u\}$.

Докажем, что если $B <_e \Phi_n(A)$, то $\Phi_n(A)$ не является e-иммунным множеством. Если на шаге 4n+4 выполнено (6), то, так как $A \subseteq B-D^*$ и $\Phi_n(A) \subseteq \Phi_n(B-D^*)$, множество $\Phi_n(A)$ будет конечным и поэтому не e-иммунным множеством. Пусть теперь на шаге 4n+4 выполнено условие (7). Тогда построим тотальную функцию g и множество $Q \subseteq B$ такие, что $Q \subseteq B-A_{t+1}$. Так как построение g эффективно относительно произвольного перечисления B, имеем $g \subseteq_e B \subseteq_e \Phi_n(A)$. Из построения видно, что g — возрастающая функция, тем самым $|\rho g| = \infty$. Наконец, конечные множества D^* , выбранные на подшагах $k, k \in N$, являются подмножествами $A_{t+1} \subset A$, причем $\langle x^*, y^* \rangle \in W_n$, поэтому $g(k) = x^* \in \Phi_n(A)$ для всех $k \in N$ (конечно, x^* зависит от k). Таким образом, $\rho g \subseteq \Phi_n(A)$. Это означает, что $\Phi_n(A)$ не является e-иммунным множеством, т. е. выполнено условие (iii), и теорема доказана.

Из теоремы 1, в частности, следует, что существуют нетотальные e-степени, не содержащие e-иммунных множеств. Это дает ответ на вопрос из статьи [5]. Несмотря на теорему 1, можно доказать, что для любого ретрассируемого множества B существует несчетное семейство EI_B e-иммунных множеств, расположенных в L_e строго выше B. Докажем сначала следующее утверждение.

Теорема 2. Для любого ретрассируемого множества B существует счетный набор e-иммунных множеств $A_0, A_1, \ldots, A_k, \ldots$ таких, что $B <_e A$ и $A_k \not \leq_e A_l$ для всех $k, l \in N$ и $k \neq l$.

Доказательство. Пусть B — бесконечное ретрассируемое множество. Построим по шагам множества $A_0, A_1, \ldots, A_k, \ldots$ так, что

(i)
$$\forall k[|A_k| = \infty \land A_k \subseteq B],$$

- (ii) $\forall k \forall g [g \leq_e A_k \land \rho g \subseteq A_k \rightarrow |\rho g| < \infty],$
- (iii) $\forall k \forall l [k \neq l \rightarrow A_k \not\leq_e A_l]$.

Заметим, что если A_k — бесконечное множество и $A_k \subseteq B$, то $B \leq_e A_k$ и $A_k \not\leq_e B$, так как в противном случае $A_k \leq_e B \leq_e A_l$ для некоторых $k \neq l$, что противоречит (iii). Если выполнено (ii), то A_k — e-иммунное множество.

Обозначим через A_{k_t} часть A_k , построенную к началу шага t+1. Пусть $A_k = \bigcup_{t \in N} A_{k_t}, k \in N$. В ходе конструкции будет образовано вспомогательное множество Z, обозначим через Z_t конечную часть Z, построенную к началу шага t+1. Пусть $g_0, g_1, \ldots, g_n, \ldots$ — все тотальные функции, e-сводимые к B.

Шаг 0. Полагаем $A_{k_0}=\varnothing$ для всех $k\in N$ и $Z_0=\varnothing$.

ШАГ t+1. Пусть $t=\langle k,l,s\rangle$. Последовательно проверяя приведенные ниже условия, после определения $A_{k_{t+1}}$ переходим к шагу t+2.

Если s=3n и $|\rho g_n|<\infty$, то полагаем $A_{k_{t+1}}=A_{k_t}\cup\{x^*\}$ и $Z_{t+1}=Z_t$, где $x^*=\min(B-Z_t)$. Если ρg_n — бесконечное множество, то

$$\exists z [z \in \rho g_n - A_{k_t}]. \tag{1}$$

Пусть z^* — наименьшее z, удовлетворяющее (1). Полагаем $Z_{t+1} = Z_t \cup \{z^*\}$ и $A_{k_{t+1}} = A_{k_t} \cup \{x^*\}$, где $x^* = \min(B - Z_{t+1})$.

Если s = 3n + 1, проверим, что

$$\exists D[D \subseteq B \land D \cap Z_t = \varnothing \land \forall \alpha [\Phi_n(A_{k_t} \cup D) \neq \tau \alpha]]. \tag{2}$$

Если (2) выполнено, то полагаем $A_{k_{t+1}} = A_{k_t} \cup D^*$, где D^* имеет наименьший канонический индекс среди D, удовлетворяющих (2), и $Z_{t+1} = Z_t$. Если (2) не выполнено, то

$$\forall D[D \subseteq B \land D \cap Z_t = \varnothing \to \exists \alpha [\Phi_n(A_{k_t} \cup D) = \tau \alpha]],$$

т. е. $\Phi_n(A_{k_t})$ является однозначным множеством для всех $t \in N$. В этом случае $\Phi_n(A_k) = \tau g$ для некоторой функции g.

Проверим

$$\exists D \exists m [D \subseteq B \land D \cap Z_t = \varnothing \land ! \Phi_n(A_{k_t} \cup D)(m) \land \Phi_n(A_{k_t} \cup D)(m) \not\in A_{k_t} \cup D].$$
 (3)

Если (3) выполнено, то полагаем $A_{k_{t+1}}=A_{k_t}\cup D^*$ и $Z_{t+1}=Z_t\cup\{\Phi_n(A_{k_t}\cup D^*)(m^*)\}$, где D^* имеет наименьший канонический индекс среди D, удовлетворяющих (3), и m^* — наименьшее m, удовлетворяющее (3) для $D=D^*$. В противном случае полагаем $A_{k_{t+1}}=A_{k_t}$ и $Z_{t+1}=Z_t$.

Если s = 3n + 2, то проверим

$$\exists x \exists D [x \in \overline{A_{k_t}} \land D \subseteq B \land D \cap Z_t = \varnothing \land x \in \Phi_n(A_{l_t} \cup D) \cap B]. \tag{4}$$

Если (4) выполнено, то полагаем $A_{k_{t+1}} = A_{k_t}$ и $Z_{t+1} = Z_t \cup \{x^*\}$, где x^* — наименьшее x, удовлетворяющее (4), и $A_{l_{t+1}} = A_{l_t} \cup D^*$, где D^* имеет наименьший канонический индекс среди конечных множеств D, удовлетворяющих (4) для $x = x^*$. Если (4) не выполняется, то

$$\forall x \forall D [x \in \overline{A_{k_t}} \land D \subseteq B \land D \cap Z_t = \varnothing \to x \notin \Phi_n(A_{l_t} \cup D) \cap B]. \tag{5}$$

Пусть $x^* = \min(B-Z_t)$. Тогда полагаем $A_{k_{t+1}} = A_{k_t} \cup \{x^*\}, \ A_{l_{t+1}} = A_{l_t}$ и $Z_{t+1} = Z_t$.

Описание конструкции закончено. Покажем, что построенные множества A_k удовлетворяют условиям (i)–(iii) для всех $k \in N$. Из описания конструкции

легко увидеть, что $A_{k_t} \subseteq A_{k_{t+1}} \subseteq B$ для всех $k, t \in N$, поэтому $A_k \subseteq B$ для всех $k \in N$ и условие (i) выполнено.

Шаги t+1, где $t=\langle k,l,s\rangle$ и s=3n, гарантируют выполнение следующего условия для всех $k\in N$:

$$\forall n[\rho g_n \subseteq A_k \to |\rho g_n| < \infty].$$

Пусть g — тотальная функция и $g \leq_e A_k$, т. е. $\tau g = \Phi_n(A_k)$ для некоторого $n \in N$. Рассмотрим шаг t+1, где $t=\langle k,0,s\rangle$ и s=3n+1. Если (2) было выполнено, то $\Phi_n(A_k)$ не может быть однозначным множеством, поэтому

$$\forall D[D \subseteq B \land D \cap Z_t = \varnothing \to \exists \alpha [\Phi_n(A_{k_t} \cup D) = \tau \alpha]].$$

Ясно, что в этом случае $\Phi_n(B-Z_t)$ — однозначное множество. Так как $A_k\subseteq B-Z_t$, то $\tau g=\Phi_n(A_k)\subseteq \Phi_n(B-Z_t)$ и поэтому $\tau g=\Phi_n(B-Z_t)$. Другими словами, $g\leq_e B-Z_t\leq_e B$, тем самым $g=g_n$ для некоторого $n\in N$. Как было замечено выше, в этом случае $\rho g\subseteq A_k\to |\rho g|<\infty$ и условие (ii) выполнено.

Наконец, покажем, что $A_k \not\leq A_l$ для всех $k \neq l$. Предположим, что это неверно. Тогда $A_k = \Phi_n(A_l)$ для некоторого $n \in N$. Рассмотрим шаг t+1, где $t = \langle k, l, s \rangle$ и s = 3n+2. Если (4) выполнено, то $x^* \not\in A_k$ и $x^* \in \Phi_n(A_{l_t} \cup D^*)$, следовательно, $x^* \in \Phi_n(A_l)$. Если (5) выполнено, то $x^* \in A_{k_{t+1}} \subseteq A_k \subseteq B$ и $\forall D[D \subseteq B \land D \cap Z_t = \varnothing \to x^* \not\in \Phi_n(A_{l_t} \cup D) \cap B)]$, поэтому $\forall D[D \subseteq B \land D \cap Z_t = \varnothing \to x^* \not\in \Phi_n(A_{l_t} \cup D)]$. Это означает, что $x^* \not\in \Phi_n(A_l)$. В любом случае, $A_k \neq \Phi_n(A_l)$ и условие (iii) выполнено. Теорема доказана.

Следствие 1. Существует несчетная возрастающая цепь е-иммунных множеств.

Доказательство. Пусть A_0 — какое-либо e-иммунное множество и $\mathbf{J}(A_0)$ — e-скачок A_0 . Тогда существует ретрассируемое множество $B_1 \equiv_e \mathbf{J}(A_0)$. Из теоремы 2 следует, что в этом случае существует e-иммунное множество A_1 такое, что $B_1 <_e A_1$. Следовательно, $A_0 <_e A_1$ и т. д. Пусть \mathbf{C} — семейство всех возрастающих цепей e-иммунных множеств, частично упорядоченное по включению. Ясно, что $\mathbf{C} \neq \varnothing$. Каждая цепь элементов \mathbf{C} имеет точную верхнюю грань в \mathbf{C} , а именно объединение всех возрастающих последовательностей e-иммунных множеств, образующих данную цепь. По лемме Цорна частично упорядоченное множество \mathbf{C} должно иметь хотя бы один максимальный элемент $\mathbf{m} = \{M_s : s \in N\}$, где $M_0 <_e M_1 <_e \dots$ и $M_s - e$ -иммунное множество для всех $s \in N$. Пусть $M = \{\langle s, x \rangle : x \in M_s\}$. Ясно, что $M_s \leq_e M$ для всех $s \in N$. Пусть $B \in \mathbf{J}(M)$ — ретрассируемое множество. Так как существует e-иммунное множество A такое, что $B <_e A$, то $M_s <_e A$ для всех $s \in N$, что противоречит максимальности \mathbf{m} . Следовательно, \mathbf{m} — несчетное множество.

Следствие 2. Для любого ретрассируемого множества B существует несчетная антицепь e-иммунных множеств, e-степени которых расположены в L_e выше $d_e(B)$.

Доказательство. Трансформируем конструкцию теоремы 2 и с ее помощью докажем, что семейство EI_B всех e-иммунных множеств выше B содержит несчетную антицепь. Предположим, что антицепь в EI_B счетная, и пусть множества A_0, A_1, \ldots образуют эту антицепь. Построим e-иммунное множество C так, что $B <_e C$ и C и A_k несравнимы для всех $k \in N$. Пусть C_t — часть C, построенная на шаге t. Множество Z будет играть вспомогательную роль, через Z_t обозначим конечную часть Z, построенную на шаге t.

Шаг 0. Полагаем $C_0=Z_0=\varnothing$.

ШАГ t+1. Пусть $t=\langle k,s\rangle$. Если s=4n и $|\rho g_n|<\infty$, то полагаем $C_{t+1}=C_t\cup\{x^*\}$ и $Z_{t+1}=Z_t$, где $x^*=\min(B-Z_t)$. Если ρg_n — бесконечное множество, то

$$\exists z [z \in \rho g_n - C_t]. \tag{1}$$

Пусть z^* — наименьшее z, удовлетворяющее (1). Полагаем $Z_{t+1} = Z_t \cup \{z^*\}$ и $C_{t+1} = C_t \cup \{x^*\}$, где $x^* = \min(B - Z_t)$.

Если s = 4n + 1, то проверим, что

$$\exists D[D \subseteq B \land D \cap Z_t = \emptyset \land \forall \alpha [\Phi_n(C_t \cup D) \neq \tau \alpha]]. \tag{2}$$

Если (2) выполнено, то полагаем $C_{t+1} = C_t \cup D^*$, где D^* имеет наименьший канонический индекс среди D, удовлетворяющих (2), и $Z_{t+1} = Z_t$. В противном случае

$$\forall D[D \subseteq B \land D \cap Z_t = \varnothing \to \exists \alpha [\Phi_n(C_t \cup D) = \tau \alpha]], \tag{3}$$

т. е. $\Phi_n(C_t)$ — однозначное множество для всех $t \in N$. В этом случае $\Phi_n(C) = \tau g$ для некоторой функции q.

Проверим

$$\exists D \exists m [D \subseteq B \land D \cap Z_t = \varnothing \land ! \Phi_n(C_t \cup D)(m) \land \Phi_n(C_t \cup D)(m) \not\in C_t \cup D]. \tag{4}$$

Если (4) выполнено, полагаем $C_{t+1} = C_t \cup D^*$ и $Z_{t+1} = Z_t \cup \{\Phi_n(C_t \cup D^*)(m^*)\}$, где D^* имеет наименьший канонический индекс среди D, удовлетворяющих (4), и m^* — наименьшее m, удовлетворяющее (4) для $D = D^*$. В противном случае полагаем $C_{t+1} = C_t \cup \{x^*\}$, где $x^* = \min(B - Z_t)$, и $Z_{t+1} = Z_t$.

Если s = 4n + 2, то проверим, что

$$\exists x [x \in \overline{Z_t} \land x \in \Phi_n(A_k) \cap B]. \tag{5}$$

Если (5) выполнено, то полагаем $C_{t+1} = C_t$ и $Z_{t+1} = Z_t \cup \{x^*\}$, где x^* — наименьшее x, удовлетворяющее (5). В противном случае

$$\forall x [x \in \overline{Z_t} \to x \notin \Phi_n(A_k) \cap B].$$

Пусть $x^* = \min(B - Z_t)$. Положим $C_{t+1} = C_t \cup \{x^*\}$ и $Z_{t+1} = Z_t$. Если s = 4n + 3, то проверим, что

$$\exists D[D \subseteq B \land D \cap Z_t = \varnothing \land \Phi_n(C_t \cup D) \not\subseteq A_k]. \tag{6}$$

Если (6) выполнено, полагаем $C_{t+1}=C_t\cup D^*$ и $Z_{t+1}=Z_t$, где D^* имеет наименьший канонический индекс среди D, удовлетворяющих (6). В противном случае полагаем $C_{t+1}=C_t$ и $Z_{t+1}=Z_t$. В этом случае

$$\forall D[D \subseteq B \land D \cap Z_t = \varnothing \to \Phi_n(C_t \cup D) \subseteq A_k],$$

следовательно, $\Phi_n(\widetilde{B}) \subseteq A_k$, где $\widetilde{B} = B - Z_t$. Если $\Phi_n(C) = A_k$, то $\Phi_n(C) \subseteq \Phi_n(C_t \cup \widetilde{B}) \subseteq A_k$, поэтому $\Phi_n(C_t \cup \widetilde{B}) = A_k$, т. е. $A_k \leq_e C_t \cup \widetilde{B} \leq_e B$, что противоречит предположению, что $B <_e A_k$ для всех $k \in N$.

Из конструкции следует, что C — бесконечное подмножество ретрассируемого множества B, поэтому $B \leq_e C$. Шаги t+1, где $t=\langle k,s \rangle,\ s=4n$ и s=4n+1, обеспечивают e-иммунность множества C. Шаги t+1, где $t=\langle k,s \rangle,\ s=4n+2$ и s=4n+3, обеспечивают несравнимость C и A_k для всех $k\in N$. Заметим, что $C\not\leq_e B$, так как в противном случае $C\leq_e B\leq_e A_k$. Следствие доказано.

Пусть A_1 и A_2 — два произвольных e-иммунных множества. Рассмотрим $d_e(A_1 \oplus A_2)$ (напомним, что $A_1 \oplus A_2 = \{2x : x \in A_1\} \cup \{2x+1 : x \in A_2\}$). Верно ли, что $d_e(A_1 \oplus A_2)$ содержит обязательно e-иммунное множество? Заметим сначала, что если заменить «e-иммунное» на «иммунное» или «гипериммунное», то, как показал М. Г. Розинас [6], ответ на соответствующий вопрос положительный. Покажем, что для e-иммунных множеств в общем случае ответ на этот вопрос отрицательный. Однако можно построить такие e-иммунные множества A_1 и A_2 , что $A_1 \oplus A_2 - e$ -иммунное множество. Дадим доказательства этих утверждений.

Теорема 3. Существуют множества $A_0,A_1,\ldots,A_n,\ldots$ такие, что A_n-e -иммунное для всех $n\in N,$ $A_i\cap A_j=\varnothing$ для всех $i\neq j$ и $\bigcup_{n\in N}A_n=N.$

Доказательство. Построим множества $A_0, A_1, \ldots, A_n, \ldots$ так, что

- (i) $\forall n \forall g [g \leq_e A_n \land \rho g \subseteq A_n \to |\rho g| < \infty];$
- (ii) $\forall k \forall l [k \neq l \rightarrow A_k \cap A_l = \varnothing];$
- (iii) $\bigcup A_n = N$.

Пусть A_{n_s} — часть A_n , построенная на шаге s. На каждом шаге s $A_{n_s} = \emptyset$ почти для всех $n \in N$ и $\bigcup_{n \in N} A_{n_s}$ образует начальный сегмент N, т. е. $\bigcup_{n \in N} A_{n_s} = \{0, \dots, z_s\}$ для некоторого z_s .

Шаг 0. Полагаем $A_{0_0} = \{0\}$ и $A_{n_0} = \emptyset$ для всех n > 0.

ШАГ s+1. Проверим последовательно выполнимость приведенных ниже условий и после определения $A_{n_{s+1}}$ для всех $n\in N$ перейдем к следующему шагу.

Пусть $s=2\langle k,l\rangle$. Если W_k конечно, то полагаем $A_{n_{s+1}}=A_{n_s}$ для всех $n\in N$. Если W_k бесконечно, то $\exists z[z\in W_k\wedge z>z_s]$. Пусть z^* — наименьшее такое z, и n^* — наименьшее n такое, что $A_{n_s}=\varnothing$. Полагаем $A_{n_{s+1}^*}=\{z_s+1,\ldots,z^*\},$ $A_{l_{s+1}}=\{z^*+1\},$ $A_{n_{s+1}}=A_{n_s}$ для всех $n\in N-\{n^*,l\}$. В результате выполнения шагов s, где $s=2\langle k,l\rangle$, получим, что $A_n\neq\varnothing$ и A_n — иммунное множество для всех $n\in N$.

Пусть $s = 2\langle k, l \rangle + 1$. Проверим

$$\exists D[\min D > z_s \land \forall \alpha [\Phi_k(A_{l_s} \cup D) \neq \tau \alpha]]. \tag{1}$$

Если (1) выполнено, то полагаем $A_{l_{s+1}} = A_{l_s} \cup D^*$, где D^* имеет наименьший канонический индекс среди конечных D, удовлетворяющих (1). Пусть $z^* = \max D$ и n^* — наименьшее n, для которого $A_{n_s} = \varnothing$. Полагаем $A_{n_{s+1}^*} = \{z_s + 1, \ldots, z^*\} - D^*$ и $A_{n_{s+1}} = A_{n_s}$ для всех $n \in N - \{l, n^*\}$.

Если (1) не выполняется, то

$$\forall D[\min D > z_s \to \exists \alpha [\Phi_k(A_{l_s} \cup D) = \tau \alpha]].$$

В этом случае $\Phi_k(A)$ — однозначное множество для всех $A\subseteq A_{l_s}\cup N_{z_s}$, где $N_{z_s}=N-\{0,\dots,z_s\}$, т. е. $\Phi_k(A)=\tau g$ для некоторой функции g.

Проверим, выполнено ли условие

$$\exists D[\min D > z_s \land \rho \Phi_k(A_{l_s} \cup D) \not\subseteq A_{l_s} \cup D]. \tag{2}$$

Если (2) выполнено, то

$$\exists D \exists m [\min D > z_s \wedge ! \Phi_k(A_{l_s} \cup D)(m) \wedge \Phi_k(A_{l_s} \cup D)(m) \in \rho \Phi_k(A_{l_s} \cup D) - (A_{l_s} \cup D)].$$

Полагаем $A_{l_{s+1}}=A_{l_s}\cup D^*$, где D^* имеет наименьший канонический индекс среди D, удовлетворяющих (3). Пусть m^* — наименьшее m, для которого выполнено (3) при $D=D^*$, $z^*=\max(A_{l_{s+1}}\cup\{\Phi_k(A_{l_s}\cup D^*)(m^*)\})$ и n^* — наименьшее n, для которого $A_{n_s}=\varnothing$. Полагаем $A_{n_{s+1}}=\{z_s+1,\ldots,z^*\}-D^*$ и $A_{n_{s+1}}=A_{n_s}$ для всех $n\in N-\{l,n^*\}$. Заметим, что в этом случае если $\tau g=\Phi_k(A_l)$, то $g(m^*)\not\in A_l$. Если (2) не выполнено, то полагаем $A_{n_{s+1}}=A_{n_s}$ для всех $n\in N$.

Описание конструкции завершено. Докажем, что построенные множества удовлетворяют условиям (i)–(iii). Легко заметить, что конструкция обеспечивает выполнимость (ii) и (iii). Кроме того, как отмечено выше, A_n — иммунное множество для всех $n \in N$.

Проверим, что A_n удовлетворяет условию (i) для всех $n \in N$. Пусть g — тотальная функция и $g \leq_e A_l$. Тогда $\tau g = \Phi_k(A_l)$ для некоторого $k \in N$. Рассмотрим шаг s+1, где $s=2\langle k,l\rangle+1$. Случай (1) не может быть выполнен, так как в противном случае $\Phi_k(A_l)$ — неоднозначное множество. Если имеет место случай (2), то $g(m^*) \not\in A_l$ и, следовательно, $\rho g \not\subseteq A_l$.

Предположим, что условие (2) не выполнено. Тогда

$$\forall D[\min D > z_s \to \rho \Phi_k(A_{l_s} \cup D) \subseteq A_{l_s} \cup D]. \tag{4}$$

В этом случае $\rho g = \rho \Phi_k(A_l) \subseteq A_l$. В противном случае $\exists D[D \subseteq A_l \land \rho \Phi_k(D) \not\subseteq A_l]$, т. е.

$$\exists D \exists m [\min D > z_s \wedge ! \Phi_k(A_{l_s} \cup D)(m) \wedge \Phi_k(A_{l_s} \cup D)(m) \in \rho \Phi_k(A_{l_s} \cup D) - A_l]$$

и поэтому $\Phi_k(A_{l_s}\cup D)(m)\in \rho\Phi_k(A_{l_s}\cup D)-(A_{l_s}\cup D)$. Это противоречит нашему предположению, что (3) не выполнено. Итак, $A_l\subseteq A_{l_s}\cup N_{z_s}$, поэтому $\tau g=\Phi_k(A_l)\subseteq \Phi_k(A_{l_s}\cup N_{z_s})$. Как отмечалось выше, $\Phi_k(A_{l_s}\cup N_{z_s})$ — однозначное множество, тем самым $\tau g=\Phi_k(A_{l_s}\cup N_{z_s})$ и $g\leq_e A_{l_s}\cup N_{z_s}$. Так как A_{l_s} конечно и N_{z_s} коконечно, то g — общерекурсивная функция. Поскольку $\rho g\subseteq A_l$ и A_l — иммунное множество, то ρg — конечное множество. Теорема доказана.

Следствие 3. Для любого $m>0, m\in N$, существует конечная последовательность е-иммунных множеств A_0,\ldots,A_m такая, что $A_i\cap A_j=\varnothing$ для всех $i\neq j$ и $A_0\cup\cdots\cup A_m=N$.

ДОКАЗАТЕЛЬСТВО. Пусть m>0, построим множества A_0,\ldots,A_m с помощью конструкции из доказательства теоремы 3 так, чтобы они удовлетворяли условиям (i)–(iii).

ШАГ 0. Полагаем $A_{0_0} = \{0\}$ и $A_{n_0} = \emptyset$ для всех $0 < n \le m$.

ШАГ s+1. Пусть $s=2\langle k,l\rangle$ или $s=2\langle k,l\rangle+1$. Если l>m, то полагаем $A_{n_{s+1}}=A_{n_s}$ для всех $n\leq m$. Если $l\leq m$, то повторим шаг s+1 из доказательства теоремы 3, заменяя условие $n\in N$ на $n\leq m$ и условие выбора n^* следующим условием: $n^*=\min\{n:n\leq m\land n\neq l\}$. Следствие доказано.

Пусть A_0 и A_1-e -иммунные множества, построенные с помощью следствия 3 для m=1. Очевидно, что в этом случае $d_e(A_0\oplus A_1)$ — тотальная e-степень, и, следовательно, по предложению $1(\mathsf{B})$ любое $C\in d_e(A_0\oplus A_1)$ не является e-иммунным множеством. Заметим, что множества A_0 и A_1 несравнимы относительно \leq_e . В самом деле, если, например, $A_0\leq_e A_1$, то $A_0\oplus A_1\equiv_e A_1$ и $d_e(A_0\oplus A_1)=d_e(A_1)$. Но $d_e(A_1)$ является нетотальной e-степенью, в то же время $d_e(A_0\oplus A_1)$ является тотальной e-степенью, что невозможно. Для множеств, построенных при доказательстве теоремы a_i 0, можно утверждать, что a_i 1 и a_i 2 и a_i 3 несравнимы для всех a_i 4 и a_i 5 несравнимы для всех a_i 6 несравнимы для всех a_i 6 несравнимы для всех a_i 7 несравнимы для всех a_i 8 несравнимы для всех a_i 8 несравнимы для всех a_i 9 несравнимы для всех a_i

Тривиально утверждение: если $A_0 \leq_e A_1$ и A_1 e-иммунное или $A_1 \leq_e A_0$ и A_0 *е*-иммунное, то $d_e(A_0 \oplus A_1)$ содержит *е*-иммунное множество. Дадим нетривиальный пример, т. е. построим такие e-иммунные множества A_0 и A_1 , что они несравнимы относительно \leq_e и $d_e(A_0 \oplus A_1)$ содержит e-иммунное множество. Для этого докажем сначала вспомогательное утверждение, которое имеет самостоятельное значение.

Теорема 4. Для любого множества В существуют В-квазиминимальные множества A_0 и A_1 такие, что $A_0 \nleq_e A_1$ и $A_1 \nleq_e A_0$ и $d_e(A_0 \oplus A_1)$ содержит В-квазиминимальное множество.

Доказательство. Построим множества A_0 и A_1 так, что

- (i) A_0 и $A_1 B$ -квазиминимальные множества;
- (ii) $A_0 \not\leq_e A_1 \wedge A_1 \not\leq_e A_0$;
- (iii) $\exists Q[Q \equiv_e A_0 \oplus A_1 \land Q B$ -квазиминимальное].

Пусть $I = \{0,1\}$. Для всех $i \in I$ введем обозначения: C_i^t — часть множества C_i , построенная к концу шага t, причем $C_i^t = \{i\} \times D$ для некоторого конечного множества D и $C_i^t \subseteq C_i^{t+1}$ для всех $t \in N$. Таким образом, C_0 и C_1 рекурсивно отделимы. Конструкция обеспечит бесконечность множества C_i для всех $i \in$ I. В ходе конструкции возникнет множество Z, для которого $Z \cap \bigcup C_i = \varnothing$.

Обозначим через Z^t часть Z, построенную к концу шага t, причем $Z^t \subseteq Z^{t+1}$ для всех $t \in N$. Ясно, что в этом случае $Z^t \cap C_i^l = \emptyset$ для всех $t, l \in N$ и $i \in I$. Пусть $A_i = B \oplus C_i, i \in I$.

Шаг 0. Полагаем $C_i^0 = Z^0 = \emptyset$ для всех $i \in I$.

Шаг 4n+1. Пусть t=4n. Проверим для всех $i\in I$

$$\Phi_n(B) \subseteq B \oplus \{0, \dots, z_i^*\},\tag{1}$$

где $z_i^* = \max C_i^t$. Если (1) выполнено для данного i, то полагаем $C_i^{t+1} = C_i^t$ и $Z^{t+1} = Z^t$. В противном случае

$$\exists z[z \in \Phi_n(B) - (B \oplus \{0, \dots, z_i^*\})] \tag{2}$$

Если такое z имеет вид 2y или $2\langle i',y\rangle+1$, где $i'\neq i$, то полагаем $C_i^{t+1}=C_i^t$ и $Z^{t+1}=Z^t$. Если $z=2\langle i,y\rangle+1$, то пусть $z^*=2\langle i,y^*\rangle+1$ — наименьшее такое z, удовлетворяющее (2). Тогда полагаем $C_i^{t+1}=C_i^t$ и $Z^{t+1}=Z^t\cup\{\langle i,y^*\rangle\}$.

ШАГ 4n+2. Пусть t=4n+1. Проверим для всех $i \in I$

$$\exists D \big[\{i\} \times D \cap Z^t = \varnothing \wedge \forall \alpha \big[\Phi_n \big(B \oplus \big(C_i^t \cup \{i\} \times D \big) \big) \neq \tau \alpha \big] \big]. \tag{3}$$

Если для данного i условие (3) выполнено, то пусть D^* имеет наименьший канонический индекс среди D, удовлетворяющих (3). Полагаем $C_i^{t+1}=C_i^t\cup\{i\}\times D^*$ и $Z^{t+1}=Z^t$. Если (3) не выполнено, то $C_i^{t+1}=C_i^t$ и $Z^{t+1}=Z^t$.

Шаг 4n+3. Пусть t=4n+2 и $z_i^*=\min\{z:\langle i,z\rangle\not\in C_i^t\cup Z^t\}$. Полагаем $C_i^{t+1}=C_i^t\cup\{\langle i,z_i^*\rangle\}$ и $Z^{t+1}=Z^t$ для всех $i\in I$. Шаг 4n+4. Пусть t=4n+3, проверим для всех $i\in I$

$$\exists D \big[\{i\} \times D \cap Z^t = \varnothing \wedge \Phi_n \big(B \oplus \big(C_i^t \cup \{i\} \times D \big) \big) \not\subseteq B \oplus \big(C_{1-i}^t \cup Z^t \big) \big]. \tag{4}$$

Если для данного i условие (4) выполнено, то пусть D^* имеет наименьший канонический индекс среди D, удовлетворяющих (4), и z^* — наименьшее z такое, что при $D = D^*$

$$z \in \Phi_n \left(B \oplus \left(C_i^t \cup \{i\} \times D^* \right) \right) - B \oplus \left(C_{1-i}^t \cup Z^t \right).$$

Если z^* имеет вид 2y или $2\langle i',y\rangle+1$ для некоторого y и $i'\neq 1-i$, то полагаем $C_i^{t+1}=C_i^t\cup D^*$ и $Z^{t+1}=Z^t$. Если $z^*=2\langle 1-i,y^*\rangle+1$, то полагаем $C_i^{t+1}=C_i^t\cup D^*$ и $Z^{t+1}=Z^t\cup\{\langle 1-i,y^*\rangle\}$. Если (4) не выполнено, т. е.

$$\forall D[\{i\} \times D \cap Z^t = \varnothing \to \Phi_n(B \oplus (C_i^t \cup \{i\} \times D)) \subseteq B \oplus (C_{1-i}^t \cup Z^t)], \quad (5)$$

то полагаем $C_i^{t+1} = C_i^t$ и $Z^{t+1} = Z^t$. Описание конструкции закончено.

Докажем, что A_0 и A_1 удовлетворяют условиям (i)–(iii). Так как $A_i = B \oplus C_i$, то $B \leq_e A_i$. Шаги 4n+1, $n \in N$, обеспечивают $A_i \not\leq_e B$ для всех $i \in I$. Шаги 4n+2 и 4n+3, $n \in N$ обеспечивают B-квазиминимальность A_i для всех $i \in I$. Таким образом, условие (i) выполнено.

Докажем, что выполнено (ii). Предположим, что $A_0 \leq_e A_1$, т. е. $A_0 = \Phi_n(A_1)$ для некоторого $n \in N$. Рассмотрим шаг 4n+4. Если на этом шаге выполнено (4) для i=1, то

$$z^* \in \Phi_n(B \oplus (C_1^t \cup \{1\} \times D^*)) - B \oplus (C_0^t \cup Z^t),$$

поэтому $z^* \in \Phi_n(B \oplus C_1) = \Phi_n(A_1)$ и z^* никогда не попадет в A_0 , следовательно, в этом случае $A_0 \neq \Phi_n(A_1)$. Тогда должно быть выполнено условие (5) для i=1. Легко проверить, что в этом случае $\Phi_n(B \oplus C_1) \subseteq B \oplus (C_0^t \cup Z^t)$. Тогда $\{x: 2x+1 \in \Phi_n(B \oplus C_1)\}$ — конечное множество, но $\{x: 2x+1 \in B \oplus C_0\}$ — бесконечное, следовательно, $A_0 = B \oplus C_0 \neq \Phi_n(B \oplus C_1) = \Phi_n(A_1)$, что противоречит первоначальному предположению. Итак, $A_0 \not\leq_e A_1$. Аналогично проверяется, что $A_1 \not\leq_e A_0$ и (ii) выполнено.

Докажем, наконец, что выполнено условие (iii). Так как C_0 и C_1 рекурсивно отделимы, то $A_0 \oplus A_1 = (B \oplus C_0) \oplus (B \oplus C_1) \equiv_e B \oplus (C_0 \cup C_1)$. Докажем, что $Q = B \oplus (C_0 \cup C_1)$ является B-квазиминимальным множеством. Пусть $f \leq_e Q$, т. е. $\tau f = \Phi_n(Q)$ для некоторого $n \in N$. Рассмотрим шаг 4n+2. Условие (3) не может быть выполнено ни для какого $i \in I$, ибо в противном случае $\Phi_n(B \oplus (C_0 \cup C_1))$ неоднозначно. Ясно, что в этом случае, например, $\Phi_n(B \oplus (C_0 \cup \{1\} \times \widetilde{N}))$ — однозначное множество, где $\widetilde{N} = N - \{x : \langle 1, x \rangle \in Z^t\}$. Итак, имеем $\tau f = \Phi_n(B \oplus (C_0 \cup C_1)) \subseteq \Phi_n(B \oplus (C_0 \cup \{1\} \times \widetilde{N}))$, тогда $\tau f = \Phi_n(B \oplus (C_0 \cup \{1\} \times \widetilde{N}))$, т. е. $f \leq_e B \oplus (C_0 \cup \{1\} \times \widetilde{N}) \leq_e B \oplus C_0 = A_0$. Так как A_0 B-квазиминимально, то $f \leq_e B$ и (iii) доказано.

Следствие 4. Существуют несравнимые относительно \leq_e е-иммунные множества A_0 и A_1 такие, что $d_e(A_0 \oplus A_1)$ содержит е-иммунное множество.

ДОКАЗАТЕЛЬСТВО. Пусть B-e-иммунное множество, A_0 и A_1-B -квазиминимальные множества, построенные при доказательстве теоремы 4. Тогда $d_e(A_0\oplus A_1)-B$ -квазиминимальная e-степень, в частности, $A_0\oplus A_1-B$ -квазиминимальное множество. По предложению 2 существуют e-иммунные множества C_0 , C_1 и C такие, что $A_0\equiv_e C_0$, $A_1\equiv_e C_1$ и $A_0\oplus A_1\equiv_e C$. При этом $C_0\not\leq_e C_1$ и $C_1\not\leq_e C_0$ и $d_e(C_0\oplus C_1)=d_e(A_0\oplus A_1)$ содержит e-иммунное множество C, что и требовалось доказать.

Обозначим через **I** класс иммунных множеств, **EI** — класс *e*-иммунных множеств, **EHI** — класс *e*-гипериммунных множеств, **Q** — класс квазиминимальных множеств. Ясно, что **EHI** \subseteq **EI** \subseteq **I** и **I** \cap **Q** \subseteq **EI**. Докажем, что все включения строгие.

Теорема 5. Существует иммунное квазиминимальное и не гипериммунное множество.

Доказательство. Построим по шагам множество A так, чтобы

- (i) $\forall n[|W_n| = \infty \to W_n \cap \bar{A} \neq \varnothing];$
- (ii) $\forall f [f \leq_e A \to f \text{ общерекурсивная функция}];$
- (iii) $\forall k[|A \cap \{0, \dots, 2k\}| \ge k].$

Заметим, что если выполнено условие (i), то A иммунное, если выполнено (ii), то A квазиминимальное, и если выполнено (iii), то A — бесконечное, не гипериммунное множество.

Шаг 0. Полагаем $a_0 = 0$ и $A_0 = \{a_0\}$.

ШАГ 2n+1. Пусть 2n=s, A_s — часть A, построенная к концу шага s, и $a_0 < a_1 < \dots < a_{k_s}$ — прямой пересчет A_s . Если W_n — конечное множество, то переходим к следующему шагу. Пусть W_n — бесконечное рекурсивно перечислимое множество. Тогда существует $x^* = \min\{x: x \in W_n \land x > a_{k_s}\}$. Полагаем $A_{s+1} = A_s \cup \{a_{k_s}+1,\dots,x^*-1,x^*+1\}$.

Ясно, что если $|A_s\cap\{0,\dots,2k\}|\geq k$, то $|A_{s+1}\cap\{0,\dots,2k\}|\geq k$ для всех $k\leq k_s$. Проверим, что в этом случае $|A_{s+1}\cap\{0,\dots,2(k+1)\}|\geq k+1$ для всех k таких, что $k_s< k\leq k_{s+1}$. В самом деле, даже если $a_{k_s}=2k$, то $a_{k_{s+1}}=a_{k_s}+1$, если $x^*\neq a_{k_s}+1$, или $a_{k_{s+1}}=a_{k_s}+2$, если $x^*=a_{k_s}+1$. В любом случае $a_{k_{s+1}}\leq 2k+2$ и $|A_{s+1}\cap\{0,\dots,2(k+1)\}|\geq k+1$. Кроме того, шаги 2n+1, $n\in N$, гарантируют выполнение условия (i).

Шаг 2n+2. Пусть s=2n+1. Обозначим $Z_s=\{0,\dots,a_{k_s}\}-A_s$. Пусть F такое конечное множество, что

$$F \subseteq A_s \vee [F \cap Z_s = \emptyset \wedge \forall k[k \le k_s + d \to | (A_s \cup F) \cap \{0, \dots, 2k\}| \ge k]],$$

где $d = |F - A_s|$. Проверим

$$\exists F \forall \alpha [\Phi_n(A_s \cup F) \neq \tau \alpha]. \tag{1}$$

Если (1) выполнено, то пусть F^* имеет наименьший канонический индекс среди F, удовлетворяющих (1). Полагаем $A_{s+1} = A_s \cup F^*$. В противном случае полагаем $A_{s+1} = A_s$.

Докажем, что в результате будет построено квазиминимальное множество A. Пусть $f \leq_e A$, т. е. $\tau f = \Phi_n(A)$ для некоторого $n \in N$. В этом случае условие (1) на шаге 2n+2 не выполняется. Докажем, что тогда $\Phi_n(\overline{Z}_s)$ — однозначное множество. Если это не так, то существует конечное множество $D \subseteq \overline{Z}_s$ такое, что $\Phi_n(D)$ — неоднозначное множество. Ясно, что $D \not\subseteq A_s$, в частности, $D \neq \varnothing$ и $D \cap Z_s = \varnothing$. Пусть $m = \max D$. Тогда $m > a_{k_s}$. Обозначим $d = |D - A_s|$ и рассмотрим $F = D \cup \{a_{k_s} + 1, \ldots, m\}$. Так как $|A_s \cap \{0, \ldots, 2k\}| \geq k$ для всех $k \leq k_s$, то $|(A_s \cup F) \cap \{0, \ldots, 2k\}| \geq k$ для всех $k \leq k_s + d$. Следовательно, условие (1) должно в этом случае выполняться, что противоречит предположению. Итак, $\Phi_n(\overline{Z}_s)$ — однозначное множество и $A \subseteq \overline{Z}_s$, поэтому $\tau f = \Phi_n(A) \subseteq \Phi_n(\overline{Z}_s)$. Отсюда $\tau f = \Phi_n(\overline{Z}_s)$, и так как \overline{Z}_s — рекурсивное множество, то f — общерекурсивная функция и условие (ii) выполнено.

Наконец, на каждом шаге конструкции множество A строится таким образом, чтобы было выполнено (iii), и теорема доказана.

Следствие 5. Существует е-иммунное не е-гипериммунное множество.

Итак, **EHI** \subset **EI**. То, что **EI** \subset **I**, тривиально, так как любая ненулевая тотальная e-степень содержит иммунное множество, но e-иммунные множества в силу предложения $1(\mathbf{B})$ не могут принадлежать тотальным e-степеням. В следующей теореме дадим нетривиальный пример.

Теорема 6. Существует не е-иммунное иммунное множество, принадлежащее нетотальной е-степени.

Сначала докажем лемму.

Лемма. Существует тотальная, нерекурсивная функция f, такая, что τf иммунное и ρf — бесконечное множества.

Доказательство. Пусть значения $f(0),\ldots,f(x_n)$ уже определены. Если W_{n+1} конечно, то полагаем $f(x_n+1)=0$. Если W_{n+1} — бесконечное рекурсивно перечислимое множество, то пусть x^* — наименьшее x такое, что $x>x_n \land \exists y[\langle x,y\rangle\in W_{n+1}\land y>\max\{f(0),\ldots,f(x_n)\}$. Обозначим через y^* наименьшее такое y. Полагаем $f(x^*)=y^*+1$ и f(x)=0 для всех x, лежащих между x_n и x^* . Таким образом, если W_{n+1} — бесконечное рекурсивно перечислимое множество, то $W_{n+1}\not\subseteq \tau f$, так как $\langle x^*,y^*\rangle\in W_{n+1}-\tau f$. Кроме того, из построения видно, что ρf — бесконечное множество. Ясно, что f — нерекурсивная функция, и лемма доказана.

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ. Пусть f — тотальная функция, построенная при доказательстве леммы, и $C = \tau f$. Тогда существует C-квазиминимальное множество B, т. е. $C <_e B$ и $\forall g[g \leq_e B \to g \leq_e C]$. Так как $d_e(C)$ — тотальная e-степень и $d_e(C) < d_e(B)$, существует иммунное множество $B_1 \in d_e(B)$. В самом деле, поскольку $d_e(C)$ — тотальная ненулевая e-степень, $d_e(C)$ содержит ретрассируемое множество [3], которое в нашем случае является иммунным. Свойство e-степени содержать иммунное множество, как показано в [6], наследуется вверх в L_e .

Обозначим $A=\tau f\oplus B_1$. Докажем, что A удовлетворяет условию теоремы. Сначала проверим, что A — иммунное множество. Пусть $W\subseteq A=\tau f\oplus B_1$ — произвольное рекурсивно перечислимое множество. Обозначим $V_1=\{x:2x\in W\}$ и $V_2=\{x:2x+1\in W\}$. Ясно, что V_1 и V_2 рекурсивно перечислимые, $W=V_1\oplus V_2,\ V_1\subseteq \tau f$ и $V_2\subseteq B_1$. По построению τf и B_1 — оба иммунные множества, поэтому V_1 и V_2 — оба конечные множества и тогда W также конечное множество. Итак, A иммунно.

Докажем, что A не является e-иммунным множеством. Пусть $f_1(x)=2\langle x,f(x)\rangle$. Ясно, что $f_1\equiv_e f\leq_e A$ и $\rho f_1\subseteq A$. Кроме того, ρf_1 бесконечно, так как τf бесконечно.

Наконец, докажем, что $d_e(A)$ нетотальна. Предположим, что существует тотальная функция g такая, что $g \equiv_e A$. Так как $f <_e B_1$ и $g \leq_e A = \tau f \oplus B_1$, то $g \leq_e B_1$, поэтому $g \leq_e B$ и $g \leq_e f$ и, следовательно, $B_1 \not\leq_e g$. Пусть $A \leq_e g$. Тогда $\tau f \oplus B_1 \leq_e g$ и $B_1 \leq_e g$, что невозможно. Теорема доказана.

Одним из традиционных вопросов в теории сводимостей является вопрос о внутреннем строении степеней. Рассмотрим одно усиление e-сводимости, введенное Д. Г. Скордевым [7]: множество A pc-сводимо κ B nocpedcmeom частично $pe\kappa ypcushoù$ функции ϕ , если $\forall x[x\in A\iff x\in \delta\phi\wedge D_{\phi(x)})\subseteq B]$. Будем писать $A\leq_{pc}B$, если существует частично рекурсивная функция ϕ , для которой A pc-сводится κ B посредством ϕ . Как обычно, $d_{pc}(A)=\{B:B\leq_{pc}A\wedge A\leq_{pc}B\}-pc$ -степень множества A. Очевидно, что $A\leq_{pc}B\to A\leq_{e}B$, поэтому произвольная e-степень состоит из некоторой совокупности pc-степеней. Если e-степень $d_{e}(A)$ содержит более, чем одну pc-степень, то говорят, что $d_{e}(A)$ pacnadaemca на pc-степени. Ясно, что d0 не распадается на d0-степени, d0-степени. С. Д. Захаров [8] показал, что существуют ненулевые d0-степени, состоящие из единственной d0-степени.

Теорема 7. Неквазиминимальная *е-степень*, содержащая *е-иммунное* множество, распадается на *pc-степени*.

Доказательство. Пусть A-e-иммунное множество, принадлежащее неквазиминимальной e-степени. Тогда существует нерекурсивная тотальная функция $f \leq_e A$. (На самом деле $f <_e A$.) Докажем, что в этом случае $\tau f \nleq_{pc} A$. Допустим, что это неверно и $\tau f \leq_{pc} A$, тогда для некоторой частично рекурсивной функции ϕ

$$\forall z[z \in \tau f \iff !\phi(z) \land D_{\phi(z)} \subseteq A].$$

Пусть $D\subseteq A$ — конечное множество. Укажем эффективную процедуру относительно произвольного перечисления A, с помощью которой можно построить конечное множество $\varnothing\neq D^*\subseteq A$ такое, что $D^*\cap D=\varnothing$. В этом случае A не может быть e-иммунным множеством. В самом деле, так как $f\leq_e A$, то, используя произвольный пересчет A, эффективно перечислим последовательно элементы $\tau f\colon \langle 0,f(0)\rangle,\langle 1,f(1)\rangle,\ldots,\langle n,f(n)\rangle,\ldots$. Вычислим $\phi(\langle 0,f(0)\rangle),\phi(\langle 1,f(1)\rangle),\ldots,$ причем эти значения определены, так как $\tau f\subseteq \delta \phi$. Докажем, что $\exists n[D_{\phi(\langle n,f(n)\rangle)}\not\subseteq D]$. В противном случае $\forall n[D_{\phi(\langle n,f(n)\rangle)}\subseteq D\subseteq A]$. Тогда $\forall z[z\in\tau f\iff !\phi(z)\wedge D_{\phi(z)}\subseteq D\subseteq A]$, откуда следует, что τf — рекурсивно перечислимое множество; противоречие с нерекурсивностью f. Полагаем $D^*=D_{\phi(\langle n^*,f(n^*)\rangle)}-D$, где n^* — наименьшее n, для которого $D_{\phi(\langle n,f(n)\rangle)}\not\subseteq D$. Ясно, что $D^*\neq\varnothing$ и $D^*\subseteq D_{\phi(\langle n^*,f(n^*)\rangle)}\subseteq A$.

Определим тотальную функцию g. Возьмем сначала $D=\varnothing$, тогда найдем D^* с помощью процедуры, описанной выше. Пусть $D^*=\{y_0,\ldots,y_k\}$. Полагаем $g(0)=y_0,\ldots,g(k)=y_k$. Предположим, что значения $g(0),\ldots,g(m)$ уже определены. Возьмем $D=\{g(0),\ldots,g(m)\}$ и найдем D^* . Пусть $D^*=\{y_{m+1},\ldots,y_{m+l}\}$, где $l\geq 1$, полагаем $g(m+1)=y_{m+1},\ldots,g(m+l)=y_{m+l}$. Ясно, что $g\leq_e A$, $\rho g\subseteq A$ и $|\rho g|=\infty$. Следовательно, A не является e-иммунным множеством, что противоречит предположению.

Итак, $\tau f \nleq_{pc} A$. Пусть $B = \tau f \times A$. Так как $\tau f \leq_e A$, то $B \equiv_e A$. Докажем, что $B \nleq_{pc} A$. Предположим, что $B \leq_{pc} A$ посредством частично рекурсивной функции ϕ , т. е.

$$\forall z \forall y [\langle z, y \rangle \in B \iff z \in \tau f \land y \in A \iff !\phi(\langle z, y \rangle) \land D_{\phi(\langle z, y \rangle)} \subseteq A].$$

Рассмотрим частично рекурсивную функцию $\psi(z)=\phi(\langle z,a\rangle),$ где $a\in A$ — фиксированный элемент. Имеем

$$\forall z [\langle z, a \rangle \in B \iff z \in \tau f \land a \in A \iff z \in \tau f \\ \iff !\phi(\langle z, a \rangle) \land D_{\phi(\langle z, a \rangle)} \subseteq A \iff !\psi(z) \land D_{\psi(z)} \subseteq A],$$

т. е. $\tau f \leq_{pc} A$, что противоречит выбору f. Итак, $B \not\leq_{pc} A$. В то же время, $A \leq_1 B$ и, следовательно, $A <_{pc} B$. Таким образом, $d_e(A)$ содержит по крайней мере две pc-степени $d_{pc}(A)$ и $d_{pc}(B)$, причем $d_{pc}(A) < d_{pc}(B)$. Теорема доказана.

В заключение сформулируем оставшийся открытым вопрос: существует ли e-иммунное множество A такое, что $d_e(\overline{A})$ является тотальной e-степенью?

ЛИТЕРАТУРА

- 1. Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. М.: Мир, 1967.
- Медведев Ю. Т. Степени трудности массовых проблем // Докл. АН СССР. 1955. Т. 104. С. 501–504.

- 3. Case J. Enumeration reducibility and partial degrees // Ann. Math. Logic. 1971. V. 4. P. 419–439.
- 4. Sasso L. P. A servey of partial degrees // J. Symbolic Logic. 1975. V. 40. P. 130–140.
- **5.** Солон Б. Я. Е-гипериммунные множества // Сиб. мат. журн. 1992. Т. 33, № 2. С. 211–214.
- **6.** *Розинас М. Г.* Частичные степени иммунных и гипериммунных множеств // Сиб. мат. журн. 1978. Т. 19, № 5. С. 866–870.
- 7. Скордев С. Д. О частичной конъюнктивной сводимости // Тез. II Всесоюз. конф. по мат. логике. М., 1972. С. 43–44.
- **8.** Захаров С. Д. О внутреннем строении e-степеней // Тез. IX Всесоюз. конф. по мат. логике. Л., 1988. С. 61.

Статья поступила 1 марта 1998 г.

г. Иваново

 $\it Ивановский гос. \ xumuко-технологический университет, кафедра высшей математики$

solon@icti.ivanovo.su