Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 15 (2020), 425 -- 458

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

A SURVEY ON PROJECTIVELY EQUIVALENT REPRESENTATIONS OF FINITE GROUPS

Tania Luminiţa Costache

Abstract. The paper is a survey type article in which we present some results on projectively equivalent representations of finite groups.

2020 Mathematics Subject Classification: 20C25 , 19C09 , 20B05 , 20C30, 20K01, 42A45
Keywords: projective representation, factor set or multiplier, finite group, second cohomology group, cyclic group, dihedral group, symmetric group

Full text

References

  1. N.B. Backhouse, Projective representations of space groups, II:Factor systems, Quart. J. Math. Oxford (2), 21 (1970), p.277-295. MR0281803. Zbl 0208.03603.

  2. N.B. Backhouse, C.J. Bradely, Projective representations of space groups, I: Translation groups, Quart. J. Math. Oxford (2), 21 (1970), p.203-222. MR0260890. Zbl 0194.33701.

  3. R. Brauer, On the representation of a group of order g in the field of the g-th roots of unity, Amer. J. Math., vol. 67 (1945), p. 461-471. MR0014085. Zbl 0061.03901.

  4. R. Brauer, Applications of induced characters, Amer. J. Math., vol. 69 (1947), p. 709-716. MR0022851.

  5. J.F. Carinena, Representation groups for semiunitary projective representations of finite groups, J. of Math. Phys. 20 (11), November 1979, p.2168-2177. MR0550691 Zbl 0439.20006.

  6. A.H. Clifford, Representations induced in an invariant subgroup, Ann. Math., vol. 38, No. 3 (1937), p.533-550. MR1503352. Zbl 0017.29705.

  7. C. Curtis, I. Reiner, Representations theory of groups and associative algebras, Pure and Applied Math. XI, Interscience, New-York (1962). MR1013113.

  8. J.R. Durbin, K.B. Farmer, On projective representations of finite wreath products, Math. of Computation, vol. 31, No. 138 (1977), p.527-535. MR0453855. Zbl 0357.20005.

  9. K.B. Farmer, A survey of projective representation theory of finite groups, Nieuw Archief Voor Wiskunde (3),XXVI (1978), p.292-308. MR0498823. Zbl 0381.20008.

  10. Shin-ichiro Ihara, T. Yokonuma, On the second cohomology groups (Schur-multipliers) of finite reflection groups, J. Fac. Sci. Univ. Tokyo. Sect. 1, XI (1965), p.155-171. MR0190232. Zbl 0136.28802.

  11. N. Iwahori, H. Matsumoto, Several remarks on projective representations of finite groups, J. Fac. Sci. Univ. Tokyo. Sect. 2, 10 (1964), p.129-146. MR0180607. Zbl 0125.01504.

  12. G. Karpilovsky, On linearizable irreducible projective representations of finite groups, J. Math. Soc. Japan, vol. 28, No. 3 (1976), p.541-549. MR0422399. Zbl 0316.20007.

  13. G. Karpilovsky, Projective representations of finite groups, Marcel-Dekker (1985). MR0788161. Zbl 0568.20016.

  14. A. Kleppner, Multipliers on abelian groups, Math. Annalen 158 (1965), p.11-34. MR0174656 Zbl 0135.06604

  15. A.O. Morris, Projective representations of abelian groups, J. London Math. Soc. (2), 7 (1973), p.235-238. MR0327885. Zbl 0272.20007.

  16. A.O. Morris, M. Saeed-ul-Islam, E. Thomas, Some projective representations of finite abelian groups, Glasgow Math. J. 29 (1987), p.197-203. MR0901666. Zbl 0631.20010.

  17. H.N. NG, Faithful irreducible projective representations of metabelian groups, J. of Algebra, 38 (1976), p.8-28. MR0432749. Zbl 0357.20004.

  18. M. Osima, On the representations of groups of finite order, Math. J. Okayama Univ., 1 (1952), p.33-61. MR0049894. Zbl 0047.02802.

  19. R. Quinlan, Generic central extensions and projective representations of finite groups, Representation Theory, An Electronic J. of Amer. Math. Soc., vol. 5 (2001), p.129-146. MR1835002. Zbl 0986.20009.

  20. E.W. Read, On projective representations of finite reflection groups of type Bl and Dl, J. London Math. Soc. (2), 10 (1975), p.129-142. MR0367047. Zbl 0307.20008.

  21. E.W. Read, Projective characters of Weyl group of type F4, J. London Math. Soc. (2), 8 (1974), p.83-93. MR0340401. Zbl 0279.20010.

  22. E.W. Read, The projective representations of the generalized symmetric group, J. of Algebra 46 (1977), p.102-133. MR0457547. Zbl 0357.20007.

  23. W.F. Reynolds, Projective representations of finite groups in cyclotomic fields, J. Math. 9 (1965), p.191-198. MR0174631. Zbl 0134.03201.

  24. P. Rudra, On projective representations of finite groups, J. Math. Physics, vol. 6, No. 8 (1965), p.1273-1277. MR0182388. Zbl 0135.05603.

  25. I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), p.20-50. MR1580715. Zbl 35.0155.01.

  26. I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. für Math. 139 (1911), p.155-250. MR1580818. Zbl 42.0154.02.

  27. J. Tappe, Irreducible projective representations of finite groups, Manuscripta Math. 22 (1977), p.33-45. MR0466292. Zbl 0365.20016.

  28. K. Yamazaki, A note on projective representations of finite groups, Sci. Papers College Gen. Ed. Univ. Tokyo 14 (1964), p.27-36. MR0172938. Zbl 0121.03304.

  29. K. Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo Sect. 2, 10 (1964), p.147-195. MR0180608. Zbl 0125.01601.



Tania Luminiţa Costache
Faculty of Applied Sciences, University "Politehnica" of Bucharest
Splaiul Independentei 313, Bucharest, Romania
e-mail: lumycos1@yahoo.com

http://www.utgjiu.ro/math/sma