Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 15 (2020), 169 -- 216
This work is licensed under a Creative Commons Attribution 4.0 International License.GENERALIZED ALGEBRAIC COMPLETELY INTEGRABLE SYSTEMS
Ahmed Lesfari
Abstract. We tackle in this paper the study of generalized algebraic completely integrable systems. Some interesting cases of integrable systems appear as coverings of algebraic completely integrable systems. The manifolds invariant by the complex flows are coverings of Abelian varieties and these systems are called algebraic completely integrable in the generalized sense. The later are completely integrable in the sense of Arnold-Liouville. We shall see how some algebraic completely integrable systems can be constructed from known algebraic completely integrable in the generalized sense. A large class of algebraic completely integrable systems in the generalized sense, are part of new algebraic completely integrable systems. We discuss some interesting and well known examples : a 4-dimensional algebraically integrable system in the generalized sense as part of a 5-dimensional algebraically integrable system, the Hénon-Heiles and a 5-dimensional system, the RDG potential and a 5-dimensional system, the Goryachev-Chaplygin top and a 7-dimensional system, the Lagrange top, the (generalized) Yang-Mills system and cyclic covering of Abelian varieties.
2020 Mathematics Subject Classification: 70H06, 14H55, 14H70, 14K20.
Keywords: Integrable systems, Abelian varieties, Surfaces of general type.
References
S. Abenda, Yu. Fedorov, On the weak Kowalewski-Painlevé Property for hyperelliptically separable systems, Acta Appl. Math., 60 (2000), 137-178. MR1773961. Zbl 0984.37068.
A. Abraham, J.E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978. MR515141. Zbl 0393.70001.
M. Adler, P. van Moerbeke, Algebraic completely integrable systems : a systematic approach, I, II, III, Séminaire de Mathématique, Rapport No 110, p.1-145, SC/MAPA - Institut de mathématique pure et appliquée, UCL, 1985.
M. Adler, P. van Moerbeke, The complex geometry of the Kowalewski-Painlevé analysis, Invent. Math., 97 (1989), 3-51. MR999312. Zbl0678.58020.
M. Adler, P., van Moerbeke, P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, A series of modern surveys in mathematics, Volume 47, Springer-Verlag, 2004. MR2095251. Zbl 1083.37001.
C. Bechlivanidis, P. van Moerbeke, The Goryachev-Chaplygin top and the Toda lattice, Comm. Math. Phys., 110(2) (1987), 317-324. MR0888003. Zbl 0638.58010.
E.D. Belokolos, A.I. Bobenko, V.Z., Enol'skii, A.R. Its and V.B. Matveev, Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, 1994. Zbl 0809.35001.
M.L. Berry, Regular and Irregular Motions, Topics in Nonlinear Dynamics, S. Jorna (ed.), 16-120, Am. Inst. Phys, New York 1978.
S.A. Chaplygin, Selected Works [in Russian], Nauka, Moscow, 1976. MR0421969.
P. L. Christiansen, J. C. Eilbeck, V. Z. Enolskii and N.A. Kostov, Quasi-periodic and periodic solutions for systems of coupled nonlinear Schrödinger equations, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 456 (2000), 2263-2281. MR1794725. Zbl 0965.35157.
R. Garnier, Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires, Ren. Circ. Math. Palermo, 43(4) (1919), 155-191. JFM 0965.35157.
L. Gavrilov, A. Angel Zhivkov, The complex geometry of the Lagrange top, Enseign. Math., 44 (1998), 133-170. MR1643290. Zbl 0965.35157.
D. Goryachev, On the motion of a rigid material body about a fixed point in the case A=B=4C, Mat. Sb., 21(3) (1900).
B. Grammaticos, B. Dorozzi, A. Ramani, Integrability of Hamiltonians with third and fourth-degree polynomial potentials, J. Math. Phys., 24 (1983), 2289-2295. MR0715400. Zbl 0547.70017.
P.A. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience 1978. MR0507725(80b:14001). Zbl 0408.14001.
L. Haine, Geodesic flow on SO(4) and Abelian surfaces, Math. Ann., 263 (1983), 435-472. MR707241. Zbl 0521.58042.
M. Hénon, C. Heiles, The applicability of the third integral of motion; some numerical experiments, Astron. J., 69 (1964), 73-79. MR0158746.
W. Hess, Uber die Euler hen Bewegungsgleichungen und tlber eine neue par dare L(isung des Problems der Bewegung eines starren Korpers un einen festen punkt, Math. Ann., 37(2) (1890).
J. Hietarinta, Classical versus quantum integrability, J. Math. Phys., 25 (1984), 1833-1840. MR0746267.
J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep., 147 (1987), 87-154. MR0879243.
S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system, Celes Mech. and Dyn. Astr., 58 (1994), 387-391. Erratum Celes. Mech. and Dyn. Astr., 60 (1994), 289. MR1274535. MR1310190.
G. Kolossoff, Zur Rotation eines Körpers im Kowalewski'schen Falle, Mathematische Annalen, 56 (1903), 265-272.
N.A. Kostov, Quasi-periodical solutions of the integrable dynamical systems related to Hill's equation, Lett. Math. Phys., 17 (1989), 95-104. MR0993015. Zbl 0691.58022.
S. Kowalevski, Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12 (1889), 177-232. JFM 21.0935.01.
A. Lesfari, Abelian surfaces and Kowalewski's top, Ann. Scient. Éc. Norm. Sup., Paris, 4e série, 21 (1988), 193-223. MR0956766. Zbl 0667.58019.
A. Lesfari, The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability, Rep. Math. Phys., 47 (2001), 9-20. MR1823005. Zbl 1054.37038.
A. Lesfari, Le système différentiel de Hénon-Heiles et les variétés Prym, Pacific J. Math., 212(1) (2003), 125-132. MR2016973. Zbl 1070.37040.
A. Lesfari, Analyse des singularités de quelques systèmes intégrables, C. R. Acad. Sci. Paris, Ser. I 341 (2005), 85-88. MR2153961. Zbl 1080.34500.
A. Lesfari, Abelian varieties, surfaces of general type and integrable systems. Beiträge Algebra Geom., 48(1) (2007), 95-114. MR2326403. Zbl 1139.37046.
A. Lesfari, Cyclic coverings of abelian varieties and the generalized Yang Mills system for a field with gauge groupe SU(2), Int. J. Geom. Methods Mod. Phys., 5(6) (2008), 947-961. MR2453934. Zbl 1156.70014.
A. Lesfari, Algebraic integrability : the Adler-van Moerbeke approach, Regul. Chaotic Dyn., 16(3-4) (2011), 187-209. MR2810977. Zbl 1260.37028.
A. Lesfari, The Hénon-Heiles system as part of an integrable system, J. Adv. Res. Dyn. Control Syst., 6(3) (2014), 24-31. MR3245041.
A. Lesfari, Géométrie et intégrabilité algébrique, Rend. Mat. Appl., (7)36, 1-2 (2015), 27-76 (2015). MR3533250. Zbl 1373.70014.
A. Lesfari, Introduction à la géométrie algébrique complexe, Hermann, Paris 2015.MR3531421 Zbl 1327.14001.
D. Mumford, Tata Lectures on Theta II, Progress in Math., Birkhaüser, Boston, 1984. MR742776. Zbl 0549.14014.
L. Piovan, Cyclic coverings of Abelian varieties and the Goryachev-Chaplygin top, Math. Ann., 294 (1992), 755-764. MR1190455. Zbl 0778.14007.
A. Ramani, B. Dorozzi, B. Grammaticos, Painlevé conjecture revisited, Phys. Rev. Lett., 49 (1982), 1539-1541. MR0682678.
V. Ravoson, L. Gavrilov, R. Caboz, Separability and Lax pairs for Hénon-Heiles system, J. Math. Phys., 34 (1993), 2385-2393. MR1218994. Zbl 0784.58029.
V. Ravoson, A. Ramani, B. Grammaticos, Generalized separability for a Hamiltonian with nonseparable quartic potential, Phys. Lett., 191 A (1994), 91-95. MR1288905. Zbl 0961.70502.
M. Toda, Wave propagation in anharmonic lattices, J. Phys. Soc. of Japan, 23 (1967), 501-506.
P. Vanhaecke, Linearising two-dimensional integrable systems and the construction of action-angle variables, Math. Z., 211 (1992), 265-313. MR1184331. Zbl 0758.58011.
P. Vanhaecke, Stratifications of hyperelliptic Jacobians and the Sato Grassmannian, Acta Appl. Math., 40 (1995), 143-172. MR1338445. Zbl 0827.14015.
P. Vanhaecke, Integrable systems and symmetric products of curves, Math. Z., 227 (1998), 93-127.MR1605385. Zbl 0909.58022.
P. Vanhaecke, Integrable systems in the realm of algebraic geometry, Lecture Notes in Math., 1638, Springer-Verlag, Second edition 2001. MR1850713. Zbl 0997.37032.
P. van Moerbeke, Introduction to algebraic integrable systems and their Painlevé analysis, Theta functions-Bowdoin 1987, Part 1 (Brunswick, ME, 1987), 107-131, Proc. Sympos. Pure Math., 49, Part 1, Amer. Math. Soc., Providence, RI, 1989. MR1013129. Zbl 0688.70012.
S. Wojciechowski, On a Lax-type representation and separability of the anisotropic harmonic oscillator in a radial quartic potential, Lett. Nuovo Cimento, 41 (1984), 361-369. MR0774336.
S. Wojciechowski, Integrability of one particle in a perturbed central quartic potential, Physica Scripta, 31 (1985), 433-438. MR0795559. Zbl 1063.70521.
Ahmed Lesfari
Department of Mathematics,
Faculty of Sciences, University of Chouaïb Doukkali,
B.P. 20, 24000 El Jadida, Morocco.
e-mail: lesfariahmed@yahoo.fr