Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 261 -- 275

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

OPERATOR SPLITTING METHODS FOR COMPUTATION OF EIGENVALUES OF REGULAR STURM-LIOUVILLE PROBLEMS

İsmail Güzel, Meltem Adıyaman, Sennur Somalı

Abstract. The purpose of this paper is to compute the highest eigenvalues of regular Sturm-Liouville problems with Dirichlet boundary conditions using symmetrical weighted sequential splitting method. The accuracy of the higher eigenvalues of the problem is demonstrated by some classical examples.

2010 Mathematics Subject Classification: 65L15; 34L16;
Keywords: Sturm-Liouville Problem; Operator Splitting Method; Eigenvalues.

Full text

References

  1. R. S. Anderssen and F. R. De Hoog, On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems with general boundary conditions, BIT Numerical Mathematics, Volume 24(4)(1984), 401--412. MR764814. Zbl 0552.65065.

  2. A. L. Andrew, Correction of finite element eigenvalues for problems with natural or periodic boundary conditions, BIT Numerical Mathematics, Volume 28(2)(1988), 254--269 MR938391. Zbl 0646.65070.

  3. A. L. Andrew, Asymptotic correction of computed eigenvalues of differential equations, Annals Numerical Mathematics, Volume 1(1994), 41--51 MR1340643. Zbl 0823.65080.

  4. A. L. Andrew, Correction of finite difference eigenvalues of periodic Sturm-Liouville problems, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, Volume 30(4)(1989), 460--469 MR982625. Zbl 0676.65089.

  5. A. L. Andrew and J. W. Paine, Correction of finite element estimates for Sturm-Liouville eigenvalues, Numerische Mathematik, Volume 50(2)(1986), 205--215 MR866137. Zbl 0588.65062.

  6. A. L. Andrew and J. W. Paine, Correction of Numerov's eigenvalue estimates, Numerische Mathematik, Volume 47(2)(1985), 289--300 MR799687. Zbl 0554.65060.

  7. G. Birkhoff and E. S. Varga, Numerical solution of field problems in continuum physics, Rhode Island: American Mathematical Society, Volume 2(1970). MR253846. Zbl 0207.00201.

  8. C. T. Fulton and S. A. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems, Journal of Mathematical Analysis and Applications, Volume 188(1)(1994), 297--340 MR1301734. Zbl 0812.34073.

  9. P. Ghelardoni and G. Gheri, Improved shooting technique for numerical computations of eigenvalues in Sturm-Liouville problems, Nonlinear Analysis: Theory, Methods & Applications, Volume 47(2)(2001), 885--896 MR1970706. Zbl 1042.65535.

  10. E. C. Gartland, Accurate approximation of eigenvalues and zeros of selected eigenfunctions of regular Sturm-Liouville problems, Mathematics of Computation, Volume 42(166)(1984), 427--439 MR736445. Zbl 0557.65059.

  11. J. Geiser, Iterative splitting methods for differential equations, Boca Raton, Florida: Chapman & Hall/CRC Press, 2011 MR2807918. Zbl 1223.65074.

  12. J. W. Paine and F. R. de Hoog and R. S. Anderssen, On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems, Computing, Volume 26(2)(1981), 123--139 MR619934. Zbl 0436.65063.

  13. S. Somali and V. Oger, Improvement of eigenvalues of Sturm-Liouville problem with t-periodic boundary conditions, Journal of Computational and Applied Mathematics, Volume 180(2)(2005), 433--441 MR2139843. Zbl 1078.65068.


İsmail Güzel
Dokuz Eylul University, The Graduate school of Natural and Applied Science,
İzmir, Turkey.

e-mail:ismailgzel@gmail.com

Meltem Adıyaman
Dokuz Eylul University, Faculty of Science, Department of Mathematics,
İzmir, Turkey.

e-mail: meltem.evrenosoglu@deu.edu.tr

Sennur Somalı
Dokuz Eylul University, Faculty of Science, Department of Mathematics,
İzmir, Turkey.

e-mail: sennur.somali@deu.edu.tr

http://www.utgjiu.ro/math/sma