Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 231 -- 259
This work is licensed under a Creative Commons Attribution 4.0 International License.RÉALISATION DU FLOT GÉODÉSIQUE SUR LE GROUPE SO(n) COMME FLOT SUR DES ORBITES DE KOTANT-KIRILLOV/REALIZATION OF GEODESIC FLOW ON THE GROUP SO(n) AS A FLOW ON KOSTANT-KIRILLOV ORBITS
Ahmed Lesfari
Abstract. The aim of this paper is to realize the geodesic flow on the group SO(n) as a flow on the Kostant-Kirillov orbits. We study the adjoint and coadjoint orbits of a Lie group with an application in the case of the orthogonal special group SO(n). We will see how to explicitly determine a symplectic structure in the orbit of the coadjoint representation of a Lie group. Special attention is given to the groups SO(3) and SO(4).
2010 Mathematics Subject Classification: 53D05; 53D30.
Keywords: Symplectic manifolds; Symplectic structures.
References
A. Abraham, J.E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978. MR515141. Zbl 0393.70001.
M. Adler, P., van Moerbeke and P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, A series of modern surveys in mathematics, Volume 47, Springer-Verlag, 2004. MR2095251(2006d:37106). Zbl 1083.37001.
V.I. Arnold, Mathematical methods in classical mechanics, Springer-Verlag, Berlin-Heidelberg- New York, 1978. MR0690288(57:14033b). Zbl 0386.70001.
V.I. Arnold, A.B. Givental, Symplectic geometry, Dynamical systems IV. V.I. Arnold and S.P. Novikov, eds., Springer, 1990. MR88b:58044. Zbl 0780.58016.
A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics 1764, Springer-Verlag, Berlin, 2001. MR2002i:53105.
L. Euler, Mémoires Acad. Sc, Berlin, 1758. Theoria motus corporum solidorum seu rigidorum, Rostock, 1765.
V. Guillemin, S. Sternberg, Symplectic techniques in Physics, Cambridge University press, Cambridge, 1984, second edition 1990. MR770935.
L. Haine, Geodesic flow on SO(4) and Abelian surfaces, Math. Ann., 263 (1983), 435-472. MR707241. Zbl 0521.58042.
A. Lesfari, Systèmes hamiltoniens complètement intégrables, Aequat. Math., Vol. 82 (2011), 165-200. MR2807041. Zbl 1243.37050.
A. Lesfari, Algèbres de Lie affines et opérateurs pseudo-différentiels d'ordre infini, Math. Rep., 14(64), No.1 (2012), 43-69. MR2954048. Zbl 1274.37041.
A. Lesfari, Rotation d'un corps solide autour d'un point fixe, Rend. Sem. Mat. Univ. Pol. Torino, 72(1-2) (2014), 255-284. MR3601855. Zbl 1373.4004.
A. Lesfari, Etude géométrique et topologique du flot géodésique sur le groupe des rotations, Surv. Math. Appl., 11 (2016), 107-134. MR3537664. Zbl 1399.37034.
P. Libermann, C.M. Marle, Symplectic geometry and analytical mechanics, D. Reidel, Dordrecht, 1987. MR88c:58016.
A.M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Birkhäuser, 1990. MR1048350. Zbl 0717.70003.
J.M. Souriau, Structure des systèmes dynamiques, Dunod, 1970. MR260238. Zbl 0186.58001.
A. Weinstein, Symplectic manifolds and their lagrangian submanifolds, Adv. in Math., 6 (1971), 329-346. MR286137. Zbl 0213.48203.
A. Weinstein, Lectures on symplectic manifolds, CBMS Regional Conference Series in Mathematics, No. 29, American Mathematical Society, 1977. MR464312. Zbl 0406.53031.
A. Weinstein, Symplectic geometry, Bull. Amer. Math. Soc. (N.S.), 5 (1981), 1-13. MR614310. Zbl 0465.58013.
A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom., 18 (1983), 523-557. MR723816. Zbl 0524.58011.
Ahmed Lesfari
Département de Mathématiques,
Faculté des Sciences, Université Chouaïb Doukkali,
B.P. 20, 24000 El Jadida, Maroc.
e-mail: lesfariahmed@yahoo.fr