Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 173 -- 193
This work is licensed under a Creative Commons Attribution 4.0 International License.STABILITY IN NONLINEAR NEUTRAL LEVIN-NOHEL INTEGRO-DYNAMIC EQUATIONS
Kamel Ali Khelil, Abdelouaheb Ardjouni and Ahcene Djoudi
Abstract. In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-dynamic equation
xΔ (t)+∫tt-τ (t) a(t,s)g(x(s)) Δ s+c(t)xΔ̃ (t-τ (t)) = 0. The results obtained here extend the work of Ali Khelil, Ardjouni and Djoudi [5].2010 Mathematics Subject Classification: 34K20, 34K30, 34k40.
Keywords: Fixed points; neutral integro-dynamic equations; stability; time scale.
References
M. Adivar and Y. N. Raffoul, Stability and periodicity in dynamic delay equations, Computers and Mathematics with Applications 58 (2009), 264-272. MR2535793. Zbl 1189.34143.
M. Adivar and Y. N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal of Qualitative Theory of Differential Equations 2009(1) (2009), 1-20. MR2558826. Zbl 1195.34138.
E. Akin-Bohner, Y. N. Raffoul and C. C. Tisdell, Exponential stability in functional dynamic equations on time scales, Commun. Math. Anal. 9 (2010), 93-108. MR2640308. Zbl 1194.34173.
K. Ali Khelil, F. Bouchelaghem and L. Bouzettouta, Exponential stability of linear Levin-Nohel integro-dynamic equations on time scales, Int. J. Appl. Math. Stat. 56(6) (2017), 138-149. MR3685491.
K. Ali Khelil, A. Ardjouni and A. djoudi, Stability in nonlinear neutral Levin-Nohel integro-differential equations, Korean J. Math. 25(3) (2017), 303-321. [MR3713747.
A. Ardjouni and A. Djoudi, Stability in neutral nonlinear dynamic equations on time scale with unbounded delay, Stud. Univ. Babes-Bolyai Math. 57(4) (2012), 481-496. MR3034097. Zbl 1289.34257.
A. Ardjouni and A. Djoudi, Stability in nonlinear neutral integro-differential equations with variable delay using fixed point theory, J. Appl. Math. Comput. 44 (2014), 317-336. MR3147744. Zbl 1298.34134.
A. Ardjouni and A. Djoudi, Fixed point and stability in neutral nonlinear differential equations with variable delays, Opuscula Mathematica 32(1) (2012), 5-19. MR2852465. Zbl 1254.34110.
A. Ardjouni, A. Djoudi and I. Soualhia, Stability for linear neutral integro-differential equations with variable delays, Electronic journal of Differential Equations 2012(172) (2012), 1-14. MR2991406. Zbl 1255.34074.
F. M. Atici, G. Sh. Guseinov and B. Kaymakcalan, Stability criteria for dynamic equations on time scales with periodic coefficients, Proceedings of the International Confernce on Dynamic Systems and Applications 3(3) (2001), 43-48. MR1864659. Zbl 0998.34040.
L. C. Becker and T. A. Burton, Stability, fixed points and inverse of delays, Proc. Roy. Soc. Edinburgh 136A (2006), 245-275. MR2218152.
M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003. MR1962542. Zbl 1025.34001.
M. Bohner and A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser, Boston, 2001. MR1843232.
T. A. Burton, Integral equations, implicit functions and fixed points, Proc. Amer. Math. Soc. 124 (1996), 2383-2390. MR1346965. Zbl 0873.45003.
T. A. Burton, Liapunov functionals, fixed points, and stability by Krasnoselskii's theorem, Nonlinear Studies 9 (2001), 181-190. MR1898587. Zbl 1084.47522.
T. A. Burton, Stability by fixed point theory or Liapunov's theory, A comparison, Fixed Point Theory 4 (2003), 15-32. MR2031819. Zbl 1061.47065.
T. A. Burton and T. Furumochi, Asymptotic behavior of solutions of functional differential equations by fixed point theorems, Dynamic Systems and Applications 11 (2002), 499-519. MR1946140. Zbl 1044.34033.
T. A. Burton and T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Analysis 49 (2002), 445-454. MR1886230. Zbl 1015.34046.
T. A. Burton, Fixed points and stability of a nonconvolution equation, Proceedings of the American Mathematical Society 132 (2004), 3679-3687. MR2084091. Zbl 1050.34110.
T. A. Burton, Stability by fixed point theory for functional differential equations, Dover Publications, New York, 2006. MR2281958. Zbl 1160.34001.
T.A. Burton and T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential equations, Dynamic Systems and Appl. 10 (2001), 89-116. MR1844329. Zbl 1021.34042.
N. T. Dung, Asymptotic behavior of linear advanved differential equations, Acta Mathematica Scientia 35B(3) (2015), 610-618.
N. T. Dung, New stability conditions for mixed linear Levin-Nohel integro-differential equations, Journal of Mathematical Physics 54, (2013), 1-11. MR3135476. Zbl 1286.45006.
S. Hilger, Ein Maβ kettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, Ph. D. thesis, Universität Würzburg, 1988.
C. H. Jin and J. W. Luo, Stability of an integro-differential equation, Computers and Mathematics with Applications 57 (2009), 1080-1088. MR2508538. Zbl 1186.45011.
C. H. Jin and J. W. Luo, Stability in functional differential equations established using fixed point theory, Nonlinear Anal. 68 (2008), 3307-3315. MR2401344. Zbl 1165.34042.
C. H. Jin and J. W. Luo, Fixed points and stability in neutral differential equations with variable delays, Proceedings of the American Mathematical Society 136(3) (2008), 909-918. MR2361863. Zbl 1136.34059.
E. R. Kaufmann and Y.N. Raffoul, Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale, Electron. J. Differential Equations, 2007(27) (2007), 1-12. MR2299581. Zbl 1118.34058.
E. R. Kaufmann and Y. N. Raffoul, Stability in neutral nonlinear dynamic equations on a time scale with functional delay, Dynamic Systems and Applications 16 (2007), 561-570. MR2356339. Zbl 1140.34430.
A. A. Martynyuk, On the exponential stability of a dynamical system on a time scale, Dokl. Math. 78 (2008), 535-540. MR2464521. Zbl 1234.34056.
D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, 1974. MR0467717.
B. Zhang, Fixed points and stability in differential equations with variable delays, Nonlinear Anal. 63 (2005), e233-e242. Zbl 1159.34348.
Kamel Ali Khelil
High School of Management Sciences Annaba,
Bp 322 Boulevard 24 February 1956, Annaba, 23000, Algeria.
e-mail: k.alikhelil@yahoo.fr
Abdelouaheb Ardjouni
Department of Mathematics and Informatics, University of Souk Ahras,
P.O. Box 1553, Souk Ahras, 41000, Algeria.
e-mail: abd_ardjouni@yahoo.fr
Ahcene Djoudi
Applied Mathematics Lab, Department of Mathematics, University of Annaba,
P.O. Box 12, Annaba 23000, Algeria.
e-mail: adjoudi@yahoo.com