Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 17 -- 48

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

GREENLEES-MAY DUALITY IN A NUTSHELL

Hossein Faridian

Abstract. This expository article delves deep into Greenlees-May Duality which is widely thought of as a far-reaching generalization of Grothendieck's Local Duality. Despite its focal role in the theory of derive local homology and cohomology, in the literature this theorem did not get the treatment it deserves, as indeed its proof is a tangled web in a series of scattered papers. By carefully scrutinizing the requisite tools, we present a clear-cut well-documented proof of this theorem for the sake of reference.

2010 Mathematics Subject Classification: 16L30; 16D40; 13C05.
Keywords: ℑomplex; derived category; Greenlees-May duality; Koszul complex; local cohomology; local homology.

Full text

References

  1. L. Avramov and H-B. Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra, 71(2-3), (1991), 129-155. MR1117631. Zbl 0737.16002.

  2. L. Alonso Tarrío, A. Jeremías López and J. Lipman, Local homology and cohomology on schemes, Ann. Sci. École Norm. Sup., (4), 30(1), (1997), 1-39. MR1422312. Zbl 0894.14002.

  3. W. Bruns, and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993. MR1251956. Zbl 0909.13005.

  4. M. Brodmann and R.Y. Sharp, Local cohomology: An algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 136, Cambridge University Press, Cambridge, Second Edition (2013). MR1613627. Zbl 1303.00029.

  5. H-B. Foxby, Hyperhomological algebra and commutative rings, notes in preparation.

  6. A. Frankild, Vanishing of local homology, Math. Z., 244(3), (2003), 615-630. MR1992028. Zbl 1020.13003.

  7. J.P.C. Greenlees and J.P. May, Derived functors of I-adic completion and local homology, J. Algebra, 149(2), (1992), 438-453. MR1172439. Zbl 0774.18007.

  8. R. Hartshorne, Residues and duality, Lecture notes in mathematics, 20, (1966). MR0222093. Zbl 0212.26101.

  9. M. Hatamkhani and K. Divaani-Aazar, The derived category analogue of the Hartshorne-Lichtenbaum vanishing theorem, Tokyo. J. Math., 36(1), (2013), 195-205. MR3112383. Zbl 1277.13013.

  10. T. Kawasaki, On arithmetic Macaulayfication of noetherian rings, Trans. Amer. Math. Soc. 354 (2002), 123-149. MR1859029. Zbl 1087.13502.

  11. J. Lipman, Lectures on local cohomology and duality, Local cohomology and its applications, Lecture notes in pure and applied mathematics, 226, (2012), Marcel Dekker, Inc. MR1888195. Zbl 1011.13010.

  12. E. Matlis, The Koszul complex and duality, Comm. Algebra, 1, (1974), 87-144. MR0344241. Zbl 0277.13011.

  13. M. Porta, L. Shaul and A. Yekutieli, On the Homology of completion and torsion, Algebr. Represent. Theor., 17, (2014), 31-67. MR3160712. Zbl 1316.13020.

  14. J.J. Rotman, An introduction to homological algebra, Universitext. Springer, New York, second edition, 2009. MR2455920. Zbl 1157.18001.

  15. P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand., 92(2), (2003), 161-180. MR1973941. Zbl 1023.13011.

  16. P. Selick, Introduction to homotopy theory, Fields Institute Monographs, American Mathematical Society, (1997). MR1450595. Zbl 0883.55001.

  17. A.M. Simon, Some homological properties of complete modules, Math. Proc. Camb. Phil. Soc., 108(2), (1990), 231-246. MR1074711. Zbl 0719.13007.

  18. A.M. Simon, Adic-completion and some dual homological results, Publ. Mat. Camb., 36(2B), (1992), 965-979. MR1210029. Zbl 0839.13015.

  19. N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math., 65(2), (1988), 121-154. MR0932640. Zbl 0636.18006.

  20. S. Sather-Wagstaff, Semidualizing modules, notes in preparation.

  21. C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., vol. 38, Cambridge Univ. Press, Cambridge, 1994, xiv+450 pp. MR1269324. Zbl 0797.18001.


Hossein Faridian,
School of Mathematical and Statistical Sciences,
Clemson University, SC 29634, USA.
E-mail: hfaridi@g.clemson.edu, h.faridian@yahoo.com

http://www.utgjiu.ro/math/sma